

Evento	Salão UFRGS 2015: SIC - XXVII SALÃO DE INICIAÇÃO CIENTÍFICA DA UFRGS
Ano	2015
Local	Porto Alegre - RS
Título	ÁCIDO QUINOLÍNICO CAUSA REORGANIZAÇÃO DO CITOESQUELETO DE ASTRÓCITOS E NEURÔNIOS EM CULTURA: PAPEL DA MICROGLIA E PROTEÇÃO PELO ÁCIDO QUINURÊNICO.
Autor	BÁRBARA INDAIARA ORTIZ DE LIMA
Orientador	REGINA PESSOA PUREUR

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE CIÊNCIAS BÁSICAS DE SAÚDE DEPARTAMENTO DE BIOQUÍMICA

ÁCIDO QUINOLÍNICO CAUSA REORGANIZAÇÃO DO CITOESQUELETO DE ASTRÓCITOS E NEURÔNIOS EM CULTURA: PAPEL DA MICROGLIA E PROTEÇÃO PELO ÁCIDO QUINURÊNICO.

A rota das quinureninas é a maior via de metabolização do triptofano e produz diversos intermediários neuroativos, sendo que a desregulação desta rota está associada com muitas condições neurodegenerativas. Dentre os metabólitos produzidos pela via, o ácido quinolínico (QUIN) e o ácido quinurênico (KYNA) têm sido o maior foco de atenção por suas propriedades neuroativas. O QUIN é um agonista de receptores N-metil-D-aspartato (NMDA) que está envolvido em diversas doenças neurodegenerativas, em especial a doença de Huntington (DH). O aumento de suas concentrações pode gerar excitotoxicidade, aumento de espécies reativas de oxigênio, neuroinflamação e peroxidação lipídica. O KYNA, por sua vez, exerce efeitos neuroprotetores por ser um antagonista NMDA e de outros receptores glutamatérgicos ionotrópicos. O citoesqueleto é responsável pela integridade celular, alterações morfológicas e transdução de sinais moleculares, sendo que as proteínas do citoesqueleto têm um papel chave na interação entre astrócitos e neurônios, contribuindo para as funções sinápticas e o metabolismo neuronal. Na neuroinflamação, as células microgliais se tornam ativas e mudam rapidamente a sua morfologia. Além disso, sabe-se que um importante componente da resposta microglial á injúria é a ativação da rota das quinureninas. Portanto, o objetivo do estudo é investigar os efeitos do QUIN sobre a morfologia de astrócitos, neurônios e microglia estriatais em cultura primária, bem como o efeito neuroprotetor do KYNA e da interação astrócito/neurônio/microglia sobre estas ações. Culturas isoladas de neurônios e astrócitos, bem como co-cultura e cultura mista foram incubados com QUIN (10-100 μM) e/ou KYNA (25-100 μM). Após 24 horas, as células foram fixadas e a análise morfológica foi feita usando a técnica de imunocitofluorescência utilizando anticorpos contra proteínas do citoesqueleto neuronal e astrocitário, bem como o marcador microglial IBA-1. As células marcadas foram capturadas por um sistema acoplado a um microscópio de fluorescência e as imagens foram analisadas usando o software ImageJ. Os resultados mostraram que a morfologia de astrócitos e neurônios foram drasticamente alterados pelo tratamento com QUIN. Também se verificou que astrócitos e neurônios cocultivados protegeram-se mutuamente contra os danos causados pelo QUIN. No entanto, na presença da microglia não foi observada a proteção dos efeitos causados pelo QUIN. Além disso, os resultados mostraram que o KYNA foi capaz de reverter os efeitos causados pelo QUIN sobre a morfologia celular tanto nas culturas isoladas quanto na cultura mista. Nossos resultados mostraram que o rompimento do citoesqueleto é uma das mais importantes consequências da toxicidade do QUIN em neurônios e astrócitos estriatais em cultura e que a interação astrócito-neurônio são importantes na neuroproteção. Além disso, mostramos que a microglia tem um papel crucial nos efeitos desencadeados pelo QUIN, sendo que o KYNA foi capaz de proteger as culturas celulares dos efeitos desencadeados pelo metabólito. Os resultados mostrados neste trabalho podem ser uma importante contribuição para a compreensão da neurotoxicidade do QUIN nas doenças neurodegenerativas.

Aluno: Bárbara Lima

Professor Orientador: Regina Pessoa Pureur