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A measure of cluster size heterogeneity (H ), introduced by Lee et al. [Phys. Rev. E 84, 020101 (2011)] in the 
context of explosive percolation, was recently applied to random percolation and to domains of parallel spins in 
the Ising and Potts models. It is defined as the average number of different domain sizes in a given configuration 
and a new exponent was introduced to explain its scaling with the size of the system. In thermal spin models, 
however, physical clusters take into account the temperature-dependent correlation between neighboring spins 
and encode the critical properties of the phase transition. We here extend the measure of H to these clusters and, 
moreover, present new results for the geometric domains for both d = 2 and 3. We show that the heterogeneity 
associated with geometric domains has a previously unnoticed double peak, thus being able to detect both the 
thermal and percolative transitions. An alternative interpretation for the scaling of H that does not introduce a 
new exponent is also proposed. 
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I. INTRODUCTION 

 

Cluster or domain size distributions are commonly used 
in statistical mechanics to unveil geometric properties and 
characterize both the equilibrium critical behavior [1] and the 
out-of-equilibrium dynamics [2,3] of several models. If the 
system is finite, not all possible domain sizes are present on 
a single configuration. These sample-to-sample fluctuations 
disappear and the distributions become dense in the infinite 
size limit or after ensemble averages are taken. In order to 
characterize these fluctuations, a quantity associated with how 
heterogeneously sized the equilibrium domains are, H , was 
recently proposed in the context of explosive percolation [4] 
and then applied to ordinary percolation [5] and to the Ising 
[6] and Potts models [7]. Differently from the cluster size 
distribution, the heterogeneity H only takes into account 
whether a given size is present in each configuration and 
gives the number of such distinct sizes. Although the number 
of  equal-sized clusters and  their actual size do  not  enter 
in  the  measure  of  H ,  both  entropic  and  thermal  effects 
are  relevant.  At  high  temperatures,  thermal  noise  breaks 
large clusters and the fragments are small, and so is the 
diversity and H . On the other hand, for low temperature, 
the presence of a very large, probably percolating cluster 
leaves small room to the other clusters, also decreasing the 
diversity. 

We here revisit the original formulation for the equilibrium 
scaling behavior of H  for the Ising model and present new 
results for both geometric and physical clusters. While the 
former considers all nearest neighbor parallel spins belonging 
to the same domain, the latter only takes the fraction of 
spins effectively correlated [8,9]. This difference, although 
important for systems of interacting spins under thermal noise, 
obviously does not exist for percolation models. For random 
percolation [5], H  has a clear peak and an excellent data 
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collapse is  obtained. For the  Ising model, a  kink but no 
peak has been observed for the system sizes considered in 
Ref. [6], although the authors had correctly argued for the 
existence of such a peak. Although in two dimensions (2d) 
both kinds of spin domains percolate at the same temperature, 
only the physical ones encode the critical properties (i.e., the 
critical exponents being the same, the percolative transition 
of the physical domains and the thermal transition are in 
the same universality class). It is thus interesting to see how 
their heterogeneity, Hp , differs from Hg  measured with the 
geometric domains. As we show below, even for small sizes, 
Hp presents a clear peak and an excellent collapse is obtained. 
For the geometric domains, on the other hand, we observe 
two peaks for sufficiently large systems, none of which were 
observed in Ref. [6], where only an abrupt change in the 
derivative was present at the critical temperature Tc . The first 
peak is small, very close to Tc , while the second one is large, 
broad and appears far above the critical temperature. Although 
the very existence of such double peak is interesting enough, 
there are several further questions that can be asked. What 
is the origin of such peaks? Do they merge, leaving a single 
peak, as the system size diverges? Do they share the same 
exponents or the percolation exponents play a role? What 
happens in 3d where the critical temperature does not coincide 
with the percolation threshold of geometric domains? In order 
to try to answer these questions, we studied the equilibrium 
Ising model on square and cubic lattices with linear sizes 
up  to  2560  and  250,  respectively.  Averages  up  to  200 
samples were performed for the smaller systems while larger 
sizes required fewer samples. All measures were obtained 
after equilibrating the system through 500 Swendsen-Wang 
steps [10]. 

The paper is organized as follows. We start Sec. II by 
reviewing the definition of H and its scaling behavior in the 
context of a thermal system. Then, in Secs. II A and II B we 
present the results of extensive simulations for the 2d and 3d 
Ising model, in which we measure H for both geometric and 
physical clusters. We finally discuss our results and conclude 
in Sec. III. 
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II. SIZE HETEROGENEITY 

 

Differently from  the  susceptibility that  corresponds, in 
percolation terms, to the mean cluster size [11], and thus 

for the r th cluster in the rank, at the critical temperature, we 
get 

   ∞ 

correlates with both the size and frequency of fluctuations, for 
the measure of H it is only the presence of a given cluster size 

r = Ld
 

sr 

ds s−τ f (0) ∼ Ld s1−τ .  (1) 

that is relevant. Both at too low and too high temperatures, the 
distribution of cluster sizes is concentrated at small domains, 
the latter because the large noise dissolves the clusters and 
the former because a giant cluster dominates the system 
leaving almost no room for the others. In both cases the size 
distribution has a small tail, domains are rather homogeneous, 
and H is not large. We thus expect a maximum of H between 
these two limits, close to the critical temperature because 
the fragmentation of the infinite cluster creates several small 
domains and the size distribution per site, n(s), being broad 
(power law), will increase the probability of these clusters 
having different sizes and thus contribute to H . Moreover, as 
the linear size L increases, more and larger clusters are allowed 
when the average distribution is broad enough and H may also 
increase with system size. Notice, however, that having a broad 
distribution does not necessarily imply a large value of H : it 
depends on how many of these different sizes are present on 

In the Appendix we present a more detailed discussion of the 
convergence of this integral. We get that sr  ∼ (Ld /r )1/(τ −1) 
and the fractal dimension of these large clusters is d/(τ  − 
1) [11], larger than d/τ  of s0 . As r increases, remembering that 
we are ranking the sizes in reverse order, sr  → s0 . Since s0 ∼ 
Ld/τ , for very large r0  one has Ld/τ ∼ (Ld /r0 )1/(τ −1) , hence 
r0 ∼ Ld/τ . Thus, the two contributions to H , H ∼ s0 + r0 , 
scale in the same way and H ∼ Ld/τ [5]. Since H and s0 share 
the same scaling behavior, measuring the first missing cluster 
size s0 is enough to obtain the critical scaling behavior of H . 

The point at which the distribution deviates from the power 
law grows as s  ∼ |t |−1/σ , which defines the exponent σ . As 
pointed out in Ref. [6], the competing scales in this problem 
can be considered s0  and s∗  instead of the usual L  and ξ . 
When s∗  » s0 ,  the power law is well developed and the 
distribution for a single configuration has many holes (in 
the opposite limit, s∗  « s0 , such distribution is dense and 
the system behaves as if its size was infinite). In this case, 

a given state or, equivalently, the amount of vacancies in the H ∼ s0 ∼ Ld/τ . Away from the transition, s decreases and 
distribution for a particular configuration of a finite size system 
(the average cluster size distribution, on the other hand, being the critical region extends up to the point 

∗ 
in which s∗ ∼ s0 . 

Thus, Ld s−τ  ∼ 1 and, using the above definition, the size of 
an ensemble average, is dense). the c

 ∗ 
gion is t L−dσ /τ

 −1/νH
 

ritical re | | ∼  ≡ L  , where νH = τ/σ d 
The precise dependence of H on the linear size L can be 

understood with a scaling argument [4,5]. Let us start with 
the height of the peak close to the critical temperature. Small 
clusters are present with a high probability in a finite size 
system and we define s0 , which is a function of the temperature, 
as the (average) smallest size not present in a configuration. 
Below s0 the distribution is dense; that is, the expected number 
of clusters whose sizes are smaller than s0 , Ld n(s < s0 ), is 
larger than 1. On the other hand, above s0 there are some sizes 
without a realization, Ld n(s > s0 ) < 1, and vacancies appear 
in the distribution. Thus, by definition, Ld n(s0 ) ∼ 1. As was 
shown in Ref. [5] and discussed below, the contributions to H 
from clusters in these two regions are of the same order [5]. 
Close to the transition, we write [11] n(s) � s−τ f (z) where 
z = tsσ   and t ≡ T / Tc − 1 is the reduced temperature. Two 
critical exponents are introduced. The first one, σ , is associated 
with the extension of the power-law tail as the criticality is 
approached while the Fisher exponent τ  is the exponent of 
such a power law. For the 2d cases considered here, we have 
τg  = 379/187 for geometric domains [12,13], τp  = 31/15 for 
physical clusters and τperc  = 187/91 for random percolation. 
The scaling function f (z) approaches a constant for |z| « 1 
and has a fast decay for |z| » 1. Close to the transition, 
n(s0 ) ∼ s−τ  ∼ L−d , and thus s0  scales as s0 ∼ Ld/τ  [4]. The 
remaining contribution to H  comes from the clusters with 
s > s0 . These clusters may be ranked by size, starting from 
the largest [5,14]. At the criticality, the largest cluster size 
lies in the interval [s1 ,∞) such that the expected number of 
clusters in this interval is unity. That is, the integral of n(s) 
from s1 to ∞, multiplied by the size of the system, is 1. 
Analogously, the second largest cluster lies in the interval 
[s2 ,∞) such that the integral of n(s) from s2 to ∞, multiplied 

by the size of the system, is now 2. Repeating the process, 
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or, equivalently, νH = ντ /(τ − 1). Consistently with this, Lee 
et al. [4] considered that the scaling behavior of H was given 
by H (t,L) = Ld/τ h(|t |L1/νH ). While close to the transition the 
scaling function h(x) is a constant, away from Tc the behavior 
is h(x) ∼ x−1/σ . 
 
 

A. 2d 

The definition of H  and its scaling were proposed and 
verified in Ref. [4] for explosive percolation and, later on, also 
in ordinary percolation [5] and some 2d spin models [6,7] 
for which there are several possible definitions of domains. 
For the Ising model, on which we focus here, a (geometric) 
domain is defined as a connected group of nearest-neighbor 
aligned spins. We show, in Fig. 1, the geometric domains 
heterogeneity Hg  as a function of the temperature for several 
system sizes near the 2d Ising critical point. For the small sizes 
considered in Ref. [6], only a change in the derivative of Hg , 
very close to Tc , was observed. By considering larger sizes, 
interestingly, two well separated peaks develop. The first, small 
one [Fig. 1(a)], is very close to Tc and, as shown by the collapse 
in Fig. 1(d), grows as Ld/τ . A good collapse was obtained with 
τ � 2.016(4) (keeping ν = 1) and, accordingly, νH � 1.984. 
These values are close to the exponents for the geometric 
domains in the Ising model [6], τg  = 379/187 � 2.027 and 
νH = 379/192 � 1.974. On a broader range of temperatures 
[notice the logarithmic scale in Fig. 1(b)], there is a second 
peak that, together with the first one, was not previously 
reported. In the large temperature limit, H → Hg (∞) and 
Hg (∞) can be independently measured on a random configu- 
ration with, on average, half of the spins up and the other half 
down. They are shown as horizontal lines whose heights slowly 
increase with L, Hg (∞) ∼ log L [5,6], and are approached as 
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FIG. 1. (Color online) Size heterogeneity H for the d = 2 Ising model in equilibrium as a function of the temperature for several system 
sizes (top row) and the corresponding collapses (bottom row) using the reduced temperature t ≡ T / Tc − 1. The vertical dotted line locates 
the critical temperature Tc = 2/ ln(1 + 

√
2). First (small) peak for the geometric domains (a), very close to Tc . The best collapse (d), keeping 

ν = 1, was obtained with τ � 2.016(4). Second, large and broad peak for the geometric domains (b). The height of the peak grows with 
an effective τ � 2.048 that is definitively different from the first peak. A good collapse (e) is obtained with ν � 1.25. The horizontal lines 
correspond to an independent measure of H  at T → ∞ using a random configuration. Measure of Hp  for the physical domains (c) whose 
exponents are τp  = 31/15 and νH  = 31/16 and give, again, an excellent collapse (f). In this case, there is a single peak close to Tc . Notice the 
different horizontal scales in all graphs and the logarithmic one in (b). 

 
Hg (T ) − Hg (∞) ∼ T −1 . This excess heterogeneity at large 
temperatures for the geometric domains is due to the entropic 
contribution of uncorrelated spins. Because of this size depen- 
dence, that persists even at very high temperatures where ξ → 
0, the scaling of this second peak turns to be rather complicated. 
Indeed, it does not collapse well with exponents obtained 
for the first peak and, instead, a satisfactory collapse was 
obtained with τ � 2.048 and ν � 1.25. These values are close 
to the random site percolation exponents, τperc  = 187/91 and 
ν = 4/3 (thus, νH = 187/72), but this may be just a crossover 
because of the large separation between the two peaks for 
finite systems (see the 3d case below). It seems that even larger 
systems would be necessary to clarify the nature of the critical 
exponents in this problem. Both peaks, besides increasing in 
height, move towards Tc in the thermodynamic limit. Indeed, 
both horizontal scalings in Figs. 1(d) and 1(e) considered the 
known value of Tc in d = 2. This is a consequence of the fact 
that, in d = 2, the geometric clusters percolative and thermal 
transitions occur at the same temperature. As the position of 
both peaks converge to Tc , the exponents obtained in both 
collapses also should be the same. In this way, as discussed in 
more detail in the conclusions, the exponents for the second 
peak represent just a crossover from the random percolation 
case to the exponents of the geometric domains. 

Since H  obviously depends on the nature of the clusters, 
further insight is gained by comparing with the behavior of 
physical clusters. If we remove from the geometric clusters the 
fraction of spins that, albeit parallel, are not effectively corre- 
lated, we obtain the so-called Coniglio-Klein droplets [9,15] 

whose physical properties are also related to the random cluster 
model [8]. Spins may be parallel even in the absence of 
correlations (for example, at infinite temperature). To obtain a 
correct mapping between geometry and correlation, starting 
from a geometric domain, for every pair of parallel spins 
in the domain we remove the bond between them with a 
temperature-dependent probability pCK  [9,15]. The physical 
cluster is thus defined by the parallel spins connected by the 
remaining bonds after this process. Fig. 1(c) shows Hp   as 
a function of the temperature for several sizes and presents 
a clear peak close to the transition that gets larger as the 
size of the system increases. Notice that the temperatures 
of all the three peaks discussed here are well separated for 
the system sizes considered. Differently than Hg (∞), which 
is an increasing function of L, Hp  → 1 when T → ∞ since 
all spins become uncorrelated and form clusters of unit size. 
The scaling proposed in Ref. [4] works very well also for Hp , 
Fig. 1(f), with the Ising thermal exponents (ν = 1, τp  = 31/15, 
and νH = 31/16). There is, however, another possible point of 
view for the scaling in this problem. Obviously, if |t |L1/νH 

is a scaling variable, so is (|t |L1/νH )τ/(τ −1) . Indeed, using 
|t |τ /(τ −1) L1/ν ,  collapses  equivalent  to  those  in  Fig.  1  are 
obtained (an example is shown in Fig. 2), with no need to 
resort to a new exponent νH . In order to collapse the data for 
H , besides understanding how its peak scales with L, one must 
also know how the width of the critical region depends on the 
system size. Standard finite size scaling considers the region 
around Tc  in which the measured correlation length ξ  will 
differ from its infinite size limit behavior. In a finite system, 
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FIG. 2. (Color online) Collapsed  Hp   for  d = 2,  analogous  to 
Fig. 1(f), but using the alternative (but equivalent) scaling with ν = 1. 

 
the divergence of ξ as T → Tc , ξ ∼ |T − Tc |−ν , is constrained 
by the linear size L,  and the width of the critical region is 
thus |T − Tc | ∼ L−1/ν . This interval is, in principle, different 
for other divergent quantities at Tc . If we consider H instead 
of ξ , since 1/ν = dσ /(τ − 1) > d σ /τ , the divergence of H , 
H ∼ Ld/τ , is weaker and the critical region wider. Indeed, as 
discussed in Sec. II, |T − Tc | ∼ L−(τ −1)/τ ν . 

Figure 3 shows the fraction of the whole system occupied 
by the largest cluster as a function of the temperature, 
distinguishing whether the largest cluster does or does not 
percolate. At very high temperatures both measures coincide 
since the noise is too high to allow a percolating cluster. As 
the temperature decreases, spins become more correlated, the 
clusters larger, and these measures, still coinciding, steadily 
increase. They become different when some samples percolate 
at temperatures roughly below the second peak of Hg . The 
average fraction size of the largest component (top curve) 
increases almost linearly from this point, as T decreases, up to 
Tc where there is an abrupt jump and it approaches unity below 
Tc . It is, on the other hand, the other measure—the fraction of 
the largest nonpercolating cluster—that seems to encode the 
relevant information for H and presents a similar double peak 
structure. When some samples start to percolate, the largest 
nonpercolating cluster is actually the second largest in these 
samples. As a consequence, its measure starts decreasing, and 
both measures diverge, leaving a peak close to the temperature 
of the second peak of H . The insets of Fig. 3 show, in light 
gray, one example of the largest nonpercolating cluster at the 
temperatures indicated: one close to Tc  and the other at the 
point of separation of the two measures discussed above. These 
are geometric clusters formed by parallel spins. Each one is a 
collection of physical clusters; the largest one is shown in red 
(dark gray). Obviously, as the temperature decreases and the 
spins are more correlated, these clusters increase. 

 
B. 3d 

The heterogeneities can also be measured in the 3d case, 
where the percolative transition of the geometric domains does 
not coincide with the thermal transition, Tperc < Tc � 4.51. In 
3d, the random site percolation threshold for a cubic lattice is 

FIG. 3. (Color online) Size of the largest and the largest non- 
percolating  clusters,  normalized  by  N = Ld ,  as  a  function  of 
temperature for L = 640. A cluster is considered percolating when it 
touches all sides of the square lattice. Below Tc , indicated by a vertical 
dashed line, there is almost always a large, percolating cluster and 
the available space for the second largest cluster is small. For large 
temperatures, it is almost certain that there is no percolating cluster 
and both curves coincide. The insets show snapshots for L = 320 
with the largest nonpercolating geometric cluster in light gray at two 
different temperatures (that roughly correspond to the local maxima 
of the bottom curve). At the critical temperature, left snapshot, 
there is a percolating cluster (not shown) and the second largest 
is compact. In red (dark gray) we show, among the several physical 
subclusters in which it divides, the largest one. The right snapshot 
shows that, at higher temperature (second maximum), although the 
largest nonpercolating geometric cluster has almost the same average 
size as at Tc , the physical subclusters are much smaller. 
 
 
0.312 [16]. For all temperatures above Tc (even in the T → ∞ 
limit), the fraction of each spin is 0.5, on average, and since 
both spins densities are above the threshold, both percolate. 
For temperatures below Tc , the system is magnetized and the 
majority spin obviously percolates. The percolation transition 
occurs when, coming from low temperature, the minority spin 
(the one opposite to the system magnetization), whose domains 
are small and isolated, first percolates. We obtain, from the best 
collapse of H (see below), Tperc � 0.95Tc , slightly larger than 
the estimate in Ref. [17], Tperc � 0.92Tc . 

Fig. 4 (left) shows both Hg  and Hp  as a function of 
temperature. Again, Hp  shows a single peak slightly above 
Tc � 4.51. On the other hand, as in the 2d case, Hg is sensitive 
to both transitions. While there is a large peak very close to 
Tperc , at Tc there is a crossover to a different declivity, as shown 
in the inset of Fig. 4. While in the 2d case two peaks with the 
same infinite size limit were present, in 3d there is a single peak 
and a crossover, each one located in a different temperature 
for L → ∞. Of course, it cannot be ruled out that for even 
larger system sizes, a small peak would appear at Tc . The high 
temperature limit of Hg seems to increase even slower than in 
the 2d case, and is barely visible in the figure. 

The data collapses in 3d are shown in Fig. 4 (right). In the 
bottom part, the results for Hp  are very well collapsed, as in 
the 2d case, with the thermal exponents of the 3d Ising model 
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FIG. 4. (Color online) (a) Heterogeneity H for both geometric (left peak, filled symbols) and physical clusters (right peak, empty symbols) 

for the 3d Ising model. The vertical lines are located at Tperc � 0.95Tc (pure geometric percolation) and Tc � 4.511 (Ising critical temperature). 
Inset: the behavior of Hg   at the thermal critical point, crossing over to a different declivity. Collapse of both Hg   (b) and Hp   (c). For 
Hg , t ≡ (T − Tperc )/Tperc , and the best collapse was obtained with Tperc � 0.95Tc , τ � 2.08, and ν � 0.75. For Hp , on the other hand, t 
≡ (T − Tc )/Tc , and an excellent collapse is obtained with 3d Ising model exponents: ν � 0.63, τ � 2.209. 

 
and Tc � 4.51: ν � 0.63 and τ � 2.209. In the top figure, 
for Hg , the best collapse was obtained with Tperc � 0.95Tc , 
τ � 2.08, and ν � 0.75. One would expect [18], in this specific 
case, the exponents of the 3d random site percolation problem, 
τperc  � 2.189 and νperc � 0.875. The reason for this [18] is 
that, Tperc  being different than Tc , the correlation length is 
finite at that temperature and clusters at distances larger than 
this length are uncorrelated. The small difference between this 
set of exponents and those that give the best collapse may be 
due to finite size effects [19]. 

 
 

III. CONCLUSIONS 
 

The cluster size heterogeneity H is the number of distinct 
cluster sizes in a given sample configuration [4]. We presented 
here extensive simulations for the Ising model for both 
geometric (Hg ) and physical (Hp ) clusters in two and three 
dimensions. While for the latter, H has a single peak that 
diverges at the critical temperature of the Ising model, in the 
former case H presents a signature for both the percolative and 
the thermal transition. Indeed, finite 2d systems present two 
quite distinct peaks for Hg  when the size is sufficiently large, 
but they merge as L → ∞. On the other hand, in 3d there is a 
peak at Tperc and a sudden change in the declivity at Tc > Tperc . 
Moreover, since the peaks of Hg  and Hp  do not occur at the 
same temperature in 3d, in the region Tperc :( T :( Tc , while 
Hp increases, Hg decreases (a similar effect occurs in 2d, but it 
disappears in the limit L → ∞). We also discussed the scaling 
of H  and how its behavior correlates with the large clusters 
in the system. Interestingly, although the physical clusters 
collapse is clearly related to the Ising thermal exponents, the 
behavior of the largest peak of Hg is more subtle. In both 2d and 
3d the best collapse was obtained with exponents that are close 
to, albeit different from, those of the respective random site 
percolation. Although in 3d this is expected (since Tperc I= Tc , 
the correlation length is finite and distant clusters become 
uncorrelated [18]), in 2d both transitions coincide and the 

reason for the similarity with the random site exponents is 
still an open question. We conjecture that it may be just a 
crossover: since for large systems the two peaks get closer to 
each other and converge to Tc , the correlation length diverges 
and even clusters far apart are correlated. In this way, as the 
size increases, the exponents should converge to those of the 
geometric clusters, used in the collapse of the first peak. 

Both in two and three dimensions the heterogeneity 
measured for geometric domains, Hg , is very sensitive to the 
thermodynamical transition, even if the critical properties are 
actually encoded in the physical domains. The small peak and 
the declivity change present in 2d and 3d, respectively, are 
very close to Tc even for very modest sizes, and their locations 
do not suffer from strong finite size effects. If proven general, 
Hg may provide a quite precise method to obtain a preliminary 
estimate for the thermal transition. 

There are, nonetheless, several remaining questions. For 
example, although Tperc < Tc in the Ising 3d model, when 
considering a 2d slice, the 2d clusters do start to percolate 
at Tc . It would be interesting to study the behavior of H not 
only for the 3d clusters as done here, but for the 2d clusters 
on the slices as well [19]. Another question is whether the 
above behavior of Hg   occurs in other models as well. We 
are presently studying the Potts model, both for continuous 
and discontinuous transitions, in order to better understand 
which are the conditions for having a double peak. Finally, it 
is important to perform other geometric measures in order to 
better understand the underlying mechanism responsible for 
the behavior of H . 
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APPENDIX: ON THE CONVERGENCE OF EQ. (1) 

 

When listing the domain sizes present on a particular 
configuration,  we  notice  that  all  sizes  up  to  a  specific 
size appear, while above it several holes are present. After 

Now,  inside  the  critical  region  the  bottom  limit  z0   van- 
ishes, and the resulting integral converges to a finite (not 
t -dependent)  constant  for  some  high  enough  integer  n. 
Therefore,  besides  additional  nonsingular  terms  (propor- 

0    1 n−1 
averaging over several configurations, we call this size s0 . 

The ranking r0 of the cluster size s0 is 

tional to t ,t  , . . . ,t 
reads 

), the leading singular form for r0 

∞ 
r0 = Ld 

     
n(s),  (A1) 

s0 

not necessarily at the critical point. Near it and using the 
scaling relation n(s) � s−τ f (z) where z = t sσ , one could try 
to transform this discrete sum into an integral 

I ∞ ds s−τ f (z). 
0 

Unfortunately, this integral does not converge inside the critical 
region |t | ∼ s−σ  ∼ L−dσ /τ . However, one can write the nth 
derivative of the quoted sum: 

 
r0 ∼ Ld  t (τ −1)/σ  ∼ Ld/τ .  (A3) 

 
 
Notice that the particular mathematical form of the scaling 
function f (z)  does not enter in the argument. The above 
scaling relations are valid anyway, only the proportionality 
prefactors being dependent on f (z). In Ref. [5], the authors 
assume f (z) to be an exponential function and explicitly use 
this form to derive the above scaling relations. However, in 

d   
n r0 d 

dt n   � L 

∞   
snσ 

s0 

 
−τ f 

 
(n) 

 
(z) 

three dimensions for instance, f (z) is very well fitted to a 
(noncentered) Gaussian function [20]. In short, the nice and 
surprising theory introduced in Ref. [5] is correct, but the 
particular assumption adopted by the authors, in order to justify L    d n    τ −1  

∞ n   1   τ −1 (n) t − +  σ 
σ 

dz z − −  σ    f 
z0 

(z).  (A2) it, is unnecessary. 
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