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Infinite hierarchies of nonlinearly dependent periodic orbits
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Quadratic maps are used to show explicitly that the skeleton of unstable periodic orbits underlying classical
and quantum dynamics is stratified into a doubly infinite hierarchy of orbits inherited from a set of basic
‘‘seeds’’ through certain nonlinear transformationsTa(x). The hierarchy contains nonunique substructurings
which arise from the different possibilities of sequencing the transformationsTa(x). The structuring of the
orbital skeleton is shown to be generic for Abelian equations, i.e., for all dynamical systems generated by
iterating rational functions.
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The skeleton of unstable periodic orbits~UPOs! in chaotic
attractors is by now a well-recognized and studied subj
yet it still poses great challenges in mathematical physics
establish reliable algorithms allowing efficient location of t
skeleton@1# or criteria allowing one to know when the infi
nite skeleton of unstable orbits may be replaced by only
lowest period orbits while still providing a useful approx
mation of the chaotic attractor@2#, to name only two. In fact,
one may argue@3# that the finding that UPOs provide a ske
eton for the organization of the very complex chaotic dyna
ics can be considered one of the major advances in the
derstanding of the behavior of nonlinear dynamical syste
during the past ten years. In a different setting,
Gutzwiller trace formula links the eigenvalue of the Sch¨-
dinger operator as Planck’s constant goes to zero~the semi-
classical limit! with the closed orbits of the correspondin
classical mechanical system@4–6#. So, periodic orbits pos
sess numerous applications in different areas of physics

Extending the seminal works of Sharkovskii@7# and Li
and Yorke@8# on the coexistence of cycles of a continuo
map of the line into itself@9# and of Thurston@10# on the
geometry and dynamics of diffeomorphisms, modern wo
on the organization and hierarchies of UPOs have b
worked out by Gambaudoet al. @11# and by Hall @12# on
one-dimensional representatives of pseudo Anosov iso
classes with minimal periodic orbit structure.

Although applications of periodic orbits invariably a
sume them to be independent from each other, we fo
recently @13# an interesting phenomenon of ‘‘inheritance
which interconnectsperiodic orbits. Inheritance meansorbits
within orbits: applying nonlinear transformations to certa
k-periodic ‘‘mother’’ orbits yields several additiona
k-periodic ‘‘daughter’’ orbits. For instance, for the quadra
map the transformations

T3~x!5x323x and T5~x!5x525x315x ~1!

triplicate and quintuplicate the quantity of periodic orbits
However, inheritance was previously found to occur on
among a few very specific orbits, all isoperiodic@14#.
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In the present paper we show explicitly the existence
infinite sets of nonlinear transformationsTa(x) interconnect-
ing orbits of distinct periodicities. In addition, we are als
able to elucidate theorigin of this phenomenon, showing
orbital interdependencies to be a generic property of ‘‘Ab
lian equations’’@15#, i.e., of equations of motion having the
roots expressible as rational functions of one of them. T
result is important because every dynamical system obta
by iterating arbitrary@16# rational functionsf (x) has its pe-
riodic orbits defined necessarily by Abelian equations sin
their roots are all interconnectedab ovoby the recurrence
xt115 f (xt) defining the system. Thus,orbital inheritance is
a generic property of orbital equations generated by iter
ing rational functions, a rather large class.

The same transformationsT3(x) and T5(x) found previ-
ously to interconnect isoperiodic orbits are now shown
also interconnect orbits of different periodicities. In fac
T3(x) andT5(x) are among the first members of an infini
set$Ta(x)% of transformations which play a much more fu
damental and general role than previously anticipated.
equipped with$Ta(x)%, it is possible to uncover a remark
able doubly infinite hierarchical stratification of the skelet
of unstable periodic orbits of the quadratic map, closely
sembling a spectral decomposition. This stratification is
natural consequence of the repeated application ofTa(x) to
the orbital points and it is expected to be of relevance for
semiclassical interpretations of atomic spectra with trace
mulas involving the skeleton of UPOs@4–6#.

We start by generalizing the results of Ref.@13#. Iterating
the quadratic mapf (x)522x2 one obtains a family of poly-
nomial factorsPk(x) containingall genuine motions of pe-
riod k and only these. The procedure for decomposing ph
cal trajectories into such ‘‘prime’’ factorsPk(x) is described
in Ref. @13#. So, the quadratic map has two period-1 orbi
defined by the roots ofP1(x), one period-2 orbit defined by
P2(x), two period-3 orbits defined by P3(x)
5P3,1(x)P3,2(x), three period-4 orbits defined byP4(x)
5P4,1(x)P4,2(x), etc. where

P1~x!5x21x225~x12!~x21!, D532, ~2!

P2~x!5x22x21, D55, ~3!
©2000 The American Physical Society16-1



a
a

bi

t
n,

,

la

se

be
ib

r-

are
ch

l
ful

e

ning
he
r-
as

eir

al

be-
ual

f

e

JASON A. C. GALLAS PHYSICAL REVIEW E 63 016216
P3,1~x!5x323x21, D534, ~4!

P3,2~x!5x32x222x11, D572, ~5!

P4,1~x!5x41x324x224x11, D53553, ~6!

P4,2~x!5x82x727x616x5115x4210x3210x214x11,

D5177. ~7!

The subindexk of Pk, j (x) indicates the period whilej labels
different factors, if necessary@17#. D is the discriminant@18#
of each polynomial. The sequence ofPk, j (x) is infinite in k
and the zeros of everyPk, j (x) define one or morek-periodic
orbit. We call ‘‘orbital equation’’ any polynomial defining
just a single orbit, with coefficients rational or not, and
‘‘class equation’’ those with coefficients necessarily ration
and with zeros defining more than one isoperiodic or
Thus,P4,2(x) is a class equation composed by twoconjugate
orbital equations:

P4,2~x!5@x42~11A17!x3/22~32A17!x2/2

2~22A17!x21#3@x42~12A17!x3/2

2~31A17!x2/22~21A17!x21#.

Here we deal only with orbital equations.
Now, consider the familyWn(x) of polynomials, gener-

ated recursively as follows:

Wn~x!5Wn21@Ta~x!#, W0~x!5Pk, j~x!, ~8!

n51,2,3. . . . Every sequenceWn(x) generated by iterating
Eq. ~8! depends on~i! an initial seed Pk, j (x), and ~ii ! a
transformation Ta(x). Straightforward calculations show
that every polynomialWn(x) may be splitted into a produc
of ~i! a trivial factor, i.e., a factor which is already know
essentiallyWn21(x) and Pk, j (x) itself, and~ii ! a nontrivial
factor, denotedad hoc by Dn(x), the daughters. Thus
Wn(x)5Dn(x)3@ trivial factors#. All zeros ofDn(x) are or-
bital points of the inherited trajectories.

The daughtersDn(x) may be easily extracted fromWn(x)
by polynomial division, implemented as a recurrence re
tion:

Dn~x!5
Wn~x!

Dn21~x!Wn21~x!
, n51,2,3, . . . , ~9!

where D0(x)51 with one exception@19#. Since modulo
trivial factors Dn(x) coincide with Wn(x), Dn(x) is built
from the same ‘‘parent’’ quantities asWn(x), namely,
Pk, j (x) and Ta(x). When parenthood is an issue, we u

Dn
kj ,a(x) to mark inheritance fromPk, j (x) andTa(x). Since

Dn(x) andWn(x) are Abelian equations, their zeros may
obtained by finite sequences of radicals. Now, we exh

some elements of$Dn
kj ,a(x)% explicitly.

Table I shows the first few members for two infinite hie
archiesDn(x), obtained by starting fromP1(x) and from
P2(x) and tripling the period withT3(x). These polynomials
01621
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are irreducible over the rationals. Since all orbits here
defined by real numbers, this irreducibility implies that su
polynomials are already the simplest normal forms, themini-
mum polynomials@18# which fix, slave, the arithmetica
properties of orbital equations and its solutions. A use
quantity in this context is the multiplicitym of every poly-
nomial of the family$Dn(x)%, defined bym5d/k, whered
is the degree of the polynomial andk is the period of its
orbits. The multiplicity is a characteristicinteger informing
the quantity ofk-periodic orbits defined by the zeros of th
irreducible factorsDn(x), i.e., theorder of the class.

As shown in Table I,P1@T3(x)# generates orbits with
period 3n while P2@T3(x)# generates orbits with period 4
33n21, the multiplicity of all orbits beingm51, meaning
that each polynomial is an orbital equation.

A remarkable property shared by all daughtersDn(x),
here and later on, is that they are themselves factors defi
periodic orbits, i.e., all their zeros are periodic points of t
system. Therefore,every daughter gives rise to a new hie
archy of orbits, implying that each daughter may be used
a new transformationTa(x) to produce additional orbits,ad
infinitum.

The hierarchy inherited fromP3,1@T3(x)# is a subset, a
substructure, of that inherited fromP1@T3(x)#, i.e.,

Dn
31,3(x)5Dn11

1,3 (x). Analogously, Dn
31,9(x)5D2n21

1,3 (x)
whereT9(x)5T3@T3(x)#. An infinity of similar hierarchical
substructurings exist. They are simply harmonics of th
original orbit.

Table II shows the first few members of three addition
hierarchies, namely,Dn

3,2(x), Dn
4,5(x), andDn

5,1(x). Now, es-
sentially all orbits have multiplicitym5” 1, meaning that each
irreducible polynomial definesm orbits of periodk. As be-
fore, discriminants display remarkably simple structures,
ing fast-growing powers of small prime numbers. The act

TABLE I. The first members of the infinite hierarchies o
k-periodic orbits fork53n and k5433n21 inherited fromP1(x)
5x21x22 and fromP2(x)5x22x21 by tripling the period with
T3(x). One orbital point for every 3n-periodic orbit is given by
2 cos(p/3n11). The discriminantD of each hierarchy has the sam
structure.

n k Dn
1,3(x), inherited fromP1@T3(x)# D

1 3 x323x21 34

2 9 x929x7127x5230x319x21 322

3 27 x27227x251•••227x21 394

4 81 x81281x791•••181x21 3364

5 243 x2432243x2411•••2243x21 31336

l 3l
x3l

23lx3l221•••1(23)lx21

n k Dn
2,3(x), inherited fromP2@T3(x)# D

1 4 x41x324x224x11 3253

2 12 x12212x101x91•••112x11 31859

3 36 x36236x341•••236x11 390527

4 108 x1082108x1061•••1108x11 3378581

5 324 x3242324x3221•••2324x11 314585243
6-2
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sizeof the discriminants is huge and their dependence on
a few small primes is the happy circumstance that allo
their factorization to be accomplished. As discussed by Br
@20#, the factorization of integers with sizes comparable
the largest discriminants in the tables here poses comp
tional difficulties which are still beyond technological cap
bilities of modern algorithms and hardware.

Table III shows some elements of hierarchies obtain
from P1(x) with T5(x), T7(x), and T9(x), where Ta(x)
5Ta(x,A)[(x1R/2)a1(x2R/2)a, and R5Ax224A or,
equivalently, T1(x,A)5x, T2(x,A)5x222A, and
Ta11(x,A)5xTa(x,A)2ATa21(x,A), for a>2. The dis-
criminants are vital for the analytical construction of orbi
points but we cannot go into this here.

How about arbitrary values ofa? Then$Ta(x)% produces
a more elaborate set of polynomials and a more symmet
hierarchical organization which fora52 reduces to an or
bital structuring distinct from that discussed above, involvi
products of different factors. Illustrative examples, show
the first members of four generalized hierarchiesDn(x), ob-
tained withT3(x) and T5(x) from P1(x;a)5x21x2a and
P2(x;a)5x22x2a11 for arbitrary values ofa and for a
52, are the following:

D 2
1,3~x;a!5x626x41x319x223x2a,

D 2
1,3~x;2!5~x12!~x21!2~x323x21!;

D 2
2,3~x;a!5x626x42x319x213x2a11,

TABLE II. The first few members of three hierarchies inherit
by tripling the period ofP3,2(x), P4,2(x), andP5,1(x). These hier-
archies start from reciprocal-looking polynomials, i.e., polynomi
having pairs of identical coefficients. Most polynomials are cla
equations. Notice the regularities ofD within a family.

n k m Dn
32,3(x), inherited fromP3,2@T3(x)# D

1 6 1 x61x526(x41x3)18(x21x)11 3375

2 6 3 x18218x161•••224x11 327715

3 18 3 x54254x521•••172x11 3135745

4 54 3 x1622162x1601•••2216x11 35767135

5 162 3 x4862486x4841•••1648x11 321877405

n k m Dn
42,3(x), inherited fromP4,2@T3(x)# D

1 8 2 x161x151•••216(x21x)11 381715

2 24 2 x48248x461x451•••148x11 3721745

3 72 2 x1442144x1421•••2144x11 336017135

4 216 2 x4322432x4301•••1432x11 3151217405

n k m Dn
51,3(x), inherited fromP5,1@T3(x)# D

1 5 2 x101x91•••112(x21x)11 35119

2 15 2 x30230x281•••236x11 3451127

3 45 2 x90290x881•••1108x11 32251181

4 135 2 x2702270x2681•••2324x11 394511243
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D 2
2,3~x;2!5~x22x21!~x41x324x224x11!;

D 2
1,5~x;a!5x10210x8135x61x5250x425x3

125x215x2a,

D 2
1,5~x;2!5~x12!~x21!~x22x21!2

3~x41x324x224x21!;

D 2
2,5~x;a!5x10210x8135x62x5250x415x3

125x225x2a11,

D 2
2,5~x;2!5x10210x8135x62x5250x415x3

125x225x21.

Notice that D 2
1,3(x;a)5@T3(x)2z1#@T3(x)2z2#, where

z65216A4a11 and, in general, that

D n
kj ,a~x;a!5)

i
@Ta~x!2zi #, ~10!

where the product runs over all zeroszi of Pk, j (x). These
remarkably simple decompositions allow orbital points f

every D n
kj ,a(x) to be found analytically rather easily, th

symmetrical decomposition persisting when the periodicitk

s
s

TABLE III. Examples of infinite hierarchies with two distinc
branches at every new generation. The distinct branches inv
discriminants of two flavors only.

n k m Dn
1,5(x), inherited fromP1@T5(x)# D

1 2 1 x22x21 5
4 1 x41x324(x21x)11 3253

2 10 1 x10210x81•••125x225x21 517

20 1 x20220x181•••2100x2220x11 310535

3 50 1 x50250x481•••1625x2225x21 5137

100 1 x1002100x981•••2100x11 33505275

4 250 1 x2502250x2481•••2125x21 5937

500 1 x5002500x4981•••2500x11 325051875

n k m Dn
1,7(x), inherited fromP1@T7(x)# D

1 3 1 x32x222x11 72

6 1 x61x526(x41x3)18(x21x)11 3375

2 21 1 x21221x191•••249x2114x11 738

42 1 x42242x401•••1392x2256x11 321777

3 147 1 x1472147x1451•••298x11 7416

294 1 x2942294x2921•••1392x11 31477833

n k m Dn
1,11(x), inherited fromP1@T11(x)# D

1 5 1 x52x424x313x213x11 114

5 2 x101x9210(x81x7)134(x61x5)
243(x41x3)112(x21x)11 35119

2 55 1 x55255x531•••1363x2233x21 11104

55 2 x1102110x1081•••2132x11 35511209
6-3
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and/ora increase. By suitably sequencing functional comp
sitions one sees that parameter-dependent daug

D n
kj ,a(x;a) generate non-unique hierarchical substructurin
How general are the orbital transformations discussed

far? We now show that they are generic properties of A
lian equations@15# and, consequently, of any orbital equatio
generated by iteration of rational functions since such eq
tions are Abelian by construction.

Consider an irreducible orbital equationP(x) having as
its k roots the set$xi% formed with the orbital points of a
k-periodic orbit generated by iterating some rational dyna
cal system@16# f (x) and labeled as usual

xt115 f ~xt!,

with

xk115 f ~xk![x1 , ~11!

where t51,2, . . . ,k. Now, we use some rational functio
Q(x) @thought as generalizing the previousTa(x)# to trans-
form the orbital points$xi% into a new set$j i% as follows:

j15Q~x1!, j25Q~x2!, •••, jk5Q~xk!, ~12!

and with thesej i build a new orbital equationQ(j) having
them as roots. Then, straightforward computations show
it is always possible to select suitable branches~Riemann
sheets! which connect back conformally the orbital points
$j i% with the original points in$xi%, preserving the ordering
through a computable function, sayg(j), such that

xt5g~j t!5g@Q~xt!#, ~13!

and, consequently,
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j t115Q~xt11!5Q@ f ~xt!#5Q$ f @g~j t!#%[w~j t!.
~14!

This passage from the dynamical systemxt115 f (xt) to the
new onej t115w(j t) establishes the following useful theo
rem: A rational transformation of an Abelian equation is a
Abelian equationor, more physically,rational transforma-
tions of orbital equations are orbital equations. The particu-
lar periods which are thereby interconnected will depend
the reducibility ofg(j), more precisely, on its splitting field
@18#. This quite general functiong(j), the ‘‘transformation
motor,’’ is responsible for all hierarchical structuring of o
bits discussed here and more@21#.

In conclusion, infinite hierarchies of inherited orbits is
generic property of orbital equations generated by iterat
of rational functions. The key to inheritance is the compo
tion of functions indicated in Eq.~14!, involving transforma-
tions, i.e., automorphisms, of the orbital points. The
$Q(x)% and the seeds underlying every hierarchy provide
minimal fiducial information, the genetic keys, necessary
unfold the dynamics into interesting orbital structures rea
to be explored. A promising possibility is to investigate t
impact of the orbit-within-orbit structuring in cycle expan
sions of Ruelle’s dynamical zeta function and in trace f
mulas popular nowadays in atomic physics@6#. Another, the
classification of ‘‘shrimps’’ @22#, i.e., of the nucleation of
stability islands in dissipative systems.
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