PHYSICAL REVIEW E, VOLUME 63, 016216
Infinite hierarchies of nonlinearly dependent periodic orbits
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Quadratic maps are used to show explicitly that the skeleton of unstable periodic orbits underlying classical
and quantum dynamics is stratified into a doubly infinite hierarchy of orbits inherited from a set of basic
“seeds” through certain nonlinear transformatiohg(x). The hierarchy contains nonunique substructurings
which arise from the different possibilities of sequencing the transformaligfs). The structuring of the
orbital skeleton is shown to be generic for Abelian equations, i.e., for all dynamical systems generated by
iterating rational functions.
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The skeleton of unstable periodic orbit$POs in chaotic In the present paper we show explicitly the existence of
attractors is by now a well-recognized and studied subjecinfinite sets of nonlinear transformatiofig(x) interconnect-
yet it still poses great challenges in mathematical physics: ting orbits of distinct periodicities. In addition, we are also
establish reliable algorithms allowing efficient location of theable to elucidate therigin of this phenomenon, showing
skeleton[1] or criteria allowing one to know when the infi- orbital interdependencies to be a generic property of “Abe-
nite skeleton of unstable orbits may be replaced by only théian equations’[15], i.e., of equations of motion having their
lowest period orbits while still providing a useful approxi- roots expressible as rational functions of one of them. This
mation of the chaotic attract®], to name only two. In fact, result is important because every dynamical system obtained
one may argug3] that the finding that UPOs provide a skel- by iterating arbitranyf16] rational functionsf(x) has its pe-
eton for the organization of the very complex chaotic dynam-+iodic orbits defined necessarily by Abelian equations since
ics can be considered one of the major advances in the umkeir roots are all interconnecteab ovoby the recurrence
derstanding of the behavior of nonlinear dynamical systems, , ;= f(x;) defining the system. Thusrbital inheritance is
during the past ten years. In a different setting, thea generic property of orbital equations generated by iterat-
Gutzwiller trace formula links the eigenvalue of the Sechro ing rational functions a rather large class.
dinger operator as Planck’s constant goes to zér® semi- The same transformatiornig;(x) and Tg(x) found previ-
classical limi} with the closed orbits of the corresponding ously to interconnect isoperiodic orbits are now shown to
classical mechanical systefd—6]. So, periodic orbits pos- also interconnect orbits of different periodicities. In fact,
sess numerous applications in different areas of physics. T;(x) andTg(x) are among the first members of an infinite

Extending the seminal works of SharkovsKii] and Li  set{T,(x)} of transformations which play a much more fun-
and Yorke[8] on the coexistence of cycles of a continuousdamental and general role than previously anticipated. So,
map of the line into itsel{9] and of Thurstor{10] on the  equipped with{T ,(x)}, it is possible to uncover a remark-
geometry and dynamics of diffeomorphisms, modern worksable doubly infinite hierarchical stratification of the skeleton
on the organization and hierarchies of UPOs have beeof unstable periodic orbits of the quadratic map, closely re-
worked out by Gambaudet al. [11] and by Hall[12] on  sembling a spectral decomposition. This stratification is a
one-dimensional representatives of pseudo Anosov isotopyatural consequence of the repeated application (k) to
classes with minimal periodic orbit structure. the orbital points and it is expected to be of relevance for the

Although applications of periodic orbits invariably as- semiclassical interpretations of atomic spectra with trace for-
sume them to be independent from each other, we founghulas involving the skeleton of UP(Q4—6].
recently[13] an interesting phenomenon of “inheritance”  We start by generalizing the results of RE#3]. Iterating
whichinterconnectgeriodic orbits. Inheritance meaosbits  the quadratic map(x) =2— x? one obtains a family of poly-
within orbits applying nonlinear transformations to certain nomial factorsP,(x) containingall genuine motions of pe-
k-periodic “mother” orbits yields several additional riod k and only these. The procedure for decomposing physi-
k-periodic “daughter” orbits. For instance, for the quadratic cal trajectories into such “prime” factorB,(x) is described
map the transformations in Ref.[13]. So, the quadratic map has two period-1 orbits,

defined by the roots d®(x), one period-2 orbit defined by
T3(x)=x3-3x and Ts(x)=x>-5x3+5x (1) P,(x), two period-3 orbits defined by Ps(x)
=P34(X)P3x(x), three period-4 orbits defined bR ,(x)
triplicate and quintuplicatethe quantity of periodic orbits. =P, ,(x)P,x), etc. where
However, inheritance was previously found to occur only

among a few very specific orbits, all isoperiodict]. PL(X)= X2+ X—2=(x+2)(x—1), A=32 @
1 - - [ - l
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P3,1(X):X3_3X_1, A=3% (4) TABLE I. The first members of the infinite hierarchies of
k-periodic orbits fork=3" andk=4x3""1 inherited fromP(x)
Pax)=x3—x2-2x+1, A=72 (5) =x?+x—2 and fromP,(x) =x?*~x—1 by tripling the period with
’ T4(x). One orbital point for every Bperiodic orbit is given by
Pay(X) =x4+x3—4x2—4x+1, A=355% (6) 2 cosr/3""1). The discriminant\ of each hierarchy has the same
' structure.
P4 Ax)=x8—x"—7x8+6x°+ 15x*— 10x3— 10x*+ 4x + 1, T
' n k D;(x), inherited fromP[ T3(X)] A
177
A=17". (7) 1 3 x3-3x-1 3
. . . . 9_ 97+ 27%5— 30x3+ 9x — 22
The subindex of Py ;(x) indicates the period whilglabels g 23 §27_92X7X252+7X _3(2»(7)(_3)( 1 394
different factors, if necessafyt7]. A is the discriminanf18] 4 81 X8+ o Ixo1 %64
of each polynomial. The sequence R (x) is infinite in k E ou3 X 243(24i" 431 313%
and the zeros of everly, ;(x) define one or mor&-periodic | X3| B s e |_
orbit. We call “orbital equation” any polynomial defining 3 =3 P 4+ (=3)x-1
just a single orbit, with coefficients rational or not, and a
“class equation” those with coefficients necessarily rational n k  Dix), inherited fromP,[T5(x)] A
and with zeros defining more than one isoperiodic orbit. 1 4 AP Axt 1 3253
gpbtftsailpé'zﬁgtilc?nz .class equation composed by teanjugate 5 12 x2- 120 O+ .+ 1%+ 1 31859
g ' 3 36 x*°-363% .- —36x+1 390527
— x4 3)9_(3_ 2 4 108 x!08-108200+...+108&+1 3378581
P4’2(X) [x*=(1+ \/1—7))( 12=(3 \/1—7))( 12 324_ 322, .. _ 14565243
5 324 x 324>+ 324x+1 3

— (2= V17 x—1]X[x*— (1 V17)x3/2
— (3+ V17)x¥2— (2+ J17)x—1].

are irreducible over the rationals. Since all orbits here are

Here we deal only with orbital equations. defined by real numbers, this irreducibility implies that such
Now, consider the familyV,(x) of polynomials, gener- Polynomials are already the simplest normal forms,rtiei-
ated recursively as follows: mum polynomialg[18] which fix, slave, the arithmetical
properties of orbital equations and its solutions. A useful
Wh(X)=Wp_q[To(X)],  Wo(X) =Py j(X), (8)  quantity in this context is the multiplicity. of every poly-
nomial of the family{D(x)}, defined byu= &/k, whereés
n=1,23.... Every sequenc®,(x) generated by iterating is the degree of the polynomial ardis the period of its

Eq. (8) depends on(i) an initial seed R ;(x), and (i) a orbits. The multiplicity is a characteristiateger informing
transformation T,(x). Straightforward calculations show the quantity ofk-periodic orbits defined by the zeros of the
that every polynomialW,(x) may be splitted into a product irreducible factordD ,(x), i.e., theorder of the class.
of (i) a trivial factor, i.e., a factor which is already known,  As shown in Table I,P;[T3(x)] generates orbits with
essentiallyW,_,(x) and Py ;(x) itself, and(ii) a nontrivial  period 3' while P,[T5(x)] generates orbits with period 4
factor, denotedad hoc by D,(x), the daughters. Thus, x3""! the multiplicity of all orbits beingu=1, meaning
W, (x) =D, (x) X[ trivial factors]. All zeros ofD(x) are or-  that each polynomial is an orbital equation.
bital points of the inherited trajectories. A remarkable property shared by all daught&g(x),
The daughter® ,(x) may be easily extracted frok,(x) here and later on, is that they are themselves factors defining
by polynomial division, implemented as a recurrence relaperiodic orbits, i.e., all their zeros are periodic points of the
tion: system. Thereforegvery daughter gives rise to a new hier-
archy of orbits implying that each daughter may be used as
Wha(x) n=123 (99 anew transformatiofT ,(x) to produce additional orbitsd
Dh_1(X)W,_1(X)’ e infinitum
) ) ) The hierarchy inherited fronP; 4 T3(x)] is a subset, a
W_h_erlefDo(x) :Dl (W)'th (_)ne_deXC?Fr’]“\;)Vr[(lg)’]- g'r(‘cf 'm(t))dL'JIIO substructure, of that inherited fronP,[Ts(x)], i.e.,
trivial factors D,(x) coincide with W,(x), D,(x) is built 313,y _ 13 319/, — 13
from the same “parent” quantities a¥V,(x), namely, Dy (X)_D“_“(X)' Analog_ou_s!y, Dy .(X)_.Dzn‘l(.x)
. . whereTg(X)=T3[ T3(x)]. An infinity of similar hierarchical
Pyj(x) and T,(x). When parenthood is an issue, we use . . : ; :
W ! . i substructurings exist. They are simply harmonics of their
Dy “(x) to mark inheritance fronk, ;(x) andT,(x). Since original orbit.

Dn(X_) ande(_x_) are Abelian equations, their zeros may l_)? Table Il shows the first few members of three additional
obtained by finite s]equences (?f-radlcals. Now, we eXh'b'hierarchies, nameI)Dﬁ’z(x), Dﬁ’S(x), andDﬁ’l(x). Now, es-
some elements dfDX “(x)} explicitly. sentially all orbits have multiplicityx # 1, meaning that each
Table | shows the first few members for two infinite hier- irreducible polynomial defineg orbits of periodk. As be-
archiesD(x), obtained by starting fron,(x) and from fore, discriminants display remarkably simple structures, be-
P,(x) and tripling the period witfT3(x). These polynomials ing fast-growing powers of small prime numbers. The actual

Dy(x)=
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TABLE II. The first few members of three hierarchies inherited
by tripling the period ofP3 Ax), P4(x), andPs4(x). These hier-
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archies start from reciprocal-looking polynomials, i.e., polynomialsdiscriminants of two flavors only.

TABLE Ill. Examples of infinite hierarchies with two distinct
branches at every new generation. The distinct branches involve

having pairs of identical coefficients. Most polynomials are class

equations. Notice the regularities afwithin a family. n k u Dx), inherited fromP[ T5(x)] A
2
Nk u D¥¥x), inherited fromP; f To(x)] A ! i i §4+§3_14 (24041 2253
1 6 1 xS+x5—6(x*+x3)+8(x°+x)+1 3875 2 10 1 x°-10x®+...-+25x®—5x—1 547
2 6 3 xB—18x+...-24x+1 327715 20 1 x?9—20x%8+...—100x>—20x+1 310535
3 18 3 x¥-54x%%+ ... +72x+1 3135745 3 50 1 x%-50x*+...+625%—25x—1 5137
4 54 3 x¥2-16X"0+...—216x+1 35767135 100 1 x*°-100x%+ ... —100x+1 33505275
5 162 3 x%-48&x*®+ ... +64&+1 321877405 4 250 1 x*0-250%%+...-125¢—1 5937
500 1 x°09—500x*%8+... —50x+1 325051875
n ok u D¥¥x), inherited fromP, {To(x)] A
n k u D}(x), inherited fromP,[T,(x)] A
1 8 2 xWO+xP+...—16(x°+x)+1 381745
2 24 2 XMy xt ... +48+1 372174 1 3 1 x*-x*-2x+1 7
3 72 2 XM 144 _144¢+1 33607 7135 6 1 x+xP—6(x*+x3)+8(x%+x)+1 3%7°
4 216 2 x432-43%4304 ... 443X%+1 315121 7405 2 21 1 xP-21xXM%+ ... —49%+14x+1 738
42 1 X240+ ... +39X32—56x+1 32777
1 . ) 147_ 145, .. _ 416
R ST LRSS G S A
1 5 2 xO4x%4 .. +12(3+Xx)+1 3%11°
2 15 2 x¥-3x%+...-36x+1 3%11%7 Nk u DYYx), inherited fromP,[T1y(x)] A
3 45 2 x%-9x®+...+108+1 32251182
4 135 2 x2T0_ 27284 ..._324x+1 39457 1243 1 5 1 x°—x*—4x3+3x%+3x+1 114
5 2 xO4+x%—10(x8+x7) +34(x8+ x%)
—43(x*+x%) + 120>+ x) + 1 3%11°
sizeof the discriminants is huge and their dependence on jus2 55 1 x%°—55¢%3+ . .. +36HK°—3%x—1 17104
a few small primes is the happy circumstance that allows 55 2 x"°-110¢'%+...-13%+1 3%°117%

their factorization to be accomplished. As discussed by Brerit
[20], the factorization of integers with sizes comparable to
the largest discriminants in the tables here poses computa-
tional difficulties which are still beyond technological capa-
bilities of modern algorithms and hardware.

Table 1ll shows some elements of hierarchies obtained
from P.(x) with Tg(x), T;(x), and To(x), where T ,(X)
=T, (X,A)=(x+R/2)*+(x—R/2)*, and R=x“—4A or,
equivalently, Ti(x,A)=x, T,(x,A)=x?—2A, and
Tt 1(6GA) =XT(X,A) —AT,_1(X,A), for «=2. The dis-
criminants are vital for the analytical construction of orbital
points but we cannot go into this here.

How about arbitrary values @? Then{T,(x)} produces
a more elaborate set of polynomials and a more symmetrical
hierarchical organization which fax=2 reduces to an or-
bital structuring distinct from that discussed above, involving
products of different factors. Illustrative examples, showing
the first members of four generalized hierarchiggx), ob-
tained withT4(x) and T5(x) from P;(x;a)=x%>+x—a and
P,(x;a)=x?—x—a-+1 for arbitrary values of and fora
=2, are the following:

Dy¥x;a)=x8—6x*+x3+9x2—3x—a,
D3¥x;2)=(x+2)(x—1)?(x3—3x—1);
D33(x;a)=x5—6x*—x3+9x?>+3x—a+1,

016216-3

D23x;2)=(x3—x—1)(x*+x3— 4x?>— 4x+1);

D37(x;a) = x*0— 10x8+ 35x°+ x°— 50x* — 5x°

+25x2+5x—a,

D3x:2) = (x+2)(x— 1) (X~ x—1)?

X (x4 +x3—4x%—4x—1);

D2¥(x;a) =x0— 10x8+ 35x6 — x>~ 50x*+ 5x°

+25x°—5x—a+1,

D33(x;2) =x0— 10x®+ 35¢®— x>~ 50x* + 5x°

+25x°—5x—1.

Dﬁj’“(x;a)=]:[ [T.()-2],

Notice that D3¥x;a)=[Ts(x)—z,[Ts(x)—z_], where
z.=—1%*+4a+1 and, in general, that

(10

where the product runs over all zergsof P, ;(x). These
remarkably simple decompositions allow orbital points for

every Dﬁj'“(x) to be found analytically rather easily, the
symmetrical decomposition persisting when the periodikity
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and/ora increase. By suitably sequencing functional compo- &, ;=0 (x,,1)=0[f(x)]1=0{f[g(&)}=e(&).
sitions one sees that parameter-dependent daughters

Dﬁj'“(x;a) generate non-unique hierarchical substructurings._ . , _

How general are the orbital transformations discussed s§niS Passage from the dynamical system,=f(x,) to the
far? We now show that they are generic properties of Abel8W Oneéi.1= (&) establishes the following useful theo-
lian equation$15] and, consequently, of any orbital equation rem: A rational transformation of an Abelian equation is an

generated by iteration of rational functions since such equgiPelian equatioror, more physicallyational transforma-
tions are Abelian by construction. tions of orbital equations are orbital equationfhe particu-

Consider an irreducible orbital equatiét(x) having as lar periods which are thereby interconnected will depend on
its k roots the sefx;} formed with the orbital points of a the reducibility ofg(&), more precisely, on its splitting field

k-periodic orbit generated by iterating some rational dynamil18l T,r’1i.s quite general functiog(¢), the “transformation
cal systen{16] f(x) and labeled as usual motor,” is responsible for all hierarchical structuring of or-

bits discussed here and mdi#l].

Xe+1= F(X), In conclusion, infinite hierarchies of inherited orbits is a

generic property of orbital equations generated by iteration

with of rational functions. The key to inheritance is the composi-
tion of functions indicated in Eq14), involving transforma-

X 1= F(X) =Xy, (1D tions, ie., automorphisms, of the orbital points. The set

{®(x)} and the seeds underlying every hierarchy provide the
minimal fiducial informationthe genetic keys, necessary to
unfold the dynamics into interesting orbital structures ready
to be explored. A promising possibility is to investigate the
E=0(x)), &E=0(x), -+, &=0(x), (120  impact of the orbit-within-orbit structuring in cycle expan-
sions of Ruelle’s dynamical zeta function and in trace for-
and with these; build a new orbital equatio®@(£) having  mulas popular nowadays in atomic physjié$. Another, the
them as roots. Then, straightforward computations show thatlassification of “shrimps”[22], i.e., of the nucleation of
it is always possible to select suitable brancli@g&emann stability islands in dissipative systems.
sheets which connect back conformally the orbital points in
{&;} with the original points i{x;}, preserving the ordering,
through a computable function, sgyé¢), such that

wheret=1,2,... k. Now, we use some rational function
O (x) [thought as generalizing the previolig(x)] to trans-
form the orbital point{x;} into a new se{¢;} as follows:
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