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Vortex distribution in a confining potential
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We study a model of interacting vortices in a type II superconductor. In the weak coupling limit, we
constructed a mean-field theory which allows us to accurately calculate the vortex density distribution inside a
confining potential. In the strong coupling limit, the correlations between the particles become important and
the mean-field theory fails. Contrary to recent suggestions, this does not imply failure of the Boltzmann-Gibbs
statistical mechanics, as we clearly demonstrate by comparing the results of molecular dynamics and Monte

Carlo simulations.
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I. INTRODUCTION

Superconductivity is one of the greatest discoveries of
the previous century. The practical applications of this phe-
nomenon rely on understanding the behavior of high temper-
ature superconductors [1-4] in a magnetic field. Depending
on the superconducting material and on external conditions, a
phase with quantum magnetic vortices can appear. Supercon-
ductors with this property are called type I and are a subject of
intense theoretical investigation [5—15]. The Ginzburg-Landau
theory [16] predicts that the vortex-vortex interaction in a
superconducting film has the form

V(r) = ¢G(x1.x2), (1

where

[x; — X
G(x1,x2) = gKo — ) )

Ky is a modified Bessel function, r = |X; — X»| is the distance
between vortex 1 and vortex 2, ¢ is the vortex strength, and A
is the London penetration length.

A number of recent papers have studied the equilibrium
distribution of vortices confined by an external potential
[17-19]. The authors of these papers have argued that the
ground state of these systems corresponds to the maximum of
the nonextensive Tsallis entropy. Contrary to this suggestion,
in this paper we will present a simple mean-field theory
which, in the framework of the usual Boltzmann-Gibbs (BG)
statistical mechanics, accounts very well for the equilibrium
distribution of vortices. Furthermore, comparing the results of
molecular dynamics (MD) and Monte Carlo (MC) simulations,
we will show that the system of confined vortices is described
by the standard BG statistical mechanics for all the coupling
strengths.
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II. MEAN-FIELD THEORY

We will study a system of interacting vortices confined by
an external potential

W(x) = ax?/2. (3)

We first observe that the function, Eq. (2), satisfies a modified
Helmholtz equation

VZG(X,Xl) — G(x,x1) = —2mqd(x — X1), 4)

where all the lengths are now measured in units of A. Consider
an infinite bidimensional system of vortices in the x-y plane,
with periodic boundary conditions in the y direction. The
solution of Eq. (4) can be expressed as [20]
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G(x,x)) = L‘l 3 Crmisit — (5)
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where

Ym =4/ 1 +4n2m2/L§, (6)

m are integers and L, is the width of the periodic stripe in the
y direction.
In equilibrium, the particle distribution is given by

p(x) = Ae P, @)

where 8 = 1/kgT, w(x) is the potential of mean force (PMF),
and A is the normalization constant [21].

In the weak-coupling limit (high temperatures), the corre-
lations between the vortices can be neglected and the PMF
can be approximated by w(x) = g¢(x) + W(x). The particle
distribution then becomes

p(x) = Ae—ﬂ[(l¢(x)+W(x)]’ (8)
where A is

N
L, fj;o dx e—BladC+w)1’

©))
The potential ¢(x) can be calculated using the Green’s function
P(x) = /dX’p(X’)G(X,X/). (10)
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FIG. 1. (Color online) Theoretical density profiles for confined
vortices. The arrow indicates increasing coupling strength (lowering
temperature): € = x = 0.1, 0.5, 1, 1.5, 2, 2.5, and 3.

Equation (5) allows us to rewrite Eq. (10) as

+00

$(x) = mq / dx'p(x)e™ . (11)
—0oQ0

The two equations (8) and (11) can be solved iteratively.

To quantify the strength of the vortex-vortex and the trap-

vortex interaction, it is convenient to define the following

17'~ (a),
o ©®
°
E S
BN ...
05 m .1 .
A ‘AA
lA ® g a
A ° A
Pa ) w fal

FIG. 2. (Color online) (a) Velocity distributions for various initial
conditions: circles, € = 3.26 and x = 1.63; squares, € = 1.2 and
x = 0.6; triangles, € = 0.54 and x = 0.27. Panel (b) shows that when
the velocity is scaled with v,,,s and the distribution function is scaled
with 1 /v, all the curves collapse onto the universal two-dimensional
(2D) Maxwell-Boltzmann distribution f(x) = 2xe”‘2, represented
by the solid line.
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dimensionless parameters:

2 a)\‘Z
—— and =,
X ksT

= 12
€= LT 12)

In Fig. 1 we present solutions of Egs. (8) and (11) for various
coupling parameters.
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FIG. 3. Vortex density profiles: symbols represent the MD sim-
ulation data and lines are the predictions of the mean-field theory.
For lower temperatures, the parameters € and x increase. The panels
correspond to parameters (a) € = 0.49 and x = 0.1225, (b) € =1
and x = 0.25,(c)e =1.96and xy =0.49,and (d)e =4 and x = 1.
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III. MOLECULAR DYNAMICS SIMULATIONS

To verify the predictions of the mean-field theory, we
first perform MD simulations. A system of N = 200 vortices
interacting by the pair potential, Eq. (1), is confined inside an
infinite stripe of width L, = 400, with a trap potential W (x)
acting along the x direction. As in Refs. [17,18], periodic
boundary conditions are used in the y direction. The equations
of motion for each particle i,

N
d’x;/d* = = " VyqG(xi.x)) —axié,,  (13)

j=1

are integrated using the leapfrog algorithm.

In the simulations, a system is prepared in various initial
conditions and is allowed to relax until a stationary particle
distribution is established. After the equilibrium is achieved,
we calculate the distribution of particle velocities, shown in
Fig. 2(a). If the stationary state is the usual BG equilibrium, we
expect the particle distribution to have the Maxwell-Boltzmann
form, which in two dimensions is

pu(v) = e i, (14)

rms

with v = 4/ (v2). This means that if the velocities are scaled
with v and the distribution is scaled with 1/vyys, all the
curves plotted in Fig. 2(a) should collapse onto one universal
curve f(x)=2xe” *. This is precisely what is shown to
happen in Fig. 2(b). To obtain the density distribution using
MD simulation, we divide the simulation stripe into bins of
width A,, and calculate the average number of particles in
each bin.

To compare the predictions of the mean-field theory with
the results of MD simulations, we let the system relax
to equilibrium and calculate the (v?). For systems with
short range interactions the canonical and the microcanonical
ensembles must be equivalent, so that in two dimensions,
mv?2, /2 = kpT. Using this temperature, the mean-field vortex

rms
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FIG. 4. (Color online) Density profiles for confined vortices
obtained using MD and MC simulations: up and down triangles,
€ = 0.54 and x = 0.27; circles and squares, ¢ = 3.26 and x = 1.63.
MC and MD predict identical vortex density distributions.
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FIG. 5. (Color online) Vortex density profiles. Squares are the
data of Andrade et al. from Fig. 2 of Ref. [17] and circles are the
results of our MC simulations. The parameters are @ = 1073¢2/A2,
N =800, L, =20X: (a) T =0.1¢*/kp, (b) T =1.0¢%/kp, (c)
T =2.0¢%/kg, and (d) T = 4.0g%/kp. The agreement between the
two simulations clearly shows that the stationary state to which the
system relaxes is the usual BG equilibrium.

distribution can be calculated using Eq. (8). Comparing the
predictions of the mean-field theory with the results of MD
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simulations, we see that for high temperatures there is an
excellent agreement; see Fig. 3. In this limit the mean-field
theory, Eq. (8), becomes exact [21]. On the other hand, in
the strong coupling limit (low temperatures), the correlations
between the particles are important and significant deviations
from the results of simulations can be seen. Correlations lead to
a larger concentration of particles in the low energy states than
is predicted by the mean-field theory [21]. This is similar to
the process of overcharging observed in colloidal suspensions
with multivalent ions [22-24].

Andrade et al. [17,18] and Ribeiro et al. [19] have argued
that at low temperatures, the vortices in a type II supercon-
ductor obey Tsallis statistics (TS). In particular, they claimed
that the ground state of interacting vortices in a confining
potential corresponds to the maximum of the Tsallis entropy.
The arguments of Andrade et al. are based on a solution
of an approximate Fokker-Planck equation. This equation
is very interesting and allows us to make some important
predictions, such as front propagation in type II supercon-
ductors [13]. However, the fact that the stationary solution of
this approximate equation at T = 0 is a “q Gaussian” does
not provide justification for the relevance of the nonextensive
statistical mechanics to thermodynamics of superconducting
vortices. In fact, the Fokker-Planck equation for vortex density
is an approximation of a more accurate Nernst-Planck-like
equation, which does have the usual Boltzmann distribution as
a stationary state. Neither of these equations, however, takes
into account the correlations between the particles, so that
both can only be valid in the mean-field limit. Nevertheless,
even in this limit, Ref. [20] shows that the g-Gaussian
solution of the Fokker-Planck equation obtained by Andrade
et al. is inconsistent with the solution of the more accurate
Nernst-Planck equation.

To see that the equilibrium state of the system studied by
Andrade et al. is indeed described by the usual BG statistical
mechanics for any temperature, we perform a series of MD
and MC simulations. In MC simulations, we use the usual
Metropolis algorithm [25] which is constructed to evolve
the system through a Markov process towards a stationary
state in which the particles are distributed (in the phase
space) according to the Boltzmann distribution. Clearly if the
agreement between MD and MC simulations is found, it will
unequivocally show that the system of vortices interacting by
the potential of Eq. (1), is both ergodic and mixing and is
described by the usual BG statistical mechanics.

IV. MONTE CARLO SIMULATIONS

We have seen already that the vortex velocity distribution
is in perfect agreement with the BG statistical mechanics. In
this section, we will show that the vortex density distribution is
also described by the BG statistical mechanics. To do this we
perform MC simulations and compare them with the results

PHYSICAL REVIEW E 88, 032118 (2013)

of MD simulations. MC simulations are designed to force
the particles into an equilibrium state corresponding to the
maximum of the Boltzmann entropy (in the microcanonical
ensemble) or the minimum of the Helmholtz free energy, in
the canonical ensemble. To simulate canonical ensemble one
can use the Metropolis algorithm. In the Markov chain of the
Metropolis algorithm, a new configuration n is constructed
from an old configuration o by a small displacement of a
random particle. The new state is accepted with a probability
P = min{1,e #E:~£)} where B = 1/kgT. If the movement
is not accepted, the configuration o is preserved and counted
as a new state. The length of the displacement is adjusted
during the simulation in order to obtain the acceptance rate of
50%. The energy of the system used in the MC simulations is
given by

N—-1 N N
E=Y" % q¢Gxix)+Y Wx). (5

1 j=i+l i=I

The Metropolis algorithm ensures that the system evolves
to the BG thermodynamic equilibrium. The averages are
calculated using 10° uncorrelated states, obtained after 10°
MC steps for equilibration. Figure 4 shows a perfect agreement
between the results of our microcanonical MD and canonical
MC simulations. In Fig. 5 we compare the results of our MC
simulations with the simulations of Andrade et al. (Fig. 2
of Ref. [17]) performed using an overdamped dynamics
with a thermostat. Once again, the two are indistinguishable.
This unequivocally demonstrates that the system of vortices,
interacting by the potential of Eq. (1), is described by the usual
BG statistical mechanics.

V. CONCLUSIONS

We have studied a simple model of interacting vortices
in a type II superconductor. In the weak coupling limit we
have constructed a mean-field theory which allows us to
accurately calculate the equilibrium vortex density distribution
inside a confining potential. In the strong coupling limit
the correlations between the particles become important and
the mean-field theory fails. This, however, does not imply the
failure of the BG statistics, as is clearly demonstrated by the
perfect agreement between MD and MC simulations and by
the Maxwell-Boltzmann distribution of the particle velocities.

It is very difficult to study theoretically the correlations
in inhomogeneous liquids. A number of different approaches,
such as density functional theory (DFT) [26-30] and integral
equations [31,32], have been developed over the years.
All these theoretical methods are firmly embedded in the
framework of the BG statistics. Introduction of novel type of
entropies [ 17—19] as a way to fit in the interparticle correlations
does not help to shed new light on the equilibrium properties
of these interesting systems.
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