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Nematic phase in stripe-forming systems within the self-consistent screening approximation
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We show that in order to describe the isotropic-nematic transition in stripe-forming systems with isotropic
competing interactions of the Brazovskii class it is necessary to consider the next to leading order in a 1/N

approximation for the effective Hamiltonian. This can be conveniently accomplished within the self-consistent
screening approximation. We solve the relevant equations and show that the self-energy in this approximation
is able to generate the essential wave vector dependence to account for the anisotropic character of a two-point
correlation function characteristic of a nematic phase.

DOI: 10.1103/PhysRevE.88.062140 PACS number(s): 64.60.A−, 68.35.Rh, 75.70.Kw

I. INTRODUCTION

There is a large number of materials which present a
tendency to form charge and/or magnetic stripe patterns. These
patterns can be self-organized in many different phases, such us
stripes, lamellae, bubbles, and others. Inhomogeneous phases
of this type have been observed in systems as diverse as
strongly correlated electronic systems [1] or ferromagnetic
thin films [2]. A common property of all these systems is that
there is a certain degree of frustration, coming from the lattice
structure or from competing interactions.

Complex phases are generally characterized by broken
symmetries manifested by the long-wavelength behavior
of correlations. For instance, stripe order breaks rotational
as well as translational symmetry in one direction, while
crystal or bubble phases break translational invariance in all
directions. Moreover, it is possible to have a phase where
the the translational symmetry is restored by the proliferation
of topological defects, however the system will still have
orientational order. The nematic or the hexatic phases are such
homogeneous phases that break rotational symmetry while
preserving translation invariance [3].

In the last years there has been a renewed interest in the ne-
matic phase, due to the fact that states with this symmetry have
been observed in several highly correlated electron systems [1]
such as quantum Hall systems, ruthenate compounds, cuprates,
and Fe-based high temperature superconductors. Whether this
phase is relevant to describe the interesting and exotic transport
properties of such materials is still an open question. However,
there is a growing amount of data suggesting that the physics
of the nematic phase could be intimately related with the
non-Fermi liquid behavior of anisotropic metal states.

Clear evidences of an electronic nematic phase appear in
ultrahigh mobility two-dimensional electron systems (2DES)
in GaAs/GaAlAs heterostructures [4,5] at extremely low
temperatures and moderate magnetic fields. While for huge
magnetic fields the fractional quantum Hall (QH) phase
dominates the physics of the first Landau level, the nematic
phase appears when the Fermi level lies near the middle
of the third and higher Landau levels (smaller magnetic
fields). The most evident signature of the QH nematic is
the strong temperature dependence of anisotropic transport
properties [6].

The electronic nematic phase has also been observed in
the bilayer ruthenate compound Sr3Ru2O7 at finite magnetic
field [7,8]. While the data suggest that a metamagnetic
quantum critical point can be reached by changing the direction
of the applied magnetic field [9,10], transport properties
of this system are strongly anisotropic and its temperature
dependence is very similar to the 2DES described before.

Other examples of stripe-forming materials are the cuprates
high Tc superconductors [11]. In addition to superconduc-
tivity, typical ingredients found in systems with competing
interactions, such as inhomogeneity, anisotropy, disorder,
and glassiness, coexist. The intermediate state between the
Mott insulator and the superconducting phase is usually
understood as a spin glass with local stripe order, called
“cluster glass.” Although the electronic cluster glass state
exhibits no known long-range order, some electronic order
is always detected by local probes [12–16]. Also, fluctuating
stripes have been measured [17] at the onset of the pseudogap
state of Bi2Sr2CaCu2O8+x using spectroscopic mapping with
a scanning tunneling microscope. In the same direction, recent
measurements [18] of the Nernst effect in YBa2Cu3Oy showed
that the pseudogap temperature coincides with the appearance
of a strong in-plane anisotropy of electronic origin, compatible
with the electronic nematic phase [19].

In a completely different context, stripe domains with
ferromagnetic order are observed in ultrathin magnetic films
with perpendicular anisotropy [2,20–23]. For instance, in
monolayers of Fe grown on Cu substrates, the local mag-
netization shows very complex temperature dependent striped
patterns with a bunch of topological defects. A nematic order
in these systems has been proposed by analyzing frustrated
ferromagnetic models analytically [24,25] as well as with
Monte Carlo simulations [26,27].

From a theoretical point of view, the stripe phase was
extensively studied in several systems and its origin is well
understood. Different mean-field approaches correctly capture
the physics of the stripe phase. For instance, QH stripes are
correctly described by a Hartree-Fock approximation of a
2DES in a magnetic field with Coulomb interactions [28–30].
Hartree-Fock solutions of the Hubbard model [31–33], slave-
boson mean-field theories of the t-J model [34–36], and
even studies of Coulomb frustrated phase separation [37]
provide a reasonable description of the stripe phase of high Tc
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superconductors. In ferromagnetic thin films, the stripe phase
has been analyzed by means of a mean-field treatment of the
frustrated Ising-dipolar model [38], by elasticity of domain
walls analysis of an Heisenberg Hamiltonian [23], and through
Monte Carlo simulations [26,39,40]. The hidden reason of why
mean-field treatments work pretty well for the stripe phase
resides in the fact that the Hamiltonian can be naturally written
in terms of the stripe order parameter (i.e., local charged
density or local magnetization, depending on the case).

All these systems, despite the different microscopic origin,
have a natural scale that dominates the stripe modulation,
originated from competing interactions. Therefore, in the
spirit of the Landau theory of phase transition, it is possible
to describe the stripe phase by means of a coarse-grained
Hamiltonian describing a system constrained to a thin shell
in momentum space around a characteristic wave vector of
modulus k0.1 Examples of scalar and vector order parameters
behaving this way were studied in a seminal work by
Brazovskii [41]. He showed that in systems with a spectrum of
fluctuations dominated by a shell of nonzero wave vector, there
is a first-order phase transition at a finite temperature from an
isotropic to a stripe phase, induced by field fluctuations. The
main fluctuations were taken into account by implementing a
self-consistent Hartree approximation, which is known to be
equivalent to the leading order term in a 1/N expansion of a
system with O(N ) symmetry.

On the other hand, the nematic phase is more elusive.
The nematic order parameter (as will be described in the
following sections) is quadratic in the original degrees of
freedom, therefore, it is essentially governed by the physics of
fluctuations and cannot be captured by naive mean-field theory.
Theoretical predictions of the nematic phase are based on the
study of specific interactions written in terms of the nematic
order parameter. For instance, in Fermi liquids, the isotropic-
nematic phase transition was studied using different techniques
such as RPA [42], multidimensional bosonization [43,44],
and Landau Fermi liquid theory [45,46], on specific models
with explicit attractive quadrupole-quadrupole interaction.
Moreover, in Ref. [47] we have shown that in coarse-grained
models of the Brazovskii class, the quadrupolar interaction is
naturally generated, since it is relevant in the renormalization
group sense. In particular, we have shown that in isotropic
2D models, although the stripe phase cannot exist since long
wavelength fluctuations diverge linearly, the nematic phase can
indeed exist and it is in the Kosterlitz-Thouless universality
class [48].

One way of describing the isotropic-nematic phase transi-
tion is to observe spontaneous Fermi surface deformations
in the case of Fermi liquids, or deformations of the high
temperature form factor in the case of classical systems.
Provided we begin with a Hamiltonian with local polyno-
mial interactions, the Hartree (or Hartree-Fock for fermions)

1Of course this simple assumption is unable to capture the whole
richness of the phase diagram of systems like the dipolar frustrated
Ising model in a square lattice, as observed, e.g., through Monte
Carlo simulations [26,38,40]. In this case, the tetragonal symmetry
induced by the lattice should be explicitly incorporated into the
Landau expansion.

approximation provides a constant (momentum independent)
renormalization to the effective Hamiltonian and then it cannot
capture any deformation in momentum space. In order to have
a chance to observe relevant fluctuations associated with the
isotropic-nematic phase transition it is necessary to compute
corrections producing a momentum dependent self-energy. In
this paper we show that the minimal approach to describe the
isotropic-nematic transition in systems with isotropic compet-
ing interactions is the self-consistent screening approximation
(SCSA) [49,50], which is equivalent to introducing the next
to leading order term in a 1/N expansion of the effective
Hamiltonian in a self-consistent way.

In this work we consider the simplest Brazovskii model
in two dimensions and compute the correlation function in
the SCSA. We show that there is a critical temperature at
which the system spontaneously breaks rotational symmetry,
signaling the presence of an isotropic-nematic phase transition.
This definitively confirms our previous claims [47,48] based
on symmetry and RG arguments within the context of a
completely controlled calculation.

This paper is organized as follows: In Sec. II we introduce
the model and the essential background on the nematic order
parameter. In Sec. III we introduce the SCSA and compute,
both numerically and analytically, the two-point correlation
function leading to the isotropic-nematic transition. Section IV
is devoted to the conclusions and a short discussion of our
results.

II. MODEL HAMILTONIAN, STRIPE FORMATION, AND
THE NEMATIC PHASE

We are interested in the low temperature physics of
d = 2 models with isotropic competing interactions and Ising
symmetry. Universal characteristics can be well described by
a coarse-grained effective Hamiltonian written in terms of a
real scalar field φ(�x), of which the quadratic part in reciprocal
space reads

H0 =
∫

�

d2k

(2π )2
φ(�k)[r0 + A(k − k0)2 + · · · ]φ(−�k), (1)

where r0(T ) ∼ (T − T ∗), k = |�k|, and k0 = |�k0| is a character-
istic scale given by the competing nature of the microscopic in-
teractions [51].

∫
�

d2k ≡ ∫ 2π

0 dθ
∫ k0+�

k0−�
dk k and � ∼ √

r0/A

is a cut off where the expansion of the free energy up to
quadratic order in the wave vector makes sense [41]. The
“mass” 1/A measures the curvature of the dispersion relation
around the minimum k0 and the ellipses in Eq. (1) mean higher
order terms in (k − k0).

The structure factor or, equivalently, the two-point correla-
tion function:

G0(k) = 1

r0 + A(k − k0)2
(2)

has a maximum at k = k0 with a correlation length ξ ∼√
A/r0. Therefore, near criticality (r0 → 0) the physics is

dominated by an annulus in reciprocal space with wave
vector k ∼ k0 and width 2�. This situation is quite similar
to fermionic systems at low temperature, where k0 plays the
role of the Fermi momentum, and the reduction of phase space
to a spherical shell (in d = 3) centered at the Fermi momentum
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is ruled by the Pauli exclusion principle. The question is how
interactions modify this picture. The simplest interaction term
is given by a local quartic term of the form

Hi = v

∫ (
4∏

i=1

d2ki

(2π )2

)
φ(�k1) · · · φ(�k4)δ2(�k1 + �k2 + �k3 + �k4),

(3)
where v measures the interaction intensity. The free correlation
is renormalized by the interaction term Eq. (3). The simplest
correction is given by the self-consistent field approximation
in which the quartic term is approximated in the form φ4(�x) �
〈φ2(�x)〉φ2(�x). In this way the original theory is approximated
by an effective one which is quadratic in the field φ and thus
can be solved exactly. In this approximation, the correlation
function G(�k) has the same free structure of Eq. (2) with a
renormalized r0 → r , given by the self-consistent equation [3]

r(T ) = r0(T ) + vT

∫
d2k

(2π )2
G(�k). (4)

Brazovskii showed [41] that the solution of this equation drives
the mean-field critical point to a fluctuation induced first-order
phase transition between an isotropic and a stripe phase char-
acterized by a modulated order parameter 〈φ(�x)〉 ∼ cos(k0x).
However, long wavelength fluctuations of this modulated
pattern may diverge, depending on dimensionality. In d = 3
the divergence is logarithmic in the linear size of the system
leading to quasi-long-ranged stripe order, while in d = 2 the
divergence is linear implying that the system cannot order at
any finite temperature.

Then, a relevant question is about the possible existence of
a homogeneous phase at intermediate and low temperatures,
like a nematic phase, which restores translation invariance but
breaks rotational symmetry. Orientational order of this kind
can be quantified by a nematic tensor order parameter given in
terms of the density gradients [52]:

Qij ≡
∫

d2x φ(�x)

(
∂i∂j − 1

2
∂2δij

)
φ(�x), (5)

where i,j = x,y and ∂2 = ∂xx + ∂yy is the Laplacian in two
dimensions. This tensor is symmetric and traceless, and in
two dimensions it has only two independent elements which
essentially represent the mean orientation of domain walls
and the strength of the orientational order. In order to get
some feeling of the physical content of this order parameter
it is useful to write it in reciprocal space. After Fourier
transformation and choosing the x axis as the principal one,
the only relevant element of the tensor is given by [52]

〈Qxx〉 =
∫

d2k k2 cos(2θ ) G(�k), (6)

where kx = k cos θ , ky = k sin θ , and G(�k) is the structure
factor of the system. Written in this way the orientational
order parameter quantifies the degree of anisotropy of the
domain pattern. In a completely isotropic phase, e.g., a liquid
phase or a mosaic of domains with no preferential direction,
the corresponding isotropy in the structure factor will be
reflected in a zero value of the orientational order parameter.
Therefore, any approximation such as the self-consistent
Hartree approximation described above, leading to a constant

renormalization of the correlation function, is not able to
capture the physics of the nematic phase. Note that Eq. (6) acts
as a filter that selects the cos(2θ ) component of the correlation
function. Then, in order to have Qxx �= 0, the correlation
function should be anisotropic. An anisotropic form leading
to a nematic phase was found in Refs. [47,48], which has the
form

G(�k) = 1

r + A(k − k0)2 + α k2 cos(2θ )
. (7)

Here α is a constant which plays the role of a scalar nematic
order parameter [47,48]. If α = 0, the correlation function
is isotropic and Qxx = 0. On the other hand, for α �= 0, the
anisotropy of the correlation function gives a finite contribution
to Qxx . Then, the nematic phase should be described by an
effective quadratic Hamiltonian of the form

HN =
∫

�

d2k

(2π )2
φ(�k)G(�k)−1φ(−�k), (8)

with G(�k) given by Eq. (7). In other words, interactions should
renormalize the Hamiltonian in a momentum-dependent way.
This is only possible by at least at a two-loop approximation
in a perturbative expansion. We will show in the next section
that the SCSA provides the appropriate temperature dependent
renormalization parameter α(T ), being able to capture the
isotropic-nematic phase transition.

III. THE NEMATIC SOLUTION IN THE SCSA

The set of self-consistent equations for the two-point
correlation function in the SCSA are (see Supplemental
Material [53])

G(�k) = 1

G−1
0 (�k) + 
(�k)

, (9)


(�k) =
∫

d2q

(2π )2
D(�k − �q)G(�q), (10)

D(�k) = v

1 + v�(�k)
, (11)

�(�k) =
∫

d2q

(2π )2
G(�k − �q)G(�q). (12)

A general solution of this set of equations for a particular
system is a formidable task. As discussed in Sec. II, we expect
a solution of the form (7). Thus, our aim is to show that this
set of equations admits a solution of that form, leading to
an isotropic-nematic phase transition, and that the solution is
stable below some critical temperature.

We work perturbatively at order v2 in (11), such that D(�k) =
v − v2�(�k). Then, Eqs. (10), (11), and (12) can be written in
real space in the simple form


(�x) = D(�x)G(�x), (13)

D(�x) = vδ(�x) − v2�(�x), (14)

�(�x) = G(�x)2. (15)
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In this way the self-energy 
(�x) is given directly as a
function of G(�x) :


(�x) = vG(0)δ(�x) − v2G(�x)3. (16)

Then, the system of equations that actually have to be solved
is reduced to

G(�k) = 1

r0 + A(k − k0)2 + 
(�k)
,

(17)

(�x) = vG(0)δ(�x) − v2G(�x)3,

in which the first equation is written in reciprocal space and
the second in real space because it is helpful in the numerical
analysis.

As discussed in Sec. II, the nematic solution should be
characterized by broken orientational symmetry, which in the
present context means that the correlation function G(�k) will
depend not only on the modulus of the wave vector k, but also
on its orientation. Then, in an expansion of the self-energy
around the circle of radius k0, the lowest order form which
is necessary to reveal an orientational symmetry breaking has
the form c1 + c2 cos(2θ ), where c1 and c2 are k-independent
coefficients and θ is the angle relative to the direction along
which the rotational symmetry is broken. This implies that
only the “mass” term in the correlation function will be
renormalized with a θ dependent function. Higher order terms
in the self-energy will be responsible for corrections in the
values of A and k0 but do not change significantly the physics
near the nematic transition.

From the previous arguments we propose the following
ansatz for the renormalized correlation function:

G(�k) = 1

r + A(k − k0)2 + α cos(2θ )
, (18)

where �k = (k cos θ,k sin θ ) and the (approximately constant)
factor k2 ∼ k2

0 appearing in Eq. (7) was absorbed in α. Note
that the angular dependence of G(�k) with θ implies that when
the symmetry is broken (α �= 0) two isolated maxima appear
over the ky axis at ky = k0 and ky = −k0, i.e., in this state the
director vector of the nematic phase is along the y direction in
real space.

By rescaling the parameters in the form A → 1, k0 → 1,
r

Ak2
0

→ r α

Ak2
0

→ α, v

A2k2
0

→ v, the problem is expressed in a

dimensionless form.
To proceed, it is useful to make a Fourier expansion of

G(k,θ ) given by Eq. (18). Up to second order in θ this yields

G(�k) = 1√
[r + (k − 1)2]2 − α2

×
{

1 − 2α cos(2θ )

r + (k − 1)2 +
√

[r + (k − 1)2]2 − α2

}
,

(19)

where the k-dependent Fourier coefficients are exact. Then,
the correlation function in the real space can be written as

G(�x) = H1(x) − αH2(x) cos(2φ), (20)

where the angle φ is such that φ = π/2 is along the director
vector of the nematic phase and

H1(x) =
∫

d2k

(2π )2

ei�k·�x√
[r + (k − 1)2]2 − α2

, (21)

H2(x) =
∫

d2k

(2π )2

cos (2θ )ei�k·�x√
[r + (k − 1)2]2 − α2

× 2

r + (k − 1)2 +
√

[r + (k − 1)2]2 − α2
, (22)

where �k · �x = kx cos θ . Then,

G(�x)3 = [
H 3

1 (x) + 3
2α2H1(x)H 2

2 (x)
]

− [
3αH 2

1 (x)H2(x) + 3
4α3H 3

2 (x)
]

cos (2φ). (23)

Now we are able to compute 
(�k) by taking the inverse
Fourier transform in Eq. (17). As already mentioned, we are
only interested in 
(�k0) which renormalizes the mass as a
function of the angle θ . Thus, we fixed �k = �k0 and obtained

(�u), with �u = �k0/k0 in the rescaled variables.

The resulting renormalization equations are

r = r0 + vH1(0)

− v2
∫

d2x

[
H 3

1 (x) + 3

2
α2H1(x)H 2

2 (x)

]
e−ix cos φ,

(24)

α = 3v2
∫

d2x

[
αH 2

1 (x)H2(x) + 1

4
α3H 3

2 (x)

]

× cos(2φ) e−ix cos φ. (25)

From this set of equations we can see that the solution with
α = 0 is always a solution. A nonzero solution can be searched
from the last equation which, after factoring out the α = 0
solution, may be written in the form

α =
√

1 − 3v2
∫

d2x H 2
1 (x)H2(x) cos(2φ)e−ix cos φ

3
4v2

∫
d2x H 3

2 (x) cos(2φ)e−ix cos φ
. (26)

It is worth noting that this equation is not yet the solution of α

since the functions H1(x) and H2(x) depend on α too through
Eqs. (21) and (22), respectively. Nevertheless, this form is
appropriate to proceed numerically.

A. Numerical results

In order to solve numerically Eqs. (24) and (26) it is
convenient to divide the computation into two steps: First we
solve the equation for α for a generic set of values of r . In this
way we build the function α(r) which is shown in Fig. 1 for
v = 0.1. This function is independent of all parameters in the
system except for v.

Then we proceed with the computation of r varying r0 using
Eq. (24). We have to consider both cases α �= 0 and α = 0. In
the case of α �= 0 we use the previously calculated function
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FIG. 1. (Color online) Numerical solution α(r) for v = 0.1.

α(r) to solve Eq. (24), while for α = 0 we solve the equation
for r directly. In Fig. 2 we show the solution of Eq. (24) in
both cases for v = 0.1. We see how at some critical value
of r0 = r0c a bifurcation takes place and the nematic solution
appears.

As usual, we consider that r0 depends on temperature like
r0 = 1 − T , where T is the dimensionless temperature. In
Fig. 3 we show the nematic order parameter as a function
of temperature.

B. Nature of the isotropic-nematic transition in the SCSA

We have shown that the SCSA equations for the Brazovskii
model admit a nematic solution (α �= 0) as well as an isotropic
one (α = 0), as seen in Fig. 2. To establish one or the other
as the thermodynamic solution we have to compare their free
energies. The free energy within the SCSA is given by (see
Supplemental Material [53])

F (T ) = 1

2

∫
d2k

(2π )2
ln[G−1(�k)] + 1

2

∫
d2k

(2π )2
ln[D−1(�k)]

− 1

2

∫
d2k

(2π )2

(�k)G(�k). (27)

0 0.02 0.04 0.06 0.08
0

0.03

0.06

0.09

0.12

r0

r

FIG. 2. (Color online) Numerical solution of r as function of r0

for v = 0.1. The upper (dashed) line corresponds to the the solution
with α �= 0, while the lower (full) line corresponds to the α = 0
solution.
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FIG. 3. (Color online) The nematic order parameter α as a func-
tion of the dimensionless temperature T for v = 0.1.

Expanding the logarithm in the second integral to linear
order in the polarization function leads to

F (T ) = 1

2

∫
d2k

(2π )2
ln[G−1(�k)] + v

2

∫
d2k

(2π )2
�(�k)

− 1

2

∫
d2k

(2π )2

(�k)G(�k) − 1

2

∫
d2k

(2π )2
ln v, (28)

where the last term in Eq. (28) is a constant. The second term of
the last equation is simply given by

∫
d2k

(2π)2 �(�k) = G2(0). The
term including the self-energy can be calculated considering
that the function G(�k) is peaked at k0. Then it is enough to
consider 
(�k) as varying only over the circle of radius k0.
The above considerations lead to a difference between the free
energy of the isotropic and the nematic solutions given by

�F = F (α = 0) − F (α �= 0)

= 1

2

∫
d2k

(2π )2
ln

[
G−1

α=0(�k)

G−1
α �=0(�k)

]
+ v

2

[
G2

α=0(0) − G2
α �=0(0)

]

− 1

2

∫
d2k

(2π )2
[
α=0(�u)Gα=0(�k) − 
α �=0(�u)Gα �=0(�k)],

(29)

where �u = �k/k.
All magnitudes involved in �F have already been found

and then a numeric evaluation is straightforward. The results
are shown in Fig. 4 for v = 0.1. We see that for T < Tc,
corresponding to r0 = r0c, the difference in the free energy
�F > 0, meaning that the nematic solution presents smaller
free energy than the isotropic one. We have also confirmed this
result by performing an analytical expansion of the free energy
near the critical point. This fact establishes the existence of a
continuous isotropic-nematic transition in the context of the
SCSA.

C. Critical behavior

To analyze the behavior near the critical point in more
detail it is convenient to include the parameters α and r in the
notations of the functions H1(x) ≡ H1(x,r,α) and H2(x) ≡
H2(x,r,α). Equation (26) for α = 0 provides a condition to
determine the critical value of r = rc, and Eq. (24) allows us
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FIG. 4. (Color online) Free energy difference between the
isotropic and the nematic solutions as function of dimensionless
temperature for v = 0.1.

to obtain the corresponding critical r0 = r0c:

3v2
∫

d2x H 2
1 (x,rc,0)H2(x,rc,0) cos(2φ)e−ix cos φ = 1

and

r0c = rc − vH1(0,rc,0) + v2
∫

d2x H 3
1 (x,rc,0)e−ix cos φ.

Expanding H1 and H2 to leading order in r and α around
the critical point results in

H1(x,r,α) = H1(x,rc,0) − I11(x)�r + I12(x)α2,

H2(x,r,α) = H2(x,rc,0) − I21(x)�r + I22(x)α2,

where �r = (r − rc) and

I11(x) =
∫

d2k

(2π )2

ei�k·�x

[rc + (k − 1)2]2
,

I12(x) = 1

2

∫
d2k

(2π )2

ei�k·�x

[rc + (k − 1)2]3
,

I21(x) = 2
∫

d2k

(2π )2

ei�k·�x cos(2θ )

[rc + (k − 1)2]3
,

I22(x) = 3

4

∫
d2k

(2π )2

ei�k·�x cos(2θ )

[rc + (k − 1)2]4
.

Using these expansions in Eqs. (24) and (26) for r and α we
arrive at α = √

K�r with �r = m(r0 − r0c), where

K =
∫

d2x e−ix cos φ cos(2φ)[2H1(x,rc,0)H2(x,rc,0)I11(x) + H1(x,rc,0)2I21(x)]∫
d2x e−ix cos φ cos(2θ )

[
1
4H2(x,rc,0)3 + 2H1(x,rc,0)H2(x,rc,0)I12(x) + H1(x,rc,0)2I22(x)

] ,

m−1 = 1 + vI11(0) − vKI12(0)

− 3v2
∫

d2x e−ix cos φ

[
H1(x,rc,0)2I11(x) + KH1(x,rc,0)2I12(x) + K

2
H1(x,rc,0)H2(x,rc,0)2

]
.

K and m are positive numbers leading to the numerical
solutions shown in Figs. 1 and 2. Both figures show that α(r)
and r(r0) are increasing functions of r and r0, respectively. A
direct conclusion of this calculation is that α = √

mK(Tc − T )
near the critical temperature, as is observed in Fig. 3. Then, as
already found from the analysis of the free energy, the SCSA
predicts a continuous second-order isotropic-nematic transi-
tion in agreement with our previous results in Refs. [47,48]. In
Ref. [48] we showed that considering angular fluctuations of
the nematic order parameter drives this transition to be of KT
type.

IV. CONCLUSIONS

The main result of this work has been to prove the
existence of a isotropic-nematic continuous transition in a
stripe-forming system within a two-loop expansion in the
self-consistent screening approximation. In previous works the
transition in the class of models studied here had been found
by including explicitly an interaction term in the effective
Hamiltonian, ruled by symmetry considerations on the nematic
phase. In that case, an additional phenomenological interaction
parameter was introduced in the spirit of a Landau expansion.
Although the results were satisfactory from a physics point
of view, showing the presence of a phase transition to a

nematic phase with broken rotational symmetry in qualitative
agreement with observations in several systems described by
the effective Hamiltonian, an important question remained
to be answered: Was it possible to obtain that interaction
term from a more microscopic, or fundamental Hamiltonian?
Here we have answered that question. The relevant interaction
term can be obtained in a perturbative expansion of the
high temperature effective φ4 Hamiltonian with the usual
constant interaction parameter v, by going at least to a
two-loop order, i.e., the renormalized interaction which is
responsible for the appearance of a nematic phase is O(v2).
It is now easy to see why this is so. The most simple mean-
field approximations, or the one-loop Hartree approximation
for the density correlations, are not able to account for a
nematic phase. The physical reason lies in the anisotropy
of correlations inherent to the nematic phase. Then, any
renormalization independent of wave vector will preserve the
rotation invariance of the high temperature correlations. In
order that the self-energy correction have a �k dependence
which may lead to a broken rotational symmetry, one has
to go beyond Hartree approximation.

We have found a breaking of rotational symmetry within
the self-consistent screening approximation. Already at this
level of perturbation of the original Hamiltonian the equations
which determine the two-point correlation function are very
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difficult to solve in a closed form. Making a physically
motivated assumption on the form of the simplest possible
solution, we have solved the equations analytically near
the transition and we have implemented an efficient way
to solve them numerically away from the critical region.
Our present results are in complete agreement with our
previous results based on a Landau expansion. In particular,
the isotropic-nematic transition is continuous with mean-
field critical exponent of the nematic order parameter α ∼
(Tc − T )1/2. Note that, although the SCSA already accounts
for fluctuation terms in the density field φ(�x), the fact that
the nematic order parameter is proportional to correlation
functions implies that the present approach gives only a
mean-field description of the nematic phase. As found by
us in previous work, we expect this transition to be of the

Kosterlitz-Thouless type, i.e., a transition driven by the prolif-
eration of topological defects, upon incorporation of relevant
fluctuation terms in the mean-field-like nematic solution.
Although anisotropic phases as described in this work have
been reported in many experimental studies, as discussed
in the Introduction, as far as we know the experimental
characterization of the isotropic-nematic phase transitions is
still a big challenge.
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