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Phase transitions in the three-state Ising spin-glass model with finite connectivity
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The statistical mechanics of a two-state Ising spin-glass model with finite random connectivity, in which each
site is connected to a finite number of other sites, is extended in this work within the replica technique to study
the phase transitions in the three-state Ghatak-Sherrington (or random Blume-Capel) model of a spin glass with a
crystal-field term. The replica symmetry ansatz for the order function is expressed in terms of a two-dimensional
effective-field distribution, which is determined numerically by means of a population dynamics procedure. Phase
diagrams are obtained exhibiting phase boundaries that have a reentrance with both a continuous and a genuine
first-order transition with a discontinuity in the entropy. This may be seen as “inverse freezing,” which has been
studied extensively lately, as a process either with or without exchange of latent heat.
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I. INTRODUCTION

Numerous problems of frustrated, disordered systems, with
extensive connectivity in which each site is linked to a
macroscopic number of other sites, [1] have been studied
in the past by means of the replica technique in mean-field
theory [2,3]. The technique has been extended to systems with
finite random connectivity and binary units (spins) in states
o = =1, in which each site is linked to a finite number of
other sites, in areas like error-correcting codes [1,4,5], spin
glasses [6-11], neural networks [12-14], and small-world
lattices [15]. The fact that mean-field theory is exact only
for infinite-range interactions or infinite-dimensional systems
has been a challenge for the understanding of the behavior of
more realistic disordered systems, and a study of the effects of
finite connectivity even in mean-field theory could be a useful
improvement.

Three-state spin models of states o = 0, = 1 with random
bonds and finite connectivity could be of interest to condensed-
matter physics in view of the phase transitions that already
appear, within mean-field theory, in the random Blume-
Emery-Griffith-Capel (BEGC) model with full connectivity
between the spins [16,17], and it should also be of interest
for information processing in neural networks [18]. The
simplest case of a fully connected random BEGC model is the
three-state spin-glass model of Ghatak and Sherrington (GS)
[19,20], which is a Blume-Capel (BC) model with random
bonds [21]. The GS model with infinite-range interactions
exhibits both a continuous transition at high 7 and a genuine
thermodynamic first-order transition below a tricritical point
between a spin-glass and a paramagnetic phase. The first-order
transition appears in a reentrant part of the phase boundary, and
it may describe “inverse freezing” with an exchange of latent
heat. This is areversible transition, say between a paramagnetic
(P) phase and a spin-glass (SG) phase, in which the entropy of
the P phase below the transition is smaller than the entropy
of the SG phase, and there has been a recent revival of
interest in these transitions [22,23], which could explain the
behavior of colloidal and polymeric systems, among others
(see Ref. [23] for a recent summary of realizations).
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A result of the GS model, either in mean-field theory
with full connectivity or obtained by means of numerical
simulations for nearest-neighbor interactions in three di-
mensions, is that the tricritical point separating the con-
tinuous and the first-order transitions is either above or
at the point of reentrance on the phase boundary, im-
plying that inverse freezing appears only as a first-order
transition [16,17,23].

General results in the form of complete phase diagrams
of stationary states for the GS (or random BC) model with
finite connectivity are still missing, and the purpose of this
paper is to make progress in that direction by means of an
analytic study extending the SG replica technique, with the
replica-symmetry (RS) ansatz, developed for disordered Ising
systems with finite random connectivity and binary spins [15].
Typical questions one would like to answer are how the nature
of the transition changes with the connectivity, if there is
reentrance behavior of the phase boundaries, and if this takes
place either as a continuous or as a first-order transition at finite
temperature.

The procedure on which the present work is based intro-
duces an order function [7], in place of an infinite number
of order parameters [6], and uses a representation in terms of
a weighted probability of alignment of the spins involving
a distribution of a two-component local field. One of the
components is associated with a linear form in the spins,
while the other component is associated with the crystal-field
term. A population dynamics technique is used to solve
numerically a self-consistency equation for the distribution
of the local field that yields the relevant physical order
parameters. Phase diagrams are then obtained that exhibit
either a continuous transition between a P phase and a SG
phase for low connectivity or both a continuous transition and a
first-order phase transition that merge at a tricritical point with
reentrance behavior characteristic of inverse freezing between
those phases for increasing finite connectivity.

The outline of the paper is as follows. In Sec. II we present
the GS model and carry out the replica procedure that yields
the statistical mechanics for the three-state system. In Sec. I1I
we present the results for the distribution of local fields, the
relevant order parameters, and the free energy and discuss the
phase diagrams. We conclude in Sec. IV with a summary and
remarks.

© 2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.83.061126

R. ERICHSEN JR. AND W. K. THEUMANN

II. THE MODEL AND REPLICA PROCEDURE

We consider a system of N interacting three-state
Ising spins o; € {—1,0,1}, i =1... N, described by the
Hamiltonian

H———Zc,jlljalaj—}—DZa (1)

i<j

The random variable ¢;; € {0,1} indicates whether there is a
connection (¢;; = 1) or not (¢;; = 0) between a pair of spins
(i, J), and it takes different values for different pairs of spins,
according to the distribution

pe) = 60,1+ (1= 1) 80 @)

where ¢ (the connect1v1ty) is the average number of con-
nections per spin, which is assumed to remain finite in the
thermodynamic limit N — oo, such that c/N — 0. Thus, the
sites are connected according to a Poisson distribution, and one
makes use of this limit in deriving the statistical mechanics
of the system. There is a set of infinite-range interactions
{Jij} that will be assumed to be independent, identically
distributed, random variables drawn from a distribution p(J;;),
to be specified below, and averages over that distribution of
a quantity g(J;;) will be denoted by (g(J));. The quadratic
form in the spins favors the population of the zero state if
D > O or the states =1 if D < 0. If D is sufficiently large and
negative, one retrieves the binary Ising spin-glass model with
finite connectivity and spins o; € {—1,1}, which is a particular
case of the recently studied small-world spin glasses when the
nearest-neighbor interaction along the ring is set to zero [15].

Assuming thermal equilibrium at an inverse temperature
B =1/T, the disorder-averaged free energy per spin is
calculated in the replica procedure as

1 1
— hm —hm—log(Z”) , 3)
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where

2=y et )
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is the partition function and the angle brackets stand for the
disorder average. In the small ¢/N limit, the disorder-average
replicated partition function becomes, to leading order in N,

Z exp —,BDZ(J
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where o = 1,...,n denotes the replica index. Since the
connectivity c is finite, one cannot expand the inner exponen-
tial and follow the standard infinite-connectivity calculation.
Instead, to extract the variables under summation from the
inner exponential, one introduces the identity

1—250'0' —Znaoa,v (6)
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PHYSICAL REVIEW E 83, 061126 (2011)

where o and ¢; are n-component vectors representing replica
states and g, = | if 0 = 0; and zero otherwise. Thus, we
write

(z") = Z exp ﬁDZ(G"‘) +—ZZ500 Sta,

o i#j OT

x (eehI Xt 1) )

and introduce the order function P(¢) = (1/N)); é¢0,,
which represents the fraction of sites with the replica con-
figuration o, through the identity

Z/ [TdP@)dP(o)exe @@ -xLitaa ] (g)
o

where P is an auxiliary density. Performing the trace and
changing P to N P, the integral

(Z") = []_[dp(a)dﬁ(a)expzv [Z P(o)P(0)
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can be evaluated by the saddle-point method in the large-N
limit, leading to the extremum
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over the densities {P(a),ﬁ(a)} for the free energy per site.
The saddle-point equations become

e=BD Y. 0s—P(O)
P(o) = ST 2P0 (11)

and

Po)=—c) P(met! Zenm 1) . (12)
T

Eliminating (o) in Eq. (11) by means of this expression, we
obtain the self-consistency relationship
P(o)
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’
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and the free energy becomes

1 ¢ 1 Ou Ty
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with the order function given by the saddle-point equation,
indicated by the asterisk.

Our search for solutions to Eq.(13) will be restricted to
the RS ansatz [7,10]. This means that P(o) should remain
invariant under replica permutations and, consequently, that
for three-state spins it should only depend on the summations
Y g0cand )" (0q )2, with their corresponding weights. Thus,
in extension of the RS ansatz for the order function in finite-
connectivity two-state Ising models [15], we assume that for
the three-state model

(14)

Bh Yy 0u—Bb Y, 0

[2e=Ab cosh(Bh) + 11" ° (15)

P(o) = /dh db W(h,b)

for any real n, where & and b are the two components of the
local field and W (h,b) is a density that has to be determined
self-consistently. Since the normalization factors, both here
and in Eq. (13), become 1 in the limit n — 0, we may leave
them aside. Expanding the second exponential in Eq. (13) and
using the RS ansatz, we have

© . kpk
P(o) = e PP 38 k‘c f]_[ dhy db, W (hy.b)dJ; p (J;)
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where p (J) is the probability distribution for the interaction,
assumed to be continuous. Summing over rall and using
the identity ) 8,4, = 1 in order to extract the appropriate

dependence on ), 0, and ), (0 )2, we obtain

e ‘c
Plo) = PP L0 Z /l_[dhzdeW(hz bydJy p ()
k=0

X H epoZ 856, l0g [2 cosh(Bh
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+BJio/c)e P +1]. A7)
For three-state spins we use the representation
800, =1 — 0% — 02+ 00,/2 +30%52/2 (18)

to do the sum over o, and with the RS ansatz on the left-hand
side of the equation we obtain the self-consistency relationship
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for W(h,b),

W(h,b) = Z

—ck

/ ]‘[dh, dby W(hy,b)dJy p(Jh)
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k
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in which a, = cosh(8h +aBJ/c) .

To determine the density W (h,b), we proceed numerically
by means of population dynamics of a large number of fields
updated as follows [11], for each value of 8 and D. First, a
number k is chosen from a Poisson distribution of mean c.
Then, cells (h;,b;) and couplings J; with [ running from 1
to k are selected at random from the population, and the
summations in the delta functions are calculated. Next, one
selects at random a new cell (4,b) from the population and
sets

1 k
=3 > ¢ b (22)
=1
1 k
b=D—EZw<hl,bl,Jl>, (23)

I=1
continuing the procedure until it converges to a limiting
W(h,b).
Knowledge of W (h,b) allows one to determine the magne-
tization

m= / dhdb W(h,b) (o) , (24)
the spin-glass order parameter
= / dhdb W (h,b) (0)?, (25)
and the additional parameter
r= / dh db W(h,b){c?), (26)

for the three-state model, where (o) and (o2) depend on 4 and
b as

. sinh(Bh)
7) = Cosh(B) + P2 &7
and
20 cosh(Bh)
o) = cosh(Bh) + ebb/2 (28)
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As usual, m # 0 indicates magnetic ordering, while m = 0
and g > 0 correspond to spin-glass ordering. The additional
parameter r is zero only when all spins are in the o; = 0 local
state.
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The free energy has energetic and entropic contributions
given by

fi(B) = %fdh dh'dbdb' dJ P(J)W(h,b)W (h',b")

x {log [1/4 + e P+ (cosh(Bh) cosh(Bh') cosh(BJ /c)
+ sinh(Bh) sinh(Bh') sinh(BJ /c)) + e cosh(Bh)/2 + e7#* cosh(Bh') /2]
—log[(e™” cosh(Bh) + 1/2) (e #* cosh(Bh') + 1/2)]} (29)

and
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¢
x log[l + 26Xp<2 Y (he,by, Jp) — /3D>
¢

x cosh(qu (hg,bg,]g))] : (30)
£

respectively, within the RS ansatz.

III. RESULTS

In what follows we assume that the couplings J;; are
independent Gaussian random variables with zero mean and
unit variance. In the binary Ising SG model, there is a
one-component local field 4 and a density W(h) = §(h) in
the P phase. The critical temperature for a bifurcation to a SG
solution can be found in that case by means of an expansion
of the full W(h) around &(h). (See Ref. [15] for details.)
In the case of the present three-state SG model with finite
connectivity, there is no simple form for the density of the
two-component local field W (h,b), even in the P phase, and in
order to obtain the thermodynamic properties one has to use
a population dynamics procedure to calculate explicitly that
density. Since the mean of J;; is zero, there is no long-range
order, and we expect that W (h,b) is symmetrically distributed

(a)

around the i = 0 axis. Depending on the values of r and ¢,
the system can be found either in a SG or in a P phase.

The implementation of population dynamics requires an
initial guess for W (h,b), to be constructed as follows. A finite
surface on the space (%,b) is divided into n x n cells, and this
set of n? cells is populated with N vector fields. In this work,
the initial population was distributed in two distinct ways: (A)
the two components of each field were randomly distributed
between —0.5 and 0.5, and (B) all the fields had # = 0 and b
randomly distributed between D — 1 and D. For each set of
parameters ¢, D, and T, the population dynamics is allowed
to run until a stationary distribution W(h,b) is reached.

Ilustrative examples of stationary distributions for ¢ =
6, D=0.35, and T =0.1, computed with n = 128 and
N =40000, are shown in Fig. 1. Starting from initial
condition (A), the population dynamics converges to the
two-dimensional distribution, symmetric around 4 = 0, shown
in Fig. 1(a). This field distribution leads to a spin-glass
solution with » > 0 and ¢ > 0, according to Eqgs. (26) and
(25). Starting with initial condition (B), W(0,b) converges
to the one-dimensional distribution shown in Fig. 1(b). Here
only fields along the 7 = 0 axis remain populated, and there
is a long tail along the b axis. This field distribution leads
to a paramagnetic phase with r > 0 and ¢ = 0. Thus, for
the chosen set of parameters, initial conditions (A) and (B)
are within the basins of attraction of the SG and P solutions,
respectively.

Specific examples of results for the dependence of the order
parameters with D near the transition between the SG and P

120
100
80
60
40
20

(b)

FIG. 1. Local field distribution W (#,b) for c = 6.0, D = 0.35, and T = 0.1, with initial conditions (a) (A) and (b) (B).
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FIG. 2. Order parameters r and ¢ and free energy per site
f as functions of D, for ¢ = 8.0, exhibiting a continuous transition
at T = 0.07 (thin solid lines) and a first-order transition at 7 = 0.04
(thick solid lines for SG states and dashed lines for P states) discussed
in the text. The arrows indicate points on the spinodals.

phases obtained from Eqgs. (25) and (26) that were used
to construct the phase boundaries are shown in Fig. 2 for
connectivity ¢ = 8.0 and two typical situations, one of the
higher temperature behavior and one of the lower temperature
behavior, in which 7 = 0.07 and T = 0.04, respectively. The
corresponding free energy for both situations, obtained by
means of Eqgs. (29) and (30), is shown in the bottom panel of
Fig. 2. Each point on the curves is a result of an average over ten
runs of the population dynamics procedure in order to smooth
out fluctuations. In the presence of multiple solutions for the
parameters, we follow previous works on the fully connected
model and choose the largest one in magnitude, which yields
the lowest free energy that can be smoothly continued from
one phase to the other with a change in D. The curves in

0.2

(2)

0.0

0.2 0.6 0.8

D
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Fig. 2 are rather close to those obtained already with a lower
resolution, say n = 64 and N = 10000, indicating that the
dynamics is near convergence. To test this point, we found
that further results for r, ¢, and f obtained with n = 256
and N = 160000 at T = 0.04, which is the case where the
transition is first order, are almost indistinguishable from those
in Fig. 2

As D increases for T = 0.07, ¢ and r decrease continu-
ously, and the transition from the SG to the P phase takes
place at ¢ = 0 and small ». When T = 0.04, instead, there is
a genuine first-order transition signalled by a continuous free
energy with a discontinuity of the entropy and the appearance
of a pair of spinodals, one for states attained from the spin-glass
phase (solid lines in Fig. 2) and the other one for states reached
from the paramagnetic phase (dashed lines in Fig. 2) with
increasing or decreasing values of D, respectively. The arrows
in Fig. 2 indicate the points on the spinodals for that value
of T, and the transition between the phases appears at the
crossing of the free energies, where D = 0.328. The first-order
transition persists for somewhat higher 7', with the spinodals
becoming closer to merging with the continuous transition at a
tricritical point given by T ~ 0.059 and D ~ 0.33 for ¢ = 8.0,
and similar results are obtained for other values of ¢ > c¢*,
where c¢* is between 5.6 and 6.0, whereas only a continuous
transition appears for smaller ¢ at all 7. It is interesting to
note that the changeover from a continuous to a discontinuous
transition at low T is preceded by a discontinuous transition
between two SG states within the SG phase for ¢* ~ 5.6. For
c slightly larger this transition merges with the continuous
transition that separates the two phases.

A global picture of the transitions for finite connectivity
is given by the T vs D phase diagram for several values of
¢ < 8.0 shown in Fig. 3. The transition is continuous for low
c and all 7', with the order parameters going continuously to
zero with increasing values of D, and there is a reentrance for
¢ 2 3.5.On the other hand, a first-order transition appears with
increasing ¢ between 5.6 and 6.0 at low but finite 7 that starts
at a tricritical point on the reentrance of the continuous phase
boundary. The reentrance separates the P phase at low T from
the SG phase at higher 7'. Note that the tricritical point appears
at larger values of 7 with increasing ¢, and this has been

0.15

0.05 —

0.25 0.30 0.35 0.40
D

FIG. 3. (a) The T vs D phase diagram for connectivity ¢ = 2.0, 4.0, 5.6, 6.0, and 8.0, from right to left. Solid (dotted) lines denote
continuous (discontinuous) transitions between a spin-glass (SG) phase to the left and a paramagnetic (P) phase to the right of each curve.
(b) Detail of the phase boundary for ¢ = 8, including the spinodals of the P and SG phases to the left and right of the transition as thin solid

lines, respectively.
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FIG. 4. Temperature dependence of the free energy for
¢ = 8 across (a) the first-order transition at D = 0.325 and (b)
the continuous transition at D = 0.35. The dashed left (right) line
indicates a point on the SG (P) spinodals, and the vertical solid lines
indicate the transition with an increase in entropy from the P phase to
the SG phase in (a) and with no increase in (b). The normal transition
between the SG and P phases (not shown) appears at higher 7'.

checked by further calculations for c = 16. We also found that,
for all the values of ¢ larger than ~ 2.5 considered in this work,
the phase boundaries move to the left with increasing ¢ toward
lower values of D. Indeed, there is a monotonic decrease of
To(c), which is the critical T at D = 0, with increasing ¢, and
we found numerically that Ty ~ J/+/c for large ¢, which is the
same behavior as that in the two-state spin-glass model with
finite connectivity where the transition is always continuous
[15].

The reentrance of the phase boundaries is a manifestation
of inverse freezing that appears either as a genuine first-order
transition with a discontinuity of the entropy or as a continuous
transition with only a gradual change in the entropy from one
phase to the other. In order to show that the discontinuity of
the entropy across the first-order transition in the GS model
with finite connectivity goes in the right direction to account
for inverse freezing we show in Fig. 4(a) the temperature
dependence of the free energy for ¢ = 8 and D = 0.325.
The free energy is continuous and follows the lower curve
when there are two solutions, and indeed, the entropy of the
P phase below the first-order transition (which is slightly
positive for that value of D) is smaller than the entropy of
the higher-temperature SG phase, with a discontinuity of the
entropy at the transition. This means that in heating the system
the disordered paramagnet “freezes” into the amorphous SG
with an exchange of latent heat. For comparison, we show in
Fig. 4(b) the free energy, for D = 0.35, with no discontinuity
in the entropy across the continuous transition.

The phase diagram for finite ¢ obtained in the present work
within the RS scheme differs from the 7 vs D phase diagram
for the fully connected GS model in that, apparently, there
is no reentrance in the latter within that scheme but there
is a reentrance within full replica-symmetry breaking. The
first-order transition line appears in that case all along the
reentrance of the phase boundary down to 7' = 0, and it is
even slightly continued above into the normal phase boundary.

PHYSICAL REVIEW E 83, 061126 (2011)

Thus, there is no continuous transition on the reentrance in
that case. On the other hand, there is, apparently, a further
reentrance on the first-order transition at low 7 [17].

The kind of behavior we find here for finite ¢ is similar
to the phase diagram of a somewhat different model of a
three-state Ising spin glass with full connectivity in which
the degeneracy of the active spins (0 = 1 or 0 = —1) is larger
than the degeneracy of the inactive state (o = 0), in contrast to
the GS model where these degeneracies are the same. Indeed,
the T vs D phase boundary in that case also displays both a
first-order transition at low 7" and a continuous transition at
higher T on the reentrance of the phase boundary, even within
the RS scheme [22].

IV. SUMMARY AND CONCLUSIONS

The statistical mechanics of the binary Ising SG model with
finite random connectivity, within mean-field theory, has been
extended in this work to study the three-state Ising SG model
with crystal-field effects of Ghatak and Sherrington, which
is a random-bond Blume-Capel model. Renewed interest
in this model is due to the recent discovery of numerous
physical realizations within condensed-matter physics that
exhibit inverse transitions (see Ref. [23] for a recent review),
and finite connectivity could be of use in order to study the
behavior of such systems with effective interactions between
infinite and short range or between infinite dimensions and
three dimensions.

The replica method for disordered spin systems with
finite connectivity has been extended here within the replica-
symmetry ansatz. The RS ansatz for the order function that
describes the behavior in the present model with finite connec-
tivity introduces a distribution of a two-component effective
field that plays a crucial role in determining the relevant order
parameters of the model. An iterative self-consistency relation
is derived for the local field distribution, an analytic solution
of which does not seem possible in the presence of a first-order
transition, and we use instead a population dynamics numerical
procedure. Phase diagrams were then obtained in order to
investigate the effects of finite connectivity and the anisotropy
parameter on the transitions between a SG phase and a P phase,
with emphasis on reentrance behavior. The latter is a necessary
feature in order to describe inverse transitions, in particular,
inverse freezing, in view of the two phases favored by the
present model.

The main result of this paperis the 7 vs D phase diagram for
various values of the connectivity, which exhibits the different
phase transitions that may appear at low temperature. For low
connectivity the transition is a continuous one downto 7 = 0,
with a reentrance at low T for higher connectivity exhibiting
both a continuous transition and a discontinuous transition.
We showed that the discontinuous transition is a first-order
transition with a discontinuity of the entropy at the transition
in which the entropy of the SG phase is larger than the entropy
of the P phase below the transition, which is a sign of inverse
freezing in the system.

The results obtained so far within the RS ansatz could
be changed by replica-symmetry breaking (RSB), and an
extension in this direction could be interesting [11], although
not so easy to carry out in the present case due to the
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time-consuming evaluation of the distribution of the two-
dimensional effective field. However, if the trend of the
results for the GS model with full connectivity is taken as
a guide, one would expect an enhancement of the reentrance
on the first-order transition for finite connectivity within RSB,
without much change of the continuous transition.

It may also be interesting to find out to what extent the
specific form of the distribution of random bonds makes a
difference. In place of the Gaussian with mean zero and
unit variance that we used in this work, one could have a
Gaussian with mean Jy > 0. We found that the phase diagram
is somewhat changed in that case. Instead, one could consider
a general bimodal distribution between ferromagnetic and
antiferromagnetic interactions, which allows one to predict
when the effects of frustration may become more relevant
before going into a RSB calculation, an argument that has
been used before [15]. This, and related issues, are currently
being studied.

PHYSICAL REVIEW E 83, 061126 (2011)

The procedure extended in this work can be applied
to study the effects of finite connectivity in other multi-
state spin models like the random BEGC model or the
degenerate spin model of Schupper and Shnerb, with either
random or uniform interactions [17,22]. It can also be
applied to attractor neural networks, and the study of the
retrieval performance in a three-state network with finite
connectivity and a Hebbian learning rule is currently being
investigated [24].
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