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Curvature-driven coarsening in the two-dimensional Potts model
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We study the geometric properties of polymixtures after a sudden quench in temperature. We mimic these
systems with the g-states Potts model on a square lattice with and without weak quenched disorder, and their
evolution with Monte Carlo simulations with nonconserved order parameter. We analyze the distribution of
hull-enclosed areas for different initial conditions and compare our results with recent exact and numerical
findings for g=2 (Ising) case. Our results demonstrate the memory of the presence or absence of long-range
correlations in the initial state during the coarsening regime and exhibit superuniversality properties.
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I. INTRODUCTION

Domains formed during the evolution of mixtures are of
both theoretical and technological importance, applications
including foams [1], cellular tissues [2], superconductors 3],
magnetic domains [4,5], adsorbed atoms on surfaces, etc. In
particular, in metallurgy and surface science, the polycrystal-
line microstructure, and its time evolution are important in
determining the material properties.

After a sudden change in temperature (or in another suit-
able control parameter) that takes the system from the high
temperature phase into the coexistence region, the system
tends to organize in progressively larger ordered structures.
The system’s temporal evolution is ruled by thermal, diffu-
sive, and curvature-driven processes, and the actual growth
law depends on general features suchlike the presence of
quenched disorder, the dimension of the order parameter and
whether it is conserved or not. Although much is known for
binary mixtures and systems with twofold ground degen-
eracy (¢g=2), much less is understood for polymixtures and
manifolded ground states (¢>>2). In the latter case, topologi-
cal defects pin the domain wall dynamics and even in pure
systems thermal activation is necessary to overcome the cor-
responding energy barriers.

Many interesting cellular growth processes are captured
by a curvature-driven ordering processes in which thermal
effects play a minor role. These are ruled by the Allen-Cahn
equation in which the local velocity of an interface is pro-
portional to the local curvature, v=—(\/2)k, where \ is a
temperature and g-dependent dimensional constant related
with the surface tension and mobility of a domain wall and «
is the local curvature. The sign is such that the domain wall
curvature is diminished along the evolution. In d=2 the time
dependence of the area contained within any finite domain
interface (the hull) on a flat surface is obtained by integrating
the velocity around the hull and using the Gauss-Bonnet
theorem,
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where «; are the turning angles of the tangent vector to the
surface at the n possible vertices or triple junctions. In some
systems, such as the Ising g=2 model, 2;a;=0 since there
are no such vertices and we obtain dA/dt=—\ for all hull-
enclosed areas, irrespective of their size [6,7]. In highly an-
isotropic systems, as the Potts model studied here, the angles
are all different. In some of the systems that motivate this
work, like soap froths, the angles are all equal to 27/3, that
is, a;=m/3,Vi. Focusing on systems in which there is a
one-to-one correspondence between vertices and sides
(meaning that we exclude the Ising limit in which there are
no vertices but each wall has one side) the above equation
reduces to the von Neumann law [6,8] for the area A, of an
n-sided hull-enclosed area,

dA,
dt

=%(n—6) n>1. (2)

Whether a cell grows, shrinks or remains with constant area
depends on its number of sides being, respectively, larger
than, smaller than or equal to 6. The above law can be ex-
tended to the case in which the typical internal angle depends
on the number of sides [9] and to 3d [10] as well.

Potts models, that is to say g-state spin models on a lat-
tice, simulate grain growth. Early studies of the 2d g-state
Potts model with nonconserved order-parameter dynamics
have shown that the growth law is analogous to that of the
(nonconserved) Ising model, where in the scaling regime the
characteristic length scale follows the ¢/> Allen-Cahn law
[11,12], regardless of the value of g. However, for ¢>2 and
T=0, this power-law growth does not hold for long times,
the characteristic length scale converging to a limiting value.
This is in agreement with the Lifshitz-Safran criterium
[13,14] that states that when the ground state degeneracy is
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q=d+1, where d is the system dimensionality, there might
be domain wall pinning depending on the lattice geometry
and the density of topological defects. In the 2d Potts model
[15] with g=3 such point defects are the convergence of
three distinct phases borders [13,14]. The asymptotic density
of defects that depends on ¢ (negligible for ¢ =4 but nonzero
for ¢>4) was also related with glassy behavior [16,17]. In
the presence of thermal fluctuations, the excess energy due to
too many domain borders disappears after a transient [18].

In a sequence of papers [7,19,20], we explored the time
evolution of domain and hull-enclosed area distributions in
bidimensional coarsening systems with scalar order param-
eter. To study the nonconserved order-parameter case, on the
one hand we used a continuum description based on the
Ginzburg-Landau equation for the scalar field and the Allen-
Cahn law dA/dt=—N. On the other hand, we studied the
kinetic Ising model on a square lattice. For the g=2 Ising
case with nonconserved order parameter, the absence of
triple points leads to the uniform shrinkage of all hull-
enclosed areas. More concretely, the number of hull-enclosed
areas per unit system area, in the interval (A,A+dA) at time
t is related to the distribution at the initial time #; through

ny(A,t) =m[A + Nt -1),1,]. (3)

Once the initial distribution is known, the above equation
gives the distribution at any time ¢. For example, if one takes
as initial states at ;=0 configurations in equilibrium state at
T., where the distribution is exactly known for g=2 [21],
ny(A,0)=c,/A? with c,=87\3, the distribution at >0 is
ny(A,t)=c,/(A+\,t)%, that compares extremely well with
simulation data for the Ising model on a square lattice [7].
For a quench from infinite temperature, on the other hand,
the initial distribution corresponds to the one of the critical
random continuous percolation [7,19]. This observation is an
essential ingredient to understand the fact that, and obtain the
probability with which, the system attains a striped frozen
state at zero temperature (see [22] and references therein).
Interestingly, on a square lattice, the initial state does not
correspond to the random percolation critical point but the
coarsening evolution gets very close to it after one or two
Monte Carlo steps. Therefore, although Eq. (3) was obtained
with the continuous description and, a priori, it is not guar-
anteed to apply on a lattice, it does describe the coarsening
dynamics of the discrete Ising model remarkably accurately.
In the presence of vertices, instead, the single hull-enclosed
area evolution depends on n and, notably, a given hull-
enclosed area can either shrink or grow depending on
whether n<<6 or n>6, respectively. Therefore, one cannot
write a simple relation as the one in Eq. (3) to link the area
distribution at time ¢ to the one at the initial time ¢; and the
distribution might get scrambled in a nontrivial way during
the coarsening process (for example, when a domain disap-
pears, the number of sides of the neighboring domains
changes, along with their growth rate).

In this paper we study the distribution of hull-enclosed
areas during evolution in a Potts model with different num-
ber of states, notably g =4 and ¢ >4. We then try to give an
answer to some questions that can be posed when dealing
with more than two competing ground states. To what extent
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the results obtained for g=2 are also valid for ¢=3? In par-
ticular, in a quench from infinite temperature, does the ran-
dom percolation critical point affect the evolution as it does
for g=27 Moreover, which is the interplay between nucle-
ation and growth when the system goes through a first-order
phase transition as in the cases ¢ >4? What happens when
the starting point of the quench is a first-order transition
point, with finite-range correlations? In the presence of weak
disorder, when first-order transitions become continuous, are
the scaling functions universal (superuniversality)?

The paper is organized as follows. In Sec. II we introduce
the Potts model and, in Sec. III, we study the space-time
correlation function starting from differently correlated ini-
tial states. Then, in Sec. IV, several area distribution func-
tions, either in the initial state or after the quench in tempera-
ture, are studied and described in detail. Afterwards, in Sec.
V, the Potts model with ferromagnetic random bonds (weak
disorder) is studied and compared with the pure model. Fi-
nally, we make some final remarks and conclude.

II. POTTS MODEL

We consider the Potts model [15] on a square lattice of
N=I2 spins with L= 103-5X 103, the state variables of
which, s; with i=1...N, assume integer values from 1 to g.
The Hamiltonian is given by

H==2T;0, )
(ij)

where the sum is over nearest-neighbor spins on the
lattice and, until Sec. V, Jij= 1, Vi,j. The transition,
discontinuous for g>4 and continuous for g =4, occurs at
T.=2/In(1+ \;) We run from 500 to 4000 Swendsen-Wang
(SW) algorithm steps to reach an equilibrium initial condi-
tion at the critical point, and average over 1000 samples to
build the correlations and distributions. After equilibrium is
attained and the system quenched, the evolution follows the
heat-bath Monte Carlo algorithm [23] and all times are given
in Monte Carlo step (MCs) units, each one corresponding to
a sweep over N randomly chosen spins.

After a quench in temperature, the abrupt increase in the
local correlation creates an increasing order, despite the com-
petition between different coexisting stable phases. In the
cases g=4 the paramagnetic state becomes unstable at T,
and after a quench to any nonzero subcritical temperature the
system orders locally and progressively in patches of each of
the equilibrium phases; in other words, it undergoes domain
growth. In the cases ¢ >4 one can distinguish three working
temperature regimes: at very low T the system gets easily
pinned; at higher T, but below the spinodal temperature T at
which the paramagnetic solution becomes unstable the sys-
tem undergoes domain growth; above the spinodal T there is
competition between nucleation and growth and coarsening.
However, the latter regime is very hard to access since T is
very close to T, (e.g., T,=0.95T, for g=96 [24]). In this
work we focus on the dynamics in the intermediate coarsen-
ing regime.

The detailed evolution of the system during the coarsen-
ing dynamics depends on the correlations already present in
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FIG. 1. (Color online) Rescaled space-time correlation function
at several times (from r=2* to 2! MCs) after a quench from
Ty—o to Ty= T./2 for g=2, 3, and 8, with and without weak dis-
order (the disordered case is discussed in Sec. V). A good collapse
is obtained for all ¢ when rescaling the spatial variable by R(r)
obtained from C(R,?)=0.3 (note that the working temperature is
different in all cases). Inset: R?(¢) against ¢ in a double logarithmic
scale for g=2, 3, and 8 (from top to bottom). The characteristic
length, related to the average domain radius, depends weakly on ¢
and T for the pure model (through the prefactor). Within the time
window explored there are still some small deviations from the
expected Allen-Cahn behavior, R(f)=r"? in the case ¢g=8. When
weak disorder is introduced (not shown), the growth rate is greatly
reduced and R? deviates from the linear behavior.

the initial state, whether absent (T, — ), short-(7,<T, <o
for all ¢ and also Ty=T. for ¢>4) or long-range (T,=T, for
g=4). In the latter case there is already one spanning cluster
at =0, since the thermodynamic transition also corresponds
to a percolation transition in 2d. On the other hand, for short-
range initial correlations, such spanning domains are either
formed very fast (e.g. in the case g=2 with T;— ), or not
formed at all (or at least not within the timescales considered
here).

III. EQUAL-TIME CORRELATIONS

The degree of correlation between spins is measured by
the equal time correlation function

-4 1
C(I", t) = g- 1 <<5si(t)s./-(t)>|i—j=r - q) > (5)

where the average is over all pairs of sites a distance r apart.
Away from the critical temperature, correlations are short-
range, and after a quench from Ty> T, to T;<T, these initial
correlations become irrelevant after a finite time and the sys-
tem looses memory of the initial state. In this sense, equilib-
rium states at all temperatures above T, are equivalent.
Figure 1 shows the correlation function C(r,) as a func-
tion of the rescaled distance, r/R(z), after a quench from
infinite temperature, where the initial correlation is null, to a
working temperature 7y=T,/2 for g=2, 3 and 8. In the inset,
we show the length scale R(r) computed as the distance r at
which the correlation has decayed to 0.3 of its initial value,
that is, C(R,)=0.3. The linear behavior R>~1 is clearly seen
for g=2. For g>?2 there are still some deviations from the
12 law at early times but these disappear at longer times (see
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FIG. 2. (Color online) Rescaled space-time correlation function
at several times (t=4,...,2'% MCs) after a quench from Ty=T, to
T;=T,/2 for the Ising g=2 case in log-log scale (cfr. Figs. 3 and 4
for g=3 and ¢=8, respectively). A very good collapse is obtained
when rescaling the spatial variable by R(f), obtained from
C(R,1)=0.7. At t=0, the correlation decays as r~” (p=1/4), while
for >0 partial memory of the initial state is preserved, as evi-
denced by the power-law tail. The inset presents C(r,t) for the same
times used in the main figure, with no rescaling of r. The correlation
at =0 is also shown, and deviations from the power-law behavior
are already present, due to the strong fluctuations in magnetization
at 7T.,..

also [11,12]). Deviations at short times are indeed expected,
due to pinning at low temperatures (note that 7,=7,/2 de-
creases with ¢g). An excellent collapse of the spatial correla-
tion is observed, as expected from the dynamic scaling hy-
pothesis, when r is rescaled by the length R(r). Moreover, the
universal curves seem to coincide for these values of ¢, re-
gardless of the different temperatures after the quench, in
accordance with previous evidence [12,25,26] for the fact
that the space-time correlation scaling function (and its Fou-
rier transform, the structure factor) are insensitive to the de-
tails of the underlying Hamiltonian. Whether this apparent g
independence is only approximate or exact, and in the latter
case whether it remains valid for very large values of ¢, are
still open issues [27,28]. As for the Ising model [29], the
small » behavior is linear for all g, in agreement with Porod’s
law [27,30].

On the other hand, when the starting point is an equilib-
rium state at T, with long-range correlations (¢ =4) obtained
by performing a sufficient number of Swendsen-Wang steps
[23], the system keeps memory of the long-range correla-
tions present in the critical initial state. The equal time equi-
librium correlation function decays at the critical temperature
as a power law, C(r,0) ~r>=%=7, where both the coefficient
and the exponent 7 depend on ¢. For example, in two dimen-
sions, =1/4 for g=2 and n=4/15 for ¢g=3 [15]. Figure 2
shows the rescaled correlation function at several instants
after the quench for g=2. Some remarks are in order. First,
there is a very good collapse for length scales up to
r~ R(r), where R(z) is such that C(R,#)=0.7. Second, devia-
tions from the initial power law occur both at short and long
length scales. Due to the ever growing structures, correla-
tions decrease very slowly for small r. Indeed, C almost
follows the plateau close to unity up to a certain, time in-
creasing, distance. For long distances, on the other hand,
these deviations occur because the initial states can be mag-
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FIG. 3. (Color online) Rescaled space-time correlation function
at several times (t=4,...,2'° MCs) after a quench from T,=T, to
Ty=T,/2 for g=3 in log-log scale (cfr. Figs. 2 and 4 for g=2 and
q=38, respectively). The slope r~” with 7=4/15 is shown as a guide
to the eyes. Inset: R%() for g=2 (top) and 3 (bottom), obtained from
C(R,1)=0.7 together with the law R>=1.

netized (at T,, magnetization goes as L™?") and, as r in-
creases and the spins decorrelate, C(r,f) attains a plateau at
m?(f). Since, eventually, the system equilibrates, the longer
the time, the larger the magnetization and, consequently, the
higher the plateau. Although not done here, it is also possible
to postpone the approach to equilibrium by choosing initial
states with very small magnetization, as done by Humayun
and Bray [31], who also introduced a correction factor to
account for boundary effects due to the system size being
much smaller than the correlation length, L<¢, at T... Essen-
tially the same behavior is obtained for g=3 with n=4/15
(shown in Fig. 3) and g=4 with =1/2 (not shown), respec-
tively. We obtain the same scaling function for different final
temperatures (not shown), indicating that superscaling holds
with relation to temperature.

For g >4, differently from the previous cases, there are no
long-range correlations at 7=T,, only finite-range ones. The
actual correlation length at 7, can be obtained analytically
[32], but we did not attempt to measure it, since the cor-
relator that we use does not remove powerlike prefactors
[33]. For quenches below the limit of stability of the para-
magnetic high-temperature state, see Fig. 4 for ¢g=8, the fi-
nite correlation length at t=0 is washed out once the scaling

A |

C(r,t)

r/R(t)

FIG. 4. (Color online) Rescaled space-time correlation function
at several times (r=210, ..., 2'% MCs) after a quench from Ty=T. to
T/=T./2 for g=8 in linear-linear scale (cfr. Figs. 2 and 3 for g=2
and g=3, respectively).
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regime is attained. As might have been expected, the scaling
function is indistinguishable, within our numerical accuracy,
from the one for systems with a continuous phase transition
(¢=2,3) quenched from infinite temperature, cfr. Fig. 1. The
collapse is not as good at short times since it takes longer for
the system to approach the scaling regime in the g=8 case
(see the inset).

After some discussion it is now well established that weak
quenched disorder changes the order of the phase transition
from first order to second order when ¢ >4. The critical ex-
ponent 7 depends on ¢ although very weakly. The scaling
function of the space-time correlation function after a quench
from the critical point also depends on ¢ [34,35].

IV. AREA DISTRIBUTIONS

More insight on the growing correlation observed during
the coarsening dynamics after the quench can be gained from
the study of the different area distributions n(A,z). We con-
sider two measurements: geometric domains and hull-
enclosed areas. Geometric domains are defined as the set of
contiguous spins in the same state. In principle, such do-
mains may enclose smaller ones that, in turn, may also en-
close others and so on. One can also consider the external
perimeter of the geometric domains (the hull) and the whole
area enclosed by it. Let us discuss the distribution of these
areas after a quench from higher to low temperatures.

A. The initial states

Prior to the quench, the system is prepared in an initial
state having either zero, finite or infinite range correlation,
corresponding to Ty= (Vq), Ty=T, (¢g>4) and Ty=T, (g
=4), respectively. Infinite temperature states are created by
randomly assigning, to each spin, a value between 1 and ¢,
while to obtain an equilibrium state at 7., the system is fur-
ther let evolve during a sufficient number of Swendsen-Wang
Monte Carlo steps at T, (typically 500).

1. TO—’Oo

When the temperature is infinite, neighboring spins are
uncorrelated, and the configurations can be mapped onto
those of the random percolation model with equal occupation
probability p=1/q. On the square lattice considered here,
this state is not critical for all values of ¢ (criticality would
require that one of the species density be 0.59). The highest
concentration of a single species, 0.5, is obtained for g=2.
This corresponds to the continuous random percolation
threshold but on a lattice, however, it is critical percolation
on the triangular case only. Still, for the g=2 Ising model on
a square lattice, as shown in [7], the proximity with the per-
colation critical point strongly affects the system’s evolution.

Figure 5 shows the geometric domains and hull-enclosed
area distributions n(A,0)=gn.,(A,1/q), where n.(A,p) is
the corresponding size distribution for random percolation
with occupation probability p=1/¢. The factor g comes from
the fact that the g species equally contribute to the distribu-
tion, while in the percolation problem, a fraction 1-1/g of
the sites is empty. Unfortunately, n,, is not known analyti-
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FIG. 5. (Color online) Equilibrium domain (blue triangles) and
hull-enclosed area (red squares) distributions at 7,— o for several
values of ¢, corresponding to the random percolation problem at
1/g occupation density. The data are shown in linear-log scale.

cally for general values of p away from p. For g=2
(not shown, see [19]), the system is close to the critical
percolation point, and the distributions are power-law,
n(A,0)=A"7 with 7=2 for hull-enclosed areas and 7=2 for
domain areas, up to a large area cutoff where they cross over
to exponential decays. For ¢=3, deviations from linearity are
already perceptible and, moreover, the hull-enclosed and do-
main area distributions can be resolved. For sufficiently low
p (but probably valid for all p<p,) the distribution tail is
exponential [36—41] and the simulation data is compatible
with [42,43] n,,(A,p)~A~" exp[-f(p)A], where the expo-
nent 6 depends on the dimension only (=1 for d=2). Since
all g states are equally present, the domains are typically
smaller the larger the value of ¢ and the occupation depen-
dent coefficient f(p) thus increases for increasing ¢ or de-
creasing p. The data for the different distributions shown in
Fig. 5 can only be resolved for large values of A and small
values of g. These differences are due to domains embedded
into larger ones, already present in the initial state, that may
remain at long times after the quench. For larger values of ¢
the distributions get closer to an exponential in their full
range of variation and it becomes harder and harder to dis-
tinguish hull-enclosed and domain area probability distribu-
tion functions (pdfs).

2. Ty=T, and 2=qg=4

When the transition is second order and the system is
equilibrated at the critical temperature 7, the distribution of
both domains and hull-enclosed areas follow a power law.
For example, for ¢g=2 in d=2, the hull-enclosed area
distribution is given by nh(A,0)=c22)/A2, where cglz)
=1/8my3=0.0229 [21]. Generally, the hull-enclosed area
distribution for g=2, 3, and 4, is found to be

(g-1)c}?

n,(A,0) = 2

(6)
as can be seen in Fig. 6. We choose to use the ¢g—1 prefactor
instead of ¢ for consistency with our previous work. This can
be done, however, with a small modification of the constant,
(g—1)c,=gc,. Thus, each spin species contributes with the
same share to the total distribution. Notice that, unless for
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108

FIG. 6. (Color online) Equilibrium power-law distribution of
hull-enclosed areas at T, for several values of g, from 2 to 8. The
line is cf)/Az, from Eq. (6). Taking AP as a fitting parameter one
finds very small values obeying c;f <c23)<c22) (see text). For
q >4, the transition is discontinuous but nonetheless the distribution
follows the power law until a crossover length, beyond which it
decays exponentially, as shown in the inset for ¢g=8,10 and, for
comparison, g=2 (the horizontal data).

q=2, the value of cﬁl‘]) is not known exactly. A rough estimate
of the constants can be obtained by taking them as fit param-
eters: ¢i”)=0.0203 and ¢{¥=0.0192. The fit for =2 yields
c22)20.0227, that compares well with the exact value. The
constants obey the inequality 024) <c§l3) <c22>.

For geometric domains, a relation similar to Eq. (6) is
obtained for the area distribution at 7. and 2=g=4. The
exponent is slightly larger than 2, 7=379/187 for g=2
[19,43,44], and seems to be independent of ¢ for g=3,4. The
coefficients, however, are not exactly known (numerically,
for g=2, it is close to cf) [19)).

3. Ty=T, and q>4

When the transition is discontinuous, the power law exists
up to a crossover length, typically of the order of the corre-
lation length &, where the distribution deviates and falls off
faster. Depending on the values of & and L, the crossover
may or may not be observed due to the weakness of the
transition. For example, for g=5, 6 and 8, estimates [32,45]
of ¢ are, 2512, 159, and 24, respectively. For g=5, ¢ is in-
deed larger than the system size L that we are using and the
system behaves as it were critical. Figure 6 also presents data
for the hull-enclosed area distributions in models with ¢=6,
8 and 10, where the deviations from the power-law are very
clear, and occurring at smaller values of A for increasing g,
as expected. Equation (6) is thus valid up to this crossover
length. The inset of Fig. 6 shows that for areas that are larger
than a certain value AZ, the distribution decays exponentially
for g>4. Thus, the general form of the hull-enclosed area
distribution, apparently valid for all values of ¢ at T, is

(g-1)ci?

n,(A,0) = e e, (7)

where a,=0 for g=4.

The area distribution of geometric domains is very similar
to the hull-enclosed area one. None of the coefficients c&z),

are exactly known; the numerical results for g=2 described
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(©) (d)

FIG. 7. (Color online) Snapshots at r=2'" MCs after a quench
from Ty— 0 and T,=T, left and right, respectively to T,=T,/2, for
q=3 [(a) and (b)] and ¢=7 [(c) and (d)]. Different colors corre-
spond to different species. Notice that, for g=7, some domains have
just coalesced (for example, the large yellow domain at the top of
panel (c), an effect that is absent for g=2 and becomes rarer as ¢
increases. Figure 8 gives a more detailed view of such occurrence.
A few thermal fluctuations are also visible as small dots inside the
clusters. Note that the structures are typically larger on the right
column (Ty=T,) than on the left one (7y— ) for ¢g=3. This is not
the case for g=7 where there are no big structures in the initial state
since &(g=7,T,) is finite.

in [19] suggest that ¢\’ is very close to ¢{? and the study of
the distributions for g=3,4 suggests that the similarity be-
tween ¢ and ¢? holds for general ¢ as well.

B. Coarsening regime

In Fig. 7 we show snapshots of the system at
t=2'" MCs after the quench for different values of ¢ and 7.
When the initial condition is equilibrium at 7, for 2=¢g=4,
the system presents larger domains than when the initial con-
ditions are random, since the latter has an exponential in-
stead of a power-law size distribution. On the other hand, for
q >4, when the correlation length at 7. is finite, there is no
visible difference in the snapshots. In these figures, with the
exception of some very small thermally induced fluctuations,
there is no domain fully embedded inside another one, at
variance with the g=2 behavior [19]. Nonetheless, in Fig. 8,
one such rare embedded domain occurs, being created after a
coalescence process among the neighbors. Thus, for ¢>2,
due to this shortage of embedded domains (neglecting the
small thermal fluctuations), there is little difference between
geometric domains and hull-enclosed area measures, imply-
ing that the parameters of the distributions should have simi-
lar values.

FIG. 8. (Color online) Snapshots at several times after a quench
from Ty— o to Ty=T./2, for g=3. Different colors correspond to
the three different species. The snapshots show the coalescence of
two white domains inside the 100 X 100 zoomed region. Notice also
the rare occurrence of a domain fully embedded into a single do-
main at t=800 MCs.

1. 2<g=4 and Ty—  (finite correlation length)

Despite the existence of many similarities between the
Potts model with g=2, 3, and 4, there are also some funda-
mental differences. Besides all having a continuous transi-
tion, the equal time correlation function seems to share the
same universal scaling function and the related correlation
length grows with the same power of time, Y2, see Sec. II.
Nevertheless, differently from the g=2 case, that presents a
percolating domain with probability almost one as early as
t=2 after the quench [7,19], the ¢ >2, T,— oo initial condi-
tion is sufficiently far from critical percolation that the sys-
tem remains, at least in the time window of our simulations,
distant from the percolation threshold (in spite of the largest
domain steadily, but slowly, increasing with time).

As the system evolves after the quench, the distribution
keeps memory of the initial state, that corresponds to random
percolation with occupation probability p=1/g. And, by not
getting close to a critical point, the distributions do not be-
come critical and, as a consequence, do not develop a power-
law tail, as illustrated in Fig. 9 for ¢=3 and T\, — . There is,

TL}L(A, t)

10° 10" 102 10°  10*  10°
A

FIG. 9. (Color online) Hull-enclosed area distribution at several
times (given in the key) after a quench from equilibrium at
Ty— to Ty=T./2 in the g=3 case. Analogous distributions are
obtained for ¢>4 and Ty— (not shown). The declivity of the
envelope is —2 as a consequence of the scaling obeyed by the dis-
tribution (see text).
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FIG. 10. (Color online) Collapsed hull-enclosed area distribu-
tions at several times after a quench from equilibrium at 7=7, to
T/=T,/2, for g=3. The line is Eq. (8) with A’ =1.4. The points at
A/t<<1 that deviate from the scaling function are due to thermal
fluctuations, depicted as a continuous black line in the inset.

however, an A~2 envelope that is a direct consequence of
dynamical scaling, present also for other values of g. The
scaling hypothesis requires that the hull-enclosed area distri-
bution satisfies n,(A,f)=t"n,(A/t). As a consequence, the
envelope straight line shown in the figure should have a -2
declivity. To see this, consider two of the curves shown (cor-
responding to times 7] and 7,) and define A* as the location of
the point that is tangent to the envelope. If we use this value
to rescale the distributions, we obtain R*(¢))n|=R*(t;)n5,
where n; is n[A]/R*(¢])]. That is, n5/n}=(A}]/A5)?. Taking
the logarithm of both sides, as in the graph, this gives the —2
declivity. The tangent point can thus be an alternative way to
obtain the characteristic length in these systems.

Very similar distributions (not shown) are obtained for
q>4 and Ty=T,., another case with only finite correlation
length in the initial state.

2. 2=q=4 and T=T, (infinite correlation length)

Figure 10 shows the collapsed distribution of hull-
enclosed areas after a quench from Ty=T, to T;=T./2. We
do not show the related figure for the geometric domains
(without any spanning cluster) since they are almost indistin-
guishable, another indication that the parameters appearing
in both distributions differ by very little. The overall behav-
ior is similar to the g=2 case, in which the collapse of curves
for different times onto a single universal function demon-
strates the existence of a single length scale that, moreover,
follows the Allen-Cahn growth law, R(f)~¢"?. Assuming
now that the number of sides in the von Neumann equation
(2) can be replaced by a constant mean, n— (n), and using
Eq. (6) and the results in Refs. [7,19], the hull-enclosed area
distribution for ¢ =4, within this mean-field-like approxima-
tion becomes

_(g-1Dg
nh(Aat) - (A + )\;’lq)t)z > (8)

that fits very accurately the data using )\23) =1.4. The devia-
tions present at small values of A/t are due to thermal fluc-
tuations that are visible in the inset (see [19] for details). The
above mean-field-like approximation can be directly tested
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FIG. 11. (Color online) Average rate of area change as a func-
tion of time for several cases studied in the text. Although the von
Neumann law predicts that each domain has a different rate depend-
ing on its number of sides, the average is constant in time and
nonpositive for cases with a hull-enclosed and domain area pdfs
with power-law tails.

by measuring the average change in area, dA/dt, that is, the
number of spins included or excluded in those domains that
survived during a given time interval. Figure 11 shows the
results for several cases. Although the von Neumann law
predicts that each domain has a different rate, either positive
or negative, depending on its number of sides, the average,
effective N\ is constant, as is the case for the Ising model
g=2. Similarly, only those that have A\ ;=0 present a power-
law distribution. Interestingly, the case with g=8 with ferro-
magnetic disorder, to be discussed in Sec. V, seems to be
marginal, A ;=0. Thus, there seems to be a net difference
between cases that give a power-law pdf the ones that do not.
The detailed implications, that probably involve the knowl-
edge of perimeter and number of sides pdfs are beyond the
scope of this paper and we postpone their study to a future
work.

3. ¢>4 (finite correlation length)

For ¢ >4, no initial state is critical and the initial distri-
butions are not power law. After the quench, the system
keeps some memory of this initial state and the scaling state

“ t=64
10 128 ¢ |-
256 - |
512 -
—~ 108+ 1024 - |-
- TN 42 | 2048 -
= 0 WA | 4096 -
S 10° [ eI UInIRy | 81e2 |
e i\ (16384 -
10710 1
:’k&
12 | Ly
10 !
1 10 100 1000 10000 100000

A

FIG. 12. (Color online) Hull-enclosed area distribution after a
quench from T=T, to Ty=T./2 in the g=8 model at different times
given in the key.
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0 5 10 15 20 25 30 35 40
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FIG. 13. (Color online) Dynamical scaling of the distributions
shown in Fig. 12 for ¢g=8 and Ty=T. A good collapse is
obtained, for A>R%(), with n,(A,1)=R™*(t)f(A/R?) (the data for
A <10, corresponding to thermal fluctuations, have been removed
from the inset). The main panel shows the exponential tail,
f(x) ~x7! exp(—ax), where the fitting parameter is a=0.23. Data
for Ty— o collapse onto the same universal function (not shown).
The inset also shows the small area region, where the collapse is not
as good, probably due to thermal interface roughening.

has a more complex universal function. Figure 12 exempli-
fies this behavior for ¢=8 and T,=T7,. Again, since the
quench is to 7,./2 the small A region, almost time indepen-
dent, is due to the large number of small clusters formed by
thermal fluctuations. After this initial decaying region, the
distribution increases with A (the width of such region in-
creases with time), to then decrease exponentially. As for a
quench from T,—  and ¢=3, an envelope power law (A=)
forms when several distributions for different values of ¢ are
considered, and this is a direct consequence of dynamical
scaling. The precise analytic form of the scaling function is
not known and has been a matter of debate for several de-
cades not only for the Potts model but for related models of
interest for the grain growth community (see [46-49] and
references therein), this issue being still unsettled.

The tail keeps memory of the initial condition and is ex-
ponential for ¢ >4. This fact is better appreciated in Fig. 13
where we use a scaling description of the data in Fig. 12 and
a linear-log scale. The universal scaling function shown in
the inset, for A>R>(¢), is the same for both Ty=T7, and
Ty— (not shown): f(x)~x~! exp(—ax), with a fitting pa-
rameter a=0.23 in both cases. This is a consequence of the
finiteness of the correlation length at =0 and the fact that the
tail of the distribution samples large areas. Notice also that
the collapse is worse for small values of A/R*(t), probably
due to the temperature roughening of the domain walls.

V. WEAK QUENCHED DISORDER

It is also possible to study the coarsening behavior in the
presence of random ferromagnetic (weak) disorder obtained,
for example, by choosing the bonds from a probability dis-
tribution function, P(J;;), with semidefinite positive support,
J;j=0. Weak disorder weakens the phase transition that, in
the 2d random bond Potts model (RBPM) becomes continu-
ous for all g [50-54]. For the bimodal distribution
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FIG. 14. (Color online) Rescaled space-time correlation func-
tion at several times (r=22,...,2'0 MCs) after a quench from
Ty=T, to Ty=T,/2 for g=8 and bimodal disorder in log-log scale
(compare with the pure g=38 case in Fig. 4). The tail keeps memory
of the r~7 decay of the initial equilibrium state. We found that
7n=0.28 fits well the data. A similar figure is obtained for g=3, with
an exponent close to 0.27. Inset: equilibrium distribution of hull-
enclosed areas at T, with weak disorder (red square)—a critical case
with long-range correlations—and without (blue cross)—a case
with short-range correlations. The initial distribution was obtained
after 3000 SW steps and is indistinguishable, within the errors, from
the distribution of the pure model with g=3 (line).

1 1
P(Jij)=55(-/ij—fl)+55(11‘]‘—12), )

that we shall treat here, the transition occurs at [55]
(P1—1)(eP2-1)=¢. (10)

We use J;=1 and J,=1/2, that is, J;/J,=2, for which
T,.=1.443 for g=3 and T,.=1.087 for g=8. The additional
contribution to interface pinning due to quenched disorder
may be useful to understand phenomena such as the so-
called Zener pinning [56-58].

The growth law for the random g=2 case, whether loga-
rithmic or a power-law with a 7" and disorder-strength depen-
dent exponent, has been a subject of debate [59-62] and
arguments for a crossover between the pure growth law '/?
to logarithmic growth at an equilibrium length scale—that
can be easily confused with the existence of T and disorder
dependent exponent in a power-law growth—were recently
given in [63]. Whether the asymptotic logarithmic growth
also applies in the case g > 2 has not been tested numerically.
Regardless of the growth law, dynamical scaling is observed
in the correlation and area distribution functions for g=2
[64] as well as for ¢>2. The rescaled space-time correla-
tions for the disordered g=3 and ¢g=8 after a quench from
To— o are indistinguishable from the pure case, see Fig. 1.
Notice that the initial condition, being random, is not
affected by the presence of disorder, differently from the
To=T. case, where the disorder changes the nature (correla-
tions) of the initial states, leading to a failure of the supe-
runiversality hypothesis. In this case, long-range correlations
are present and the decay is power-law, C(r) ~r~7, as shown
in Fig. 14, in analogy with the pure 2=g=4 cases. How-
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FIG. 15. (Color online) Collapsed hull-enclosed area distribu-
tion for g=38 after a quench from 7,=T, to Ty=T,/2 in the RBPM
(half the bonds are changed from 1 to 0.5). Data taken at several
times are shown with different symbols. The thick line shown is
2623)/(1 +x)? (the pure g=3 case). The tail keeps memory of the
initial state and is well described by a power law (solid red line)
with exponent —2. Inset: the small A region does not scale and its
behavior is reminiscent of what is seen in the pure case at small
areas (but narrower), see the inset in Fig. 13.

ever, as it was pointed out in Refs. [65,66], for the bimodal
distribution and the values of J; chosen here, this may suffer
from crossover effects, not yet being in the asymptotic scal-
ing regime. For ¢=3 and 8, the fitted exponent is 7=0.27
and 0.28, respectively, results that are compatible with Refs.
[65,67].

Figure 15 shows the rescaled hull-enclosed area distribu-
tion function for the disordered ¢=8 model quenched from
equilibrium at 7(=T,. The transition is continuous for all g
and the equilibrium area distribution at 7. is described, for
large A and within the simulation error, by the same power
law as the pure model with g=3, Eq. (6), see the inset of Fig.
14. There are, however, small deviations for not so large
values of A that, after the quench, become more apparent, as
can be observed in the main panel of Fig. 15, and in the inset
where a zoom on this region is shown. This may be an effect
of pinning by disorder that keeps an excess of small do-
mains, slowing down their evolution, and not letting dy-
namic scaling establish at these scales. The weak increase of
the pdf at small As, where the type of dynamics is important,
resembles also the behavior of the pure case, see the inset in
Fig. 13.

Interestingly enough, the long-range correlations in the 7.
initial condition, that in presence of quenched disorder exist
for all g, determine the large area behavior of the dynamic
pdf, more precisely, they dictate their power-law decay.
Thus, for ¢>4 pure and disordered systems behave qualita-
tively differently when the initial conditions are in equilib-
rium at 7)=T7,. An interesting characteristic of both Figs. 15
for g=8 and 16 for g=3 is that the tail is well described by
the pure distribution with g=3.

For g =4, the initial state at 7. has long-range correlations
with and without disorder. We study the effect of disorder on
the hull-enclosed area distribution in Fig. 16. The tail is a
power law compatible with the -2 expectation. The small
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FIG. 16. (Color online) Collapsed hull-enclosed area distribu-
tion for g=3 after a quench from Ty=T, to Ty=T./2 in the RBPM
(half the bonds are changed from 1 to 0.5). Differently from the
q=238 case shown in Fig. 15, here both the pure and disordered initial
state are critical (inset), and the distributions at r=0 are indistin-
guishable. Nonetheless, the subsequent evolution of these cases are
not equivalent. For roughly A<<R’(f) the scaling function for the
disordered case no longer follows the pure case function,
2023) /(1+x)?. Interestingly, this equation describes the tail for both
g=3 and 8 (previous figure).

area behavior is interesting: the data deviates from the criti-
cal behavior as can be seen in the inset of Fig. 15, showing a
nonmonotonic excess of small domains that resembles the
behavior of the pure case. Somehow, disorder, even if local,
has a strong effect at large scales while affecting less the
properties at small ones.

VI. CONCLUSIONS

We presented a systematic study of some geometric prop-
erties of the Potts model during the coarsening dynamics
after a sudden quench in temperature. Although the theory
for the Ising model (¢g=2) cannot be easily extended to
q > 2, our numerical results are a first step in this direction.

Our analysis demonstrates the fundamental role played by
the initial conditions, more precisely, whether they have an
infinite correlation length or not.

The distribution of hull-enclosed areas in pure 2d Potts
models with 2=¢ =4 and dirty cases with all ¢ that evolved
from initial conditions in equilibrium at T, that is to say
cases with an infinite correlation length, are large, with
power-law tails that are compatible with the exponent —2
within our numerical accuracy. The small area behavior is
richer. In cases with 2=¢g =4, again within our numerical
accuracy, the hull-enclosed area is well captured by a simple
extension of the distribution in Eq. (11),

-1 (g.d)
nh(&ﬂﬁ%, =q=4, (11)

that upgrades the prefactor ¢, to depend on ¢ and disorder. In
disordered cases with ¢ >4 this form does not describe the
small A dependence. Indeed, the scaled pdf has a non mono-
tonic behavior both with and without disorder, with dynamic
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scaling failing in the explored times, possibly due to strong
pinning effects.

Very different are the distributions of dynamic hull-
enclosed areas evolved from initial states with finite correla-
tion lengths, as those obtained in equilibrium at 7j; — . The
scaling functions of the dynamic distributions are reminis-
cent of the disordered state at the initial temperature with an
exponential tail. Differently from the Ising case, in which the
percolation critical point gave a long-tail to the low-
temperature distribution, in cases with ¢>2 this does not
occur.

There are further geometrical properties that were not ex-
plored here and deserve attention. For example, the distribu-
tion of perimeter lengths, number of sides, and the correla-
tion between area and number of sides are of interest in
cellular systems. In particular, it would be interesting to
check whether the Aboav-Weaire and Lewis law [68] are
valid in the 2d Potts model with and without random bonds.
The strikingly different behaviors found above are also re-
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flected in the behavior of the effective dA/dt, that is either
negative (power-law distribution) or positive (otherwise). We
believe that by further characterizing the geometrical prop-
erties of these systems we could unveil the origin of such
differences.

Finally, the Potts model is realized in a few experimental
situations. Our results should be a guideline to search for
similar distributions, in analogy to what has been done in the
g=2 case, by using a liquid crystal sample [69].
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