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A simple equation of state is derived for a hard-core lattice gas of side length �, and compared to the results
of Monte Carlo simulations. In the disordered fluid phase, the equation is found to work very well for a
two-dimensional lattice gas of hard squares and reasonably well for the three-dimensional gas of hard cubes.
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Almost forty years ago, Carnahan and Starling published
their now famous equation of state for a hard-sphere fluid
�1�. Their derivation was based on the simple observation
that the leading order virial coefficients for a hard-sphere
fluid in three dimensions closely followed a geometric se-
quence. The assumption that this behavior also extrapolated
to higher-order virials allowed Carnahan and Starling to ex-
plicitly resum the virial expansion to find a simple, yet very
accurate, equation of state.

Unfortunately, no such accurate equation of state is
known for the case of lattice gases. This is particularly frus-
trating, since lattice models are widely used to study many
complex fluids ranging from microemulsions to electrolytes
�2–7�. In this Brief Report, we shall present a very simple
equation of state, which works very well for a two-
dimensional lattice gas of hard squares and reasonably well
for a three-dimensional lattice gas of small hard cubes at not
too high density.

Our discussion is based on a lattice theory of polymer
mixtures proposed a long time ago by Flory �8�, who de-
duced the entropy of mixing to be

S = − kB�N1 ln �1 + N2 ln �2� , �1�

where N1 and N2 are the numbers of polymers of types 1 and
2, while �1 and �2 are their respective volume fractions. The
form of Eq. �1� is particularly appealing since it does not
contain any reference to the lattice structure and depends
only on thermodynamically well-defined variables. The mix-
ture is assumed to fill all the available volume, so that there
are no vacancies. If there is only one type of polymer occu-
pying a volume fraction �1, the rest of the space is taken to
be filled by the solvent of �2=1−�1.

It is clear that the formalism developed by Flory for poly-
mer mixtures should be readily applicable to “hard” nonat-
tracting lattice gases. Consider, for example, a lattice gas of
hard hypercubes of volume �d �the lattice spacing is taken to
be 1� on a simple hypercubic lattice in d dimensions.1 The

Helmholtz free energy of this lattice gas is Fm=−TS, since
the system is athermal. The free energy density fm=Fm /V is

�fm = � ln � + �1 − ��ln�1 − �� , �2�

where �=1/kBT, � is the particle density, and �=�d� is the
volume fraction.

We note, however, that in the low-density limit, Eq. �2�
does not reduce to the free energy of the ideal gas

�f = � ln � − � . �3�

Therefore, fm cannot be the total free energy of the system,
except for the case of �=1 when Eq. �2� becomes exact. For
polymer mixtures, to obtain the total free energy, Flory
added an extra contribution to Eq. �2� which accounted for
the conformational degrees of freedom of polymer chains,
the so-called entropy of disorientation �8�. This restored the
correct low-density behavior to the theory. For rigid par-
ticles, however, the entropy of disorientation is identically
zero and cannot be the reason for the failure of Eq. �2�.

To recover the correct low-density behavior, while pre-
serving the simple and thermodynamically appealing form of
Eq. �2�, we modify fm by introducing a multiplicative factor
g��� into Eq. �2�,

�f = � ln � + g����1 − ��ln�1 − �� . �4�

This equation can be interpreted as an interpolation between
the low-density limit governed by the particles, and the high-
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1Notice that the formalism developed below works well only

when � is commensurate with the lattice spacing. It does not apply
for systems of tilted squares, whose length can be noninteger �10�.
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FIG. 1. Chemical potential versus volume fraction for various
two-dimensional lattice gases. The symbols are the Monte Carlo
�MC� results while the lines are the predictions of the MFA, Eq. �6�,
with d=2.
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density limit in which defects, the “holes,” become relevant.
The total number of holes, however, is not fixed, since the
vacancies can change their size and shape, so that the pref-
actor appearing in front of the second term of Eq. �4� is the
effective number density.

The requirement that in the low-density limit Eq. �4� must
reduce to Eq. �3� uniquely determines the functional form of
g���, yielding

g��� =
1 + d ln �

�d . �5�

Note that g�1�=1, so that Eq. �4� reduces to the exact free
energy for the lattice gas of �=1. The chemical potential �
=�F /�N within the modified Flory approximation �MFA� is

�� = − �1 + d ln ���ln�1 − �� + 1� + ln � + 1, �6�

while the pressure P=−�F /�V is

�P = � − g����ln�1 − �� + �� . �7�

In Fig. 1 we compare the value of the chemical potential
obtained within the MFA with the results of the Monte Carlo
simulations for a gas of hard squares of different sizes �. The
simulations were performed using the grand-canonical en-
semble at fixed volume V, temperature T, and chemical po-
tential �, with trial moves the insertion and removal of par-
ticles as well as attempts to diffuse �9�. The agreement is
excellent for all �’s tested, up to quite high volume fractions.
The Monte Carlo pressure can be obtained by integrating the
Gibbs-Duhem equation, which in the athermal case reduces
to d�=�−1dP, with the low-density reference state given by
the ideal gas. The agreement is again very good, as can be
seen from Fig. 2. However, similarly to the Carnahan-
Starling equation of state, the MFA also fails to notice the
phase transition between the disordered and ordered �colum-
nar� phases present at high volume fractions �10,11�. In Fig.
3 we compare the accuracy of the MFA with the earlier equa-
tion of state derived by Temperley �12�, which is also iden-
tical to the one recently found using the fundamental mea-
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FIG. 2. Pressure versus volume fraction for various two-
dimensional lattice gases. The symbols are obtained from the MC
results by integrating the Gibbs-Duhem equation, while the lines are
the predictions of the MFA, Eq. �7�, with d=2.

-6

-3

0

3

0 0.2 0.4 0.6 0.8

βµ

φ

FIG. 3. Chemical potential versus volume fraction for �=2 lat-
tice gas. The symbols are the MC results; the solid curve is the
equation of state Eq. �6�; the dashed line is the equation of state
obtained using the fundamental measure density functional theory,
Ref. �13�, which is also the same as the one found earlier by Tem-
perley �12�. The order-disorder transition occurs at ��0.93 �10�.
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FIG. 4. Chemical potential versus volume fraction for a gas of
hard rods with �=1, 2, and 3 in d=1. The symbols are the exact
value of the chemical potential �14� while the lines are the predic-
tions of the MFA, Eq. �6�, with d=1.
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FIG. 5. Chemical potential versus volume fraction for various
three-dimensional hard-cube lattice gases. The points are the MC
results while the lines are the predictions of the MFA, Eq. �6�, with
d=3.

BRIEF REPORTS PHYSICAL REVIEW E 75, 052101 �2007�

052101-2



sure theory �13�. We see that the simple equation of state
derived in the present paper is of the same degree of accu-
racy as the ones obtained using more sophisticated methods.
One advantage of our equation of state, however, is that it
explicitly gives the dependence on the size of the particles.
This is not the case for more sophisticated theories which
yield equations of state that become progressively more
complex for larger values of � without an apparent gain in
accuracy.

It is curious that all the MC curves for different values
of � intersect at approximately the same point. This property
is also captured by the MFA, which predicts that all the
chemical potentials for different �’s are equal when the
volume fraction satisfies ln�1−���=−1, independent of d.
The value ��=0.632 121 is in excellent agreement with
the intersection point observed in the Monte Carlo simula-
tions.

In Figs. 4 and 5 we also show the equations of state for
d=1 hard rods, and d=3 hard cubes. In the case of d=1 the
exact free energy is known �14�. Although still quite good,
the agreement between the simulations and the MFA deterio-
rates more rapidly with increasing � for d=1 and d=3 than
for d=2.

The high degree of accuracy of the MFA in d=2 is quite
surprising in view of the crudeness of the approximation. It
also suggests that there should be a more direct way to arrive
at Eq. �4�, or some other such equation of state �13,15�, gen-
erally valid for nonattracting lattice gases of arbitrary �. In
the absence of such a general theory, the very simple Eq. �4�
should be useful for constructing lattice mean-field theories
for various complex systems.
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