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Time evolution of the extremely diluted Blume-Emery-Griffiths neural network
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A study of the time evolution and a stability analysis of the phases in the extremely diluted Blume-Emery-
Griffiths neural network model are shown to yield new phase diagrams in which fluctuation retrieval may drive
pattern retrieval. It is shown that saddle-point solutions associated with fluctuation overlaps slow down the
flow of the network states towards the retrieval fixed points. A comparison of the performance with other
three-state networks is also presented.
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A novel idea suggested recently in the theory of attrac
neural networks is to use information theory to infer t
learning rule of an optimally performing three-state netwo
@1#. Optimal means that although the network might st
initially far from the embedded pattern, i.e., having a vani
ingly small initial mutual information, it is still able to re
trieve it. The study of this mutual information leads
Blume-Emery-Griffiths-type~BEG! network models with
Hebbian-like learning rules@1,2#. Its structure also reveal
that the retrieval overlap and fluctuation overlap are the
evant order parameters in order to study the network per
mance.

It has been argued in Ref.@1# that in an extremely diluted
architecture of the BEG-type new states associated with
fluctuation overlap, the quadrupolar statesQ appear for all
values of the synaptic noise~temperatureT). However, nei-
ther the stability of these states nor their time evolution h
been discussed in detail. These are precisely the subjec
this Brief Report. In particular, we find that due to the pre
ence of long transients in the dynamic evolution of the n
work, we need a finite activity dependent threshold in or
to stabilize theseQ states and, hence, part of the phase d
grams are altered in a substantial way. Moreover, we cla
the explicit role of the fluctuation overlap in enhancing t
retrieval performance of the network compared with oth
three-state networks. This study further allows us to advoc
the use of theseQ states as new information carriers in pra
tical applications, e.g., in pattern recognition where, look
at a black and white picture on a gray background, suc
state would tell us the exact location of the picture w
respect to the background without finding the details of
picture itself. Whether these states could also model s
retrieval focusing problems discussed in the framework
cognitive neuroscience~see, e.g., Ref.@3#! is an interesting
thought.

Consider a three-state network with symmetrically distr
uted neuron statess i ,t50,61 on sitesi 51, . . . ,N, at time
step t, wheres i ,t561 denote the active states. A set ofp
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ternary patterns,$j i
m50,61%, m51, . . . ,p, wherej i

m561
are the active ones, assumed to be independent random
ables following the probability distribution

p~j i
m!5ad~ uj i

mu221!1~12a!d~j i
m! , ~1!

are stored in the network. Hence, the mean^j i
m&50 and the

variancea5^(j i
m)2& is the activity of the patterns.

At each time step we regard the patterns as the inputs
the neuron states as the outputs of the network. Then we
consider the mutual information@4,5# between neurons an
patternsI m(s t ,jm), which can be expressed in terms of th
order parameters of the network@6#. Provided the neural ac
tivity qt5Š^s t

2&suj‹j;a, the initial mutual information be-
comes to leading order@1#,

I m~s0 ,jm!' 1
2 ~m0

m!21 1
2 ~ l 0

m!2, ~2!

for vanishingly small retrieval overlapmt
m5Š^s t&sujj

m/a‹j

betweens t andj i
m , and vanishingly small fluctuation over

lap l t
m5Š^s t

2&sujh
m
‹j betweens t

2 and the normalized patter
fluctuationsh i

m5„(j i
m)22a…/a(12a) both att50.

Thus, mt
m and l t

m constitute the minimal set of overlap
needed to describe the evolution of the mutual informati
instead of justmt

m for the three-state Ising network@7,8#. The
initial quadratic form suggests a learning rule that consists
two Hebbian-like parts@1,2#, Ji j 5(1/a2N)(mj i

mj j
m and Ki j

5(1/N)(mh i
mh j

m . Since we are considering the extreme
diluted version of the model both Hebbian weights are m
tiplied with a factorCi j N/C whereCi j is a random variable
assuming values 0 and 1, with meanC;O(ln N/N) @8,9#.
The first part is the usual rule that accounts for coopera
between the same type of active~inactive! patterns on differ-
ent neurons, while the second one is a novel part that fav
the cooperation between active~inactive! patterns regardles
of their type. So, one could still have some kind of recog
tion when the main pattern recognition fails.

The parallel stochastic dynamics for this model ruled
the state-flip probability

p~s i ,t11u$s i ,t%!5exp@2b~hi ,ts i ,t1u i ,ts i ,t
2 !#/Zi ,t , ~3!

s,
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hi ,t5(
j

Ji j s j ,t , u i ,t5(
j

Ki j s j ,t
2 , ~4!

Zi ,t5112ebu i ,t cosh~bhi ,t!, ~5!

with b5a/T can be solved exactly~there are no feedbac
loops! in the limit N,C→` in a standard way@1,8,9#. As-
suming one condensed pattern, one obtains@1#

mt115E DyE Dz FbS mt

a
1yD t ;

l t

a
1z

D t

12aD , ~6!

nt115E DyE Dz GbS mt

a
1yD t ;

l t

a
1z

D t

12aD , ~7!

st115E DyE Dz GbS yD t ;2
l t

12a
1z

D t

12aD , ~8!

together with the dynamic activityqt5ant1(12a)st . Here
nt is the activity overlapnt

m5Š^s t
2&suj(j

m)2/a‹j for the con-
densed pattern andl t5(nt2qt)/(12a). As usual, Dx
5exp(2x2/2)dx/A2p, while

Fb~ht ,u t!52ebu t sinh~bht!/Zt , ~9!

Gb~ht ,u t!52ebu t cosh~bht!/Zt ~10!

are the stochastic transfer functions that determine the t
mal averages ofs i and (s i)

2, while D t
25aqt /a2 and

D t
2/(12a)2 are the variances in the Gaussian local fieldh

andu, respectively. In all these expressions we have left
the effective single-site indexi. The time evolution of the
information becomesi t5I ta, for the storage ratioa5p/C.

The stationary states of the network dynamics~6!–~10!
are shown in Fig. 1 for a typical activity ofa50.8 andq
;a. In addition to the retrieval and quadrupolar phas
R(mÞ0,lÞ0) andQ(m50,lÞ0), there is a self-sustaine
activity phaseS(m50,l 50), also referred to as the zer
phaseZ @1,11#. Stable states are attractors~a! and there are

FIG. 1. The (T,a) phase diagram for the extremely diluted BE
network with pattern activitya50.8. The meaning of the lines an
table is explained in the text.
06290
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also saddle-point solutions~s! for m50, either withlÞ0 or
with l 50 for Q andS, respectively, as indicated in the tabl
The saddle points have one-dimensional basins of attrac
with attractor directions alongl, either towardsl * Þ0 or to
l * 50, respectively, and repeller directions alongm away
from m50.

Thus, there is a retrieval phase in regions I–V and,
contrast to earlier work@1#, it is the only stable phase in
regions I–III. The quadrupolar phase exists only at largeT in
regions VI and VII. The self-sustained activity phase is t
only phase for largeT anda. Full ~dotted! lines denote dis-
continuous~continuous! transitions, heavy lines denote th
boundary of theR phase. The lines at the most right yield th
critical storage capacityac , where both overlapsm and l
disappear. A similar behavior appears for other big values
the pattern activitya, whereas for smalla there are onlyR
andSphases. The reason for a low-T retrieval phase and the
absence of aQ phase is that a finiteT is needed for the active
neurons (61) to coincide with the active patterns but wit
uncorrelated signs, such thatm50. This can take place with
a finite fluctuation overlap up to a higher synapticT or sto-
chastica noise.

The typicala dependence of the order parameters and
information content below and above the threshold (a,T)
5(0.22,0.45) where a stableQ phase starts to appear a
shown in Fig. 2. Clearly, forT below that threshold~left
figure! m and l remain finite together, in a behavior chara
teristic of retrieval, up to the criticalac . In this regime the
fluctuation overlap does not yield anything essentially n
that is not contained in the retrieval overlap. In contra
above the threshold~right figure! m disappears first with in-
creasinga leaving a finitelÞ0 up to a biggerac . Hence,
first T and thena have to become large enough for theQ
states to appear. Note that the fluctuation overlap carrie
finite information even withm50 in the Q phase. Thus,
although the information transmitted by the network
mainly in the retrieval phase, there is also some informat

FIG. 2. The order parametersm, l, andq, and the information
content i in the stationary state as functions ofa for the BEG
network, the SCT, and the optimal three-state networks, discu
in the text fora50.8 and eitherT50.2 ~left! or T50.6 ~right!.
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due to theQ phase. This information is provided by the fa
that the active neurons coincide with the active patterns
the signs are not correlated. An example of its practical
in pattern recognition is given in the beginning. We al
show in Fig. 2 the comparison of the performance with t
other three-state networks. The first network is the usual
work with an externally adjustable optimal threshold para
eter given by a uniformu5u i @7,8# that yields the larges
mutual information~dotted lines!.

The second network is a phenomenological extension
finite T of a recent three-state self-control model~SCT!
@6,10#, ~dashed lines! in which the self-control thresholdu t at
T50 is replaced by a linearly shifted thresholdū t5u t2T,
whereu t5A2 lna Dt with Dt

25aqt /a being the variance o
the noise. As one of the main features of the BEG netwo
the results in Fig. 2 clearly show that in most of the regim
where the retrieval overlap is nonzero the BEG netw
yields a much higher information content than the optim
threshold network and also a comparable or higher inform
tion than the SCT network for highT.

The time evolution of the order parameters and the inf
mation content are shown in Fig. 3 fora50.8 andT50.6 in
both the BEG network~left! and in the SCT network~right!.
In support of the phase diagram shown in Fig. 1, one has
the asymptotic states of theR phase, then the states of aQ
phase and, finally, the states of theS phase, in the BEG
network with increasinga. In contrast, for the optimal and

FIG. 3. Time evolution of the order parametersm, l, andq and
information contenti, for a50.8, T50.6, anda, as indicated. The
BEG network~left! and the SCT network~right!.
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the SCT networks one has only theR phase up to the critica
ac . A closer examination of the curves for the BEG netwo
reveals that, for smalla, the fluctuation overlap ‘‘drives’’ a
vanishingly small initial retrieval overlap, meaning almo
no recognition of a given pattern by the network, into
asymptotic state with finite recognition. This is in contra
with the results for other three-state networks, as the S
network, where first the overlapmt becomes nonzero:mt
drivesl t . It is also worth noting that, with a vanishing initia
m0, the states of the network pass through the vicinity o
saddle pointQ with a finite fluctuation overlapl and still a
vanishing retrieval overlap at small or intermediate tim
This is described by the first plateaus inq, l, andi. It is only
in passing beyond those plateaus, which may take a ra
long time, that the states attain the asymptotic behavio
the retrieval phase. With the initial conditions used for t
BEG network, in the left part of the figure, there is no r
trieval in the SCT network, meaning that the basins of attr
tion for retrieval are larger in the BEG network. Finally, th
results for the dynamics and the stationary states are
firmed by flow diagrams in extension to previous work@11#.

To summarize, we have studied the stability of a newQ
phase in an extremely diluted BEG network and the role
the fluctuation overlap characteristic of this phase in enha
ing the retrieval performance and the information conten
this network over those of other three-state networks.
have found that theQ states are not stable neither atT50
nor at higherT below a threshold, in contrast to earlier wo
and, hence, new phase diagrams have been obtained.

We have shown that the fluctuation overlap can drive
vanishingly small initial retrieval overlap to a large statio
ary value. We have also found that the dynamics may
slowed down due to the presence of saddle-point soluti
that appear in large regions of the phase diagram, within
retrieval phase and close to the critical phase boundar
possible role in practical applications of these informati
carryingQ states might be advocated.
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