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Time evolution of the extremely diluted Blume-Emery-Griffiths neural network
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A study of the time evolution and a stability analysis of the phases in the extremely diluted Blume-Emery-
Griffiths neural network model are shown to yield new phase diagrams in which fluctuation retrieval may drive
pattern retrieval. It is shown that saddle-point solutions associated with fluctuation overlaps slow down the
flow of the network states towards the retrieval fixed points. A comparison of the performance with other
three-state networks is also presented.
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A novel idea suggested recently in the theory of attractoternary patternséf=0,=1}, u=1,... p, whereg==1
neural networks is to use information theory to infer theare the active ones, assumed to be independent random vari-
learning rule of an optimally performing three-state networkables following the probability distribution
[1]. Optimal means that although the network might start
initially far from the embedded pattern, i.e., having a vanish- p(&M=ad(|&?—1)+(1-a)d(&), (1)
ingly small initial mutual information, it is still able to re-
trieve it. The study of this mutual information leads to are stored in the network. Hence, the mé&f)) =0 and the
Blume-Emery-Griffiths-type(BEG) network models with variancea=((&")?) is the activity of the patterns.
Hebbian-like learning rule§l,2]. Its structure also reveals At each time step we regard the patterns as the inputs and
that the retrieval overlap and fluctuation overlap are the relthe neuron states as the outputs of the network. Then we can
evant order parameters in order to study the network perforeonsider the mutual informatiof#,5] between neurons and
mance. patternsl (o ,£&*), which can be expressed in terms of the

It has been argued in Réfl] that in an extremely diluted order parameters of the netwdi&]. Provided the neural ac-
architecture of the BEG-type new states associated with thgyity qtz«gfm O¢~a, the initial mutual information be-
fluctuation overlap, the quadrupolar stat@sappear for all  comes to leading ordédd],
values of the synaptic noiggemperaturel’). However, nei-
ther the stability of these states nor their time evolution have I/*(ao,gl‘)%%(mg)% %(|g)2, 2
been discussed in detail. These are precisely the subjects of
this Brief Report. |n pal’t.icular, we flnd that du'e to the pres-for Vanishing|y small retrieval over|am{’“:<<a-t>o_|§§l—‘/a>§
ence of long transients in the dynamic evolution of the netyetweenc, and¢*, and vanishingly small fluctuation over-
work, we need a finite activity dependent threshold in ordeqap|#:(<0t2>olg7]#>§ betweerkrtz and the normalized pattern
to stabilize thes®) states and, hence, part of the phase d'ai‘luctuationsn-“=((5-")2—a)/a(1—a) both att=0
grams are altered in a substantial way. Moreover, we clarify ! : j
trre]iig\);g:lzterrgfmtgn?: ;Ifu ;:rt]léagg?wz\:irlc?opmlgafggavr\llﬁ;]n%tt: ;{weded to_desc;ribe the evolution of t_he mutual information,
three-state networks. This study further allows us to advocati'Stead of jusm¢’ for the three-state Ising netwof&,8]. The
the use of thes@ states as new information carriers in prac- initial quac.jratlg form suggests a Iearr;mg rule that consists of
tical applications, e.g., in pattern recognition where, lookingtW0 Hebbian-like part$1,2], J;;=(1/a°N)= ,£¢f* and K,
at a black and white picture on a gray background, such & (1/N)Z,»{ 7{*. Since we are considering the extremely
state would tell us the exact location of the picture withdiluted version of the model both Hebbian weights are mul-
respect to the background without finding the details of theiplied with a factorC;;N/C whereC;; is a random variable
picture itself. Whether these states could also model sucAssuming values 0 and 1, with me@n-O(InN/N) [8,9].
retrieval focusing problems discussed in the framework offhe first part is the usual rule that accounts for cooperation
cognitive neurosciencésee, e.g., Refl3)) is an interesting between the same type of actitieactive patterns on differ-

Thus, mf* and [{* constitute the minimal set of overlaps

thought. ent neurons, while the second one is a novel part that favors
Consider a three-state network with symmetrically distrib-the cooperation between actiieactive) patterns regardless
uted neuron states; ;=0,=1 on sitesi=1,... N, at time  Of their type. So, one could still have some kind of recogni-

stept, whereo; ;= =1 denote the active states. A setpf tion when the main pattern recognition fails.
The parallel stochastic dynamics for this model ruled by

the state-flip probability

*Permanent address: G.Nadjakov Institute of Solid State Physics, >
Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria. p(oi1l{oi ) =exd —B(h; o+ 6107 )1 Ziy, (3
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FIG. 1. The [T, a) phase diagram for the extremely diluted BEG
network with pattern activita=0.8. The meaning of the lines and

table is explained in the text.

hi,tzg Jijoi s 9i,t:; Kijot,, (4)

Z; = 1+2eP%cosh gh; ), (5)

with B=alT can be solved exactlithere are no feedback

loops in the limit N,C—c in a standard way1,8,9. As-
suming one condensed pattern, one obtflns

B m it Ay
my 1= Dy Dz FB E‘l'yAt,a_l_Zl_a ) (6)
_ my i A
Ni1= | Dy | Dz Gg E+yAt’5+Zl—a , (D
1= | DY | DZ Gyl yAyi—g—+z3—-|, (8

together with the dynamic activity,=an,+(1—a)s;. Here
n, is the activity overlam{ = (( crt2>g|§(§“)2/a)§ for the con-
densed pattern and,=(n,—q;)/(1—a). As usual, Dx
=exp(—x%42)dx/\27, while

Fﬁ(ht ,Ht)=26’39t Slnf’(ﬁht)/zt, (9)

Gﬂ(ht ,9t)=26’89t COSh:Bht)/Zt (10)

PHYSICAL REVIEW B8, 062901 (2003

o
D
T T T T
7
4
R B |

0.0 F————4 f————] 004

0.03 4

ol [ _--- - J

=3
2
&

T T
N
7

[ B

oot/ ~ N ]

0.00. I I I I L
00 01 02 03 04 05 06

0.00 4
0.00 0.05 010 015 020 025

o o

FIG. 2. The order parameters, |, andq, and the information
contenti in the stationary state as functions af for the BEG
network, the SCT, and the optimal three-state networks, discussed
in the text fora=0.8 and eitheT=0.2 (left) or T=0.6 (right).

also saddle-point solutior(s) for m=0, either withl #0 or

with =0 for Q andS, respectively, as indicated in the table.
The saddle points have one-dimensional basins of attraction
with attractor directions along either towardd* #0 or to

I* =0, respectively, and repeller directions alomgaway
from m=0.

Thus, there is a retrieval phase in regions |-V and, in
contrast to earlier worK1], it is the only stable phase in
regions I-l1ll. The quadrupolar phase exists only at large
regions VI and VII. The self-sustained activity phase is the
only phase for largd and «. Full (dotted lines denote dis-
continuous(continuou$ transitions, heavy lines denote the
boundary of theR phase. The lines at the most right yield the
critical storage capacityr., where both overlapsn and |
disappear. A similar behavior appears for other big values of
the pattern activitya, whereas for smal& there are onlyR
andS phases. The reason for a IdWwretrieval phase and the
absence of & phase is that a finit€ is needed for the active
neurons (-1) to coincide with the active patterns but with
uncorrelated signs, such that=0. This can take place with
a finite fluctuation overlap up to a higher synapfior sto-
chastica noise.

The typicala dependence of the order parameters and the
information content below and above the threshaldT)
=(0.22,0.45) where a stabl® phase starts to appear are

are the stochastic transfer functions that determine the thegnhown in Fig. 2. Clearly, foiT below that thresholdleft

mal averages ofo; and (07)%, while AZ=aq,;/a®> and

figure) m andl remain finite together, in a behavior charac-

AZ/(1—a)? are the variances in the Gaussian local fieids teristic of retrieval, up to the criticak,. In this regime the
and ¢, respectively. In all these expressions we have left oufluctuation overlap does not yield anything essentially new

the effective single-site indek The time evolution of the

information becomes,=1,«, for the storage ratiee=p/C.
The stationary states of the network dynami6és—(10)
are shown in Fig. 1 for a typical activity ci=0.8 andq

that is not contained in the retrieval overlap. In contrast,
above the threshol¢tight figure m disappears first with in-
creasinga leaving a finitel #0 up to a biggerex.. Hence,
first T and thena have to become large enough for tQe

~a. In addition to the retrieval and quadrupolar phasesstates to appear. Note that the fluctuation overlap carries a
R(m#0,l#0) andQ(m=0,#0), there is a self-sustained finite information even withm=0 in the Q phase. Thus,
activity phaseS(m=0,1=0), also referred to as the zero although the information transmitted by the network is
phaseZ [1,11]. Stable states are attractaes and there are mainly in the retrieval phase, there is also some information
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the SCT networks one has only tRephase up to the critical
a. . A closer examination of the curves for the BEG network
reveals that, for small, the fluctuation overlap “drives” a
vanishingly small initial retrieval overlap, meaning almost
no recognition of a given pattern by the network, into an
asymptotic state with finite recognition. This is in contrast
with the results for other three-state networks, as the SCT
network, where first the overlag; becomes nonzeram,
drivesl;. It is also worth noting that, with a vanishing initial
m,, the states of the network pass through the vicinity of a
saddle pointQ with a finite fluctuation overlap and still a

m 04k 7 o4r f: g ] vanishing retrieval overlap at small or intermediate times.
021 1 °*,r i/ ] This is described by the first plateausdgjnl, andi. It is only
o R e in passing beyond those plateaus, which may take a rather
00318 : ] ! long time, that the states attain the asymptotic behavior of
oo [ L. 1 oot / P the retrieval phase. With the initial conditions used for the
0011 [ /’"- s ’ BEG network, in the left part of the figure, there is no re-
000 —E b 000 -—5§J e 500 trieval in the SCT network, meaning that the basins of attrac-

t

t

tion for retrieval are larger in the BEG network. Finally, the
results for the dynamics and the stationary states are con-

firmed by flow diagrams in extension to previous wik].

To summarize, we have studied the stability of a n@w
phase in an extremely diluted BEG network and the role of
the fluctuation overlap characteristic of this phase in enhanc-
ing the retrieval performance and the information content in
due to theQ phase. This information is provided by the fact this network over those of other three-state networks. We
that the active neurons coincide with the active patterns butave found that th&) states are not stable neitherTat0
the signs are not correlated. An example of its practical useor at highefT below a threshold, in contrast to earlier work
in pattern recognition is given in the beginning. We alsoand, hence, new phase diagrams have been obtained.
show in Fig. 2 the comparison of the performance with two We have shown that the fluctuation overlap can drive a
other three-state networks. The first network is the usual nepanishingly small initial retrieval overlap to a large station-
work with an externally adjustable optimal threshold param-2ry value. We have also found that the dynamics may be
eter given by a uniformg= ¢, [7,8] that yields the largest Slowed down due to the presence of saddle-point solutions
mutual information(dotted lines. that appear in large regions of the phase diagram, within the

The second network is a phenomenological extension t&€triéval phase and close to the critical phase boundary. A
finite T of a recent three-state self-control mod&CT) possible role in practical applications of these information

[6,10], (dashed linesin which the self-control thresholg at ~ C2TYingQ states might be advocated.
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FIG. 3. Time evolution of the order parametens|, andq and
information content, for a=0.8, T=0.6, anda, as indicated. The
BEG network(left) and the SCT networkright).
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