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Resonant islands without separatrix chaos
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An alternative type of Hamiltonian nonlinear resonant island is analyzed. In the usual case
where the resonant island is pendulumlike, chains bifurcated out of the central elliptic point undergo
infinite cascades of period-doubling bifurcations as they approach the island boundary. In the present
case we find that those chains undergo either period doubling or inverse saddle-node bifurcations,
depending on the strength of perturbing terms. In the saddle-node case we show that just after a
reconnection process, external chains cross the island boundary to collapse against the bifurcated

internal chains.
PACS number(s): 05.45.+b

When an integrable Hamiltonian dynamical system de-
scribed in terms of its action-angle variables, I and ¥, is
submitted to the action of a nonintegrable perturbation,
a vast number of bubbles do appear in the correspond-
ing phase-space. These bubbles, known as the resonant
islands of the system, signal positions on the phase-space
where the dynamics is particularly sensitive to the per-
turbation [1].

In the case of one-degree-of-freedom systems, the posi-
tion of the resonant islands along the action axis can be
calculated from the resonance condition

mwo(Imn) = nw, (1)

where wo(I) is the frequency of the unperturbed sys-
tem, I is the corresponding action variable, w is the fre-
quency of the perturbing term, and m,n are integers.
The frequency wyg, in particular, can be readily obtained
as wg = O0Ho/OI where Hy = Hy(I) is the integrable
part of the complete Hamiltonian H = Hg + Hy; H; is
assumed to contain the nonintegrable contributions to
the dynamics.

In the appropriate set of coordinates, if the amplitudes
of the nonintegrable terms are not too large, the phase
space in the vicinity of a resonant island can be pictured
as follows. One has an elliptic point at the center of
the island, a continuum of trapped orbits whose excur-
sions away from the elliptic point are limited by an island
boundary and a continuum of untrapped orbits beyond
the island boundary with unbounded excursions. It oc-
curs frequently that the boundary contains hyperbolic
fixed points. In that case the boundary turns out to be a
separatrix with trajectories evolving with zero frequency
along it; we shall refer to this type of island as pendulum-
like because the corresponding phase-space typically re-
sembles that of a nonlinear pendulum. One can calculate
the gyrofrequency (= wgyro) With which the trapped or-
bits gyrate. What one has to do is to identify the reduced
Hamiltonian controlling the dynamics in the vicinity of
the island—we shall call it H,, ,—and to introduce the
corresponding appropriate set of action-angle variables—
we shall call them Y and ¢. Once this is done, the gy-
rofrequency can be calculated as wgyro(Y) = 0H,p,,,, /0Y .
The gyrofrequency at the elliptic point, in particular, can
be obtained as we = wgyro(Y — 0). If the boundary is
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in fact a separatrix with hyperbolic points along it, one
would also have wy — 0, where by w, we mean the bound-
ary frequency, wp = wgyro(Y — Yeoundary)-

Let us now see what happens as the amplitude of the
perturbing term start to increase. Whenever

Pwe =qw (2)

with p,q integers, an internal chain of p islands bifur-
cates out of the elliptic point [2-9]. Then as the pertur-
bation increases in strength, the chain starts to migrate
towards the boundary. Considering first the pendulum-
like case, at the boundary the density of bifurcated chains
is very high. This can be seen if one considers the dis-
tance between the actions corresponding to two adjacent
P’s, |Yp+1 — Yp|, for instance. One has

Y, —Y,| ~ |M
p+l P wdw”
dY

which rapidly goes to zero as Y — Yioundary- The prox-
imity of these various chains eventually leads to Chirikov
overlap, to infinite cascades of period doubling bifurca-
tion and consequently to chaos [10-13]. Note that accord-
ing to this picture, chaos first appears in the vicinity of
the separatrix; later on it extends toward the innermost
regions of the island.

Then, as we turn to the other case, we issue the ques-
tion motivating the present study. What happens if a
particular dynamical system admits a curve separating
trapped from untrapped trajectories, which, however, is
not a curve along which orbits move with zero frequency?
What is going to be the fate of the various bifurcated
chains that are born at the elliptic point? Before pro-
ceeding to answer the question, we shall see that this sit-
uation is of relevance, in particular regarding the physics
of particle accelerators; at the same time we shall intro-
duce our model.

Let us assume that a beam of relativistic electrons is
submitted to the combined action of a background con-
stant and uniform magnetic field pointing along the z axis
of a particular reference frame, and an external electro-
static harmonic wave propagating along the z axis (this
model is similar to the one used in Ref. [14]). Then, one
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can write the normalized electronic Hamiltonian, H, in
the resonant form

+oo
H = Ho(I) + Ao Y Ji(kV2I) cos(lp —wt),  (3)
l=—oc

where the wave amplitude Ay measures the intensity of
the nonintegrable term, Ho = [1 + 2I + P2]'/2 P, is the
electron momentum along the background field, J;’s are
Bessel functions, and k is the wave vector. The Hamil-
tonian (3) generates a set of resonant actions that can
be located according to relation (1). Not all the reso-
nances generated by relation (1) are directly seen from
the Hamiltonian, though; those with n # %1 can be ob-
tained only in higher perturbative orders with the use of
Lie perturbative theories [5]. We shall however consider
all the resonances obtained from relation (1) on the same
footing to distinguish them from the internal resonances
obtained from relation (2). Resonances obtained from
Eq. (1) shall be therefore called external and shall be de-
noted with square brackets as [m, n]; internal resonances
shall be denoted by the symbol (p, q).

If a positive root I, , is far above I = 0 and Ay is
small enough, one can take I ~ I, , =const in the wave
term and the resonant orbits can be approximately de-
scribed in terms of a nonlinear pendulum [1,3]. On the
other hand, if I, , approaches zero, the dependence of
the wave term on the action cannot be approximated
as above and the orbit ceases to be pendulumlike. Can
one easily encounter situations where I,, , does indeed
vanish? The answer is positive. What is usually done
in an accelerating system, for instance, is precisely to
adjust the wave frequency in such a way as to match
the frequency wo(I — 0) associated with the low-energy
particles to be accelerated [14] [from Eq. (3) it is seen
that the lower the energy, the smaller I]. Keeping these
observations in perspective, from now on we set a low-
energy cyclotron resonance condition with w = 1 and
P, = 0, which effectively defines our lowest-energy reso-
nance as I;; = 0. We will see that bifurcations in this
case, P, = 0, seem to present a larger variety of behaviors
than in cases with P, > 0 studied previously [9].

Let us then analyze the lowest-energy island engen-
dered by the [1,1] resonance; we will find it to be very
unpendulumlike. To carry out the analysis we discard
all other resonances from the Hamiltonian (3), perform
a time removal canonical transformation

¢,=¢~'t,

I'=1,
and
H' =H—t, (4)

recall that I < 1, and write the resulting resonant Hamil-
tonian (primes dropped) in the form

v2I
2

1
Hy, = —512 + Ao cos 1, (5)
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where, besides w = 1, we have also set k = 1. The
maximum amplitude of the island is obtained by setting
¥ = Hy1 = 0 in Eq. (5); condition Hy; = 0, in par-
ticular, defines the boundary trajectory; i.e., the trajec-
tory dividing trapped from untrapped orbits in the (I, )
phase-space. The maximum amplitude can thus be eval-
uated as I,,qp = 21/3 A§/3.

Now we come to our point. The Hamiltonian (5) also
yields the following remarkable results: the [1,1] island
contains only one elliptic fixed point located within it
at coordinates ¢ = 0 and I, = (1/2)A(2)/3. In contrast
to the pendulumlike case, however, there are no hyper-
bolic points along the island boundary. This means that,
although the boundary separates distinct regions of the
phase-space, it is not a zero-frequency trajectory (con-
tour levels of Hy ; are displayed in Fig. 1). The model
is thus seen to provide a simple and relevant example of
the kind of situation we wish to study.

As commented upon earlier, there are two natural fre-
quencies connected with a resonant island, w. and w;. We
can obtain expressions for these two frequencies. Fre-
quency we can be readily obtained if one quadratically
expands the Hamiltonian near the elliptic point; it reads
we = 0.866 A(z)/s‘ Frequency w; can be cast in the fol-
lowing form if one takes into account the canonical equa-
tions produced by Eq. (5), the fact that H;; = 0.0
on the boundary, and the fact that the boundary orbit
spends a vanishingly small time flying from points A to
B of Fig. 1 (this last feature follows from the fact that
dy/dt ~ 1/VI, as I — 0):

2/3
wp= —— A0 _ 763427, (6)

4 () de i)

where 3 = I3/(2 A%). Note that points A and B of Fig.
1 are fixed. Apart from that, they seem to play no cru-
cial role in the boundary dynamics, because trajectories
reaching or exiting them, do that in a finite amount of
time; these points are not hyperbolic. When we speak,
as above, of the fly time from A to B, we really mean the
fly time from the neighborhood of A to the neighborhood

0.3

0.2

0.1

FIG. 1. Contour levels of H1,;. We take Ao = 0.1. The
island boundary is highlighted. The central elliptic point is
denoted as (e).
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of B.

Both quantities, w. and wp, are plotted in Fig. 2 as
a function of Ag. It is to be remarked that the elliptic
fixed point frequency is always larger than the boundary
frequency.

We are now in a position to conjecture on what hap-
pens with chains bifurcating out of the elliptic central
fixed point. As one increases the wave amplitude from
small values, a condition like Eq. (2) is eventually satis-
fied with p,q integers. As said, whenever this happens,
a chain of p islands [with winding (g/p)] bifurcates out
of the elliptic point. Further increase on Ay causes the
chain to drift towards the island boundary where the fre-
quencies are smaller than in the central region and where,
therefore, the winding number can be maintained. This
is what is being represented by the horizontal lines of
Fig. 2. The horizontal line on the left represents an
exemplifying (7,1) chain and the one on the right repre-
sents a (7,3) chain. At the left end of each line, the chain
is created and at the right end it tentatively arrives at
the boundary. In order to see what may happen with
the chain during its travel towards the boundary, let us
examine the dynamics according to the strength of the
wave amplitude.

If during the tentative lifetime of a (p, q) chain between
the end points of its horizontal line the amplitude of the
perturbing term attains too large a value, the width of
the island chains will be also relatively large, overlap with
neighboring chains will be a possibility, and the island
will likely undergo period doubling bifurcations before it
reaches the boundary. This case will be thus very similar
to the one occurring in pendulumlike islands where inter-
nal chains always overlap (and undergo period doubling)
as they near the separatrix. But on the other hand, if
during the lifetime of a (p,¢) chain the amplitude of the
perturbing term remains very low, the overlap possibility
will be reduced and the chain may reach the boundary
untouched.

Without entering into the detailed calculations, it
turns out that a critical perturbing amplitude exists such
that one can really speak in terms of relatively “large”
and “small” perturbing strengths; it has been calculated
in Ref. [7]. The calculation has shown that resonance
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FIG. 2. Functions w. and ws, and chains (7,1) and (7,3).
Aj is the estimated period doubling threshold.
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overlaps within a [1, 1] island like the one we are presently
studying start to happen when chains with p<3 and
g = 1 are created close to the elliptic fixed point. This
corresponds to fields of intensity Ag ~ 0.27. For larger
values of p, which correspond to smaller values of Ag,
resonance overlaps are absent. In Fig. 2, this particu-
lar value of Ao, which we call Ag, falls more or less on
the middle of the horizontal axis. This means that the
leftmost chain shown in the figure should be expected to
arrive at the boundary without undergoing period dou-
bling; the other chain, on the other hand, should be ex-
pected to undergo period doubling somewhere before ar-
riving there. The quantity Ay can be thus seen as being
a threshold value for period doubling bifurcations.

Then we come back to the final question not yet an-
swered: What happens with a chain that arrives at the
separatrix without undergoing period doubling; how can
it then vanish? The answer, to be checked against the
simulations coming shortly, is that in this case the is-
land collapses against an external chain that reaches the
boundary simultaneously. This is not difficult to accept
as reasonable. In fact, as the internal chain with winding
q/p reaches the boundary, an external chain with wind-
ing n/m = (p — q)/p also arrives there (the reason for
the p — ¢ factor is that when one performs the time re-
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FIG. 3. Stability index («) for internal chains (7,3) in (a)

and (7,1) in (b). The internal (7,1) chain is shown to collapse

against an external [7, 6] chain via an inverse saddle-node bi-
furcation.
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moval canonical transformation, all the windings have a
p/p factor subtracted; the remaining negative signal is
explained because it can be shown that internal orbits
gyrate counterclockwise, while di/dt > 0). Let us then
turn to numerics in order to check and improve the pic-
ture we have so far.

The first case to be analyzed is the (7, 3) chain, the one
on the right-hand side of Fig. 2. Let us accompany the
stability index « of its elliptic fixed points. We recall that
if o crosses the line a = +1 the island undergoes inverse
saddle-node bifurcation, and if a crosses the line a = —1
the chain undergoes period doubling bifurcation [8]. As
seen in Fig. 3(a) the chain undergoes the usual period
doubling bifurcation. This is in agreement with our es-
timates; the amplitude Ao in this case is so large that
it is well above the estimated period doubling threshold
Aj. Let us examine the other case. In this situation
Ap is well below Af during the whole existence of the
chain. Accordingly, Fig. 3(b) shows that the island un-

0.4 T

0.40 T

FIG. 4. Details of the inverse saddle bifurcation of the (7,1)
chain. Note the presence of the external (7, 6] chain just be-
yond the boundary in (a) (Ao = 0.0832) and how it is par-
tially absorbed by the resonant island in (b) (Ao = 0.0841).
For slightly larger values of Ao, the chains undergo the inverse
saddle-node bifurcation.
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dergoes inverse saddle-node bifurcation. Moreover, the
bifurcation occurs as the internal chain collapses against
an external [7,6] chain.

The reader is now referred to Fig. 4 for more details
about this latter case. In Fig. 4(a) are shown the (7,1)
and [7, 6] chains just after the bifurcation, and from Fig.
4(b) we can see how the bifurcation is processed. First,
there occurs a reconnection process where the elliptic
fixed points of the internal and external chains inter-
change places. The internal elliptic points are incorpo-
rated into the external chain and the external elliptic
points into the internal chain. The impression one has is
that the external chain crosses the boundary; in a sense,
only half of the external island does that. Later on, as
the amplitude Ay is increased, the elliptic and hyperbolic
fixed points of both pairs of “bound-states” thus formed
collapse against each other via the inverse saddle-node
bifurcation. We have pursued some other chains observ-
ing that the process is not merely accidental; (p, g) chains
with relatively large (small) ¢’s tend to undergo period
doubling (inverse saddle node). An index known as the
Poincaré index [4] is conserved during the process. The
conservation of this index must occur for this kind of sys-
tem and it means that stable and unstable points must
be created or destroyed in pairs.

The series of reconnections and saddle-node bifurca-
tions observed in the present work can be related to re-
sults obtained in previous papers [9,15-18]. To see this,
we first point out that the gyrofrequency of our system
can be regarded as displaying a nonmonotonic charac-
ter. In fact, as one moves away from the elliptic fixed
point towards the [1,1] island boundary, the frequency of
trapped orbits decreases, as we have already seen; then,
as one crosses the boundary and starts to move up the
phase-space, the frequency starts to increase again. This
frequency growth outside the island can be understood
in view of the fact that when we speak of frequencies,
we really mean frequencies measured relatively to the
wave frequency (= 1 in our case); we had introduced this
“frame” transformation [Eq. (4)] to define the whole dy-
namics within the [1,1] island, in particular to define w,
and wp, and we have to be consistent in all the following
calculations. This amounts to saying that the effective
frequency without the central island can be appoximated
by 1/4/1+4 21 —1 if one is far above that island, a result
indeed indicating frequency growth in absolute values as
I — oo. Now, as pointed out earlier in the text, the
boundary arises as a common curve along which the de-
creasing internal frequency and the increasing external
frequency assume equal values, and as analyzed in the
above mentioned papers [9,15-18], the associated non-
monotonic character of the frequency ultimately leads to
reconnections and saddle nodes at this location. In con-
trast to the work of Van der Weele et al. [16], however,
the reconnections arising in the Hamiltonian model we
used occur not only for one-third resonances.

To summarize, we have analyzed a different type of
resonant island where the boundary is free from separa-
trix chaos. The absence occurs by virtue of the fact that,
unlike the pendulumlike case, the boundary of this type
of island is in fact free from the presence of hyperbolic
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unstable points. Chains that bifurcate out of the central
elliptic point of the resultant kind of island have some un-
usual behavior. We have shown that a critical perturbing
strength exists (Ag) above which the chains undergo infi-
nite cascades of period doubling bifurcation (in this case
the behavior is similar to the one seen in pendulumlike
resonances) and below which the chains undergo inverse
saddle-node bifurcations as they collapse against exter-
nal chains at the island boundary — for other values of
P,, like P, = 1 [9], the bifurcational behavior seems to be
dominated by the saddle-node bifurcations only. The ex-
ternal chains were shown to be partially absorbed by the
resonant island before collapse. We feel that this kind of
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island is of relevance in problems involving nonlinear dy-
namics. In particular, an accelerating system frequently
deals with particles whose low initial energy can easily
set them within the domain of the islands.
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