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Two Time Scales and Violation of the Fluctuation-Dissipation Theorem
in a Finite Dimensional Model for Structural Glasses
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We study the breakdown of fluctuation-dissipation relations between time-dependent density-density
correlations and associated responses following a quench in the chemical potential in the frustrated
Ising lattice gas. The corresponding slow dynamics is characterized by two well-separated time scales
characterized by a constant value of the fluctuation-dissipation ratio. This result is particularly relevant
since activated processes dominate the long-time dynamics of the system.
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In recent years considerable progress has been achieved
in the theoretical description of the glassy state of mat-
ter. A scenario for the observed slow dynamics of glass
forming materials has emerged through detailed analysis
of mean field (MF) spin glass models [1]. The equations
describing the off-equilibrium dynamics of these MF spin
glasses simplify, above the transition, to the single equation
for the mode coupling theory for supercooled liquids [2].
These approaches have been successful in explaining his-
tory dependence or aging effects and the nature of the two
characteristic relaxations in glasses, the short time or b

relaxation and the structural long time a relaxation. In the
a relaxation the system falls out of local equilibrium, as a
consequence fluctuation-dissipation theorem (FDT) breaks
down and can be replaced by the more general relation

R�t, tw� �
X�t, tw�

T
≠C�t, tw�

≠tw
, (1)

where C�t, tw� is a two times correlation function and
R�t, tw� with t . tw is the associated response. T is the
heat bath temperature and X�t, tw� is a function that mea-
sures the departure from FDT: at equilibrium X � 1 and
the usual FDT is recovered, while in the out of equilibrium
regime X , 1. In MF approximation [3] the function X,
called “fluctuation-dissipation ratio” (FDR), turns out to
depend on both times only through C�t, tw�. Moreover,
in MF models of glasses X is a constant (when different
from 1). This scenario reflects the existence of only two
well-separated time scales, the equilibrium or FDT scale
and a longer one where the system is out of equilibrium.
The ratio T�X has been interpreted as an effective tem-
perature, and it has been demonstrated that it is exactly the
temperature that a thermometer would measure if it would
be coupled to the slowly relaxing modes of the system [4].
Recently the first experimental determination of the FDR
has been done in glycerol [5].

This scenario, while appealing, is essentially based on
an analogy between the physics of some MF spin glasses
and the behavior of real structure glasses (being the formal
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connection valid only in the high temperature region). At
this point it seems crucial to test the link between MF theo-
ries and realistic models in the glassy phase. In particular,
we still do not know which will be the role of activated
processes in realistic models. Activated processes are ab-
sent in completely connected models in the thermodynamic
limit, while on the contrary they dominate the relaxation
dynamics below the glass transition temperature Tg in real
glasses.

The goal of the present Letter is to go beyond the
MF-like description of structural glasses by considering
a finite dimensional model, the frustrated Ising lattice gas
(FILG) [6,7], which presents most of the relevant features
of glass forming materials, in particular, activated pro-
cesses at low temperatures. Here we analyze the violation
of FDT in the FILG in three dimensions through Monte
Carlo simulations. The (very precise) results confirm the
qualitative scenario of MF models of a constant FDR with
large separation of time scales and set the stage for a de-
tailed investigation of activated processes in realistic mod-
els of glasses.

The FILG is defined by the Hamiltonian

H � 2J
X
�ij�

�´ijsisj 2 1�ninj 2 m
X

i

ni . (2)

At each site of the lattice there are two different dynamical
variables: local density (occupation) variables ni � 0, 1
(i � 1 . . . N) and internal degrees of freedom si � 61.
The usually complex spatial structure of the molecules
of glass forming liquids, which can assume several spa-
tial orientations, is in part responsible for the geometric
constraints on their mobility. Here we are in the simplest
case of two possible orientations, and the steric effects im-
posed on a particle by its neighbors are felt as restrictions
on its orientation due to the quenched random variables
´ij � 61. The first term of the Hamiltonian implies that
when J ! ` any frustrated loop in the lattice will have at
least one hole and then the density will be r , 1, prevent-
ing the system from reaching the close packed configura-
tion. The system will then present “geometric frustration.”
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Finally, m represents a chemical potential ruling the sys-
tem density (at fixed volume).

The system presents a slow “aging” dynamics after a
quench from a small value of m characteristic of the liquid
phase to a large m corresponding to the glassy phase [7],
what is equivalent to a sudden compression. In the present
numerical experiments we always let the system evolve
after a quench in m with J and T fixed. The origin of
the times is set on the quench time. After the quench
the density slowly relaxes up to a critical value near rc �
0.675 (further details will be given in [8]). After a waiting
time tw we fix the density to the value r � r�tw� (for
technical reasons explained below) and a small random
perturbation (mi � 61) is applied [9]:

H 0�t� � H�t� 2 e�t�
X

i

mini�t� . (3)

In all our numerical experiments the field is switched on
at time tw and kept fixed for later times, that is, e�t� �
eu�t 2 tw�. Then we measure the density-density auto-
correlation function

C�t, tw� �
1

Nr

X
i

�ni�t�ni�tw�� , (4)

where �?� and ? are the averages over thermal histories and
disorder realizations [10]. At the same time we measure
the associated response function integrated over the time
and divided by the perturbing field intensity, which defines
the off-equilibrium compressibility

k�t, tw� �
1
e

Z t

2`
R�t, s�e�s� ds �

Z t

tw

R�t, s� ds , (5)

where, as usual, the response is defined as

R�t, t0� �
1

Nr

X
i

≠�ni�t��
≠e�t0�

. (6)

In the large times limit (t, tw ! `), X�t, tw� depends on
both times only through the correlation C�t, tw�. Then
integrating Eq. (1) from tw to t we obtain a useful relation
linking the correlation and the compressibility in the out
of equilibrium regime

Tk�t, tw� �
Z 1

C�t,tw �
X�C� dC . (7)

This is the key relation used in order to extract the FDR.
In our case the perturbing term in the Hamiltonian,

shown in Eq. (3), gives to the integrated response the fol-
lowing form:

k�t, tw� �
1

Nr

√X
i

��mini�t���av 2
X

i

��mini�tw���av

!
,

(8)

where �?�av is the average over the random mi realizations
[10]. The second term can be ignored because the mi are
random and completely uncorrelated from the configura-
tion at time tw .
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Performing a parametric plot of the compressibility (or
the integrated response) versus the correlation is a useful
way of getting information about the different dynamical
regimes present in the model and, in particular, the time
scales of the system. In fact, from Eq. (7) it is easy to see
that, plotting Tk�t, tw� vs C�t, tw�, the FDR can be simply
obtained as minus the derivative of the curve, i.e.,

X�C0� � 2
≠�Tk�t, tw��

≠C�t, tw�

Ç
C�t,tw��C0

. (9)

There is already a considerable literature on this kind
of analysis in systems with and without quench disorder
[11]. Particularly relevant to the present discussion are
Refs. [12], where a constant FDR was found in model
glasses with interactions of the Lennard-Jones type and in
a purely kinetic lattice gas. The FILG has the advantage
of being a Hamiltonian lattice model with short range in-
teractions and, in this sense, it is more realistic than purely
kinetic models and more accessible analytically and com-
putationally than Lennard-Jones systems. Moreover, it is a
valid on-lattice model for structural glasses and it may be
simple enough to apply statistical mechanics techniques.

We have simulated the FILG in 3D for linear sizes L �
30 and 60. Fixing the coupling constant J � 1 and a
temperature T � 0.1 the system presents a glass transition
around m � 0.5 [6].

In all our numerical experiments we have prepared the
system in an initial state with low density, characteristic
of the liquid phase, and then, at time zero, we have per-
formed a sudden quench in m to a value deep in the glass
phase (the data presented here refer to m � 1). As al-
ready explained above, after a time tw a perturbation in
the form of a random small chemical potential has been ap-
plied and the density-density autocorrelation, Eq. (4), and
the corresponding integrated response, Eq. (8), have been
recorded. At time tw the density has been fixed to the value
r � r�tw� for the following reason: the perturbing term
in the Hamiltonian [see Eq. (3)] favors roughly half of the
sites (those with mi � 1) to be filled and the remaining
half to be empty. When the perturbation is switched on,
the first half starts to be more filled than the second one
and this increases the integrated response, as it should. On
very long times, however, because the density reached at
time tw is still a bit below the asymptotic value, the number
of particles continues growing and new particles are added
with higher probability on the sites with mi � 21, which
are emptier. Then the response becomes negative because
of systematic errors. We avoid the negative responses fix-
ing the density at time tw . In the limit tw ! ` we recover
the right behavior in any case; however, with our choice
the extrapolation is safer.

In all our simulations we have verified that the strength
of the perturbation e � 0.02 is small enough in order to
be in the linear response regime. We have also checked
that the system thermalizes at temperatures T $ 0.3 (being
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always m � 1) and satisfies FDT. Further details will be
given in [8].

In Fig. 1 we show the main result of this Letter: a para-
metric plot of the integrated response versus the density
autocorrelation for different waiting times. The behavior
of the curves is exactly the one predicted by MF theo-
ries for a glass former. Two distinct regimes can be per-
fectly recognized. In the FDT or quasiequilibrium regime,
t 2 tw ø tw (b relaxation), the points lie on the straight
line given by

Tk�t, tw� � 1 2 C�t, tw� . (10)

This first time regime corresponds then to a FDR
X�t, tw� � 1 independent of t and tw . In this regime the
system is in quasiequilibrium, with the particle moving
inside the cages formed by nearly frozen neighbors and
the temperature measured from particle fluctuations is
that of the heat bath. When t 2 tw $ tw the system
falls out of equilibrium, entering the aging regime, and
the data in Fig. 1 depart from the FDT line. From the
figure it is clear that the FDR is still a constant, but now
0 , X�t, tw� , 1. The constancy of the FDR in the out
of equilibrium regime is one of the central predictions of
MF approaches. Here we see that this is still valid for a
finite dimensional system.

In Fig. 2 we compare the results for the FDR measured
on two large systems, whose sizes are N � 303 and N �
603. Both curves correspond to tw � 104 and no finite
size effects are evident. Fitting the data in the out of
equilibrium regime to the straight line

Tk�t, tw� � X�tw� �qEA�tw� 2 C�t, tw��

1 �1 2 qEA�tw�� (11)
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FIG. 1. The plot of the integrated response times the tempera-
ture versus the correlation gives clear evidence for the existence
of two well-separated time scales, together with a constant FDR
in both regimes. The dashed line is Tk � 1 2 C. The errors
are of the order of the symbols and have been estimated from
sample to sample fluctuations.
allows us to compute the tw-dependent FDR X�tw� and
the Edwards-Anderson order parameter qEA�tw�. In the
large times limit they should converge to the corresponding
equilibrium values [13,14].

We report the linear fit in Fig. 2 in order to show how
well the data can be fitted with the formula in Eq. (11).
As one can see from Fig. 1, the slope X�tw� changes very
little with tw and it takes the same value (within the error)
for the two largest waiting times. The results of our fits
give X � 0.64�3� and qEA � 0.92�1�. In comparison with
other works the correlation range we are exploring may
seem quite small. However, it should be kept in mind that
we are using nonconnected correlation functions which
tend in the large times limit to r2 	 0.44. So we are
actually spanning half of the allowed range.

In the inset of Fig. 2 we present the same kind of data
(tw � 105, 106) for the Edwards-Anderson (EA) model,
which is expected to have more than two time scales. It
is clear that in the EA model the slope changes along the
curve and a straight line is not able to fit the whole set
of data. Moreover, higher temperature data [11] suggest
that the slope still has to decrease (in modulus) for smaller
correlations, making the linear fit even poorer.

An important difference between the present model and
MF approaches should be evident: activated processes
present in finite dimensional systems should dominate the
asymptotic dynamics and as tw ! ` equilibrium dynam-
ics should be restored (a similar behavior can be observed
in MF models by considering small systems [15]). How-
ever, the time a macroscopic system needs to reach such
an equilibrium (thermalization time, teq) increases very
rapidly with the system size and then the use of large sizes
(here we have L � 30 and 60) prevents the system from
reaching equilibrium in accessible time scales. In other
words, we expect that the FDR explicitly depends on tw

and it tends to 1 in the limit tw ! `. However, in the range
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FIG. 2. Same as Fig. 1, now with different volumes in order
to show the absence of finite size effects. The linear fit to the
data is very good and gives a value for the FDR X 	 0.64. For
the EA model (inset) the linear fit is far from good.
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FIG. 3. Same as Fig. 1 for different temperatures in the glass
phase.

1 ø tw ø teq (where we actually are) the FDR should re-
lax into some very long plateau. It is very remarkable that
finite times effects are very well described by MF theories.

In Fig. 3 we show the usual integrated response ver-
sus correlation plot for different temperatures, being the
chemical potential always equal to m � 1. We estimated,
both from the density measurements and from the FDR,
the glassy transition to be located around Tg 	 0.2. So all
the data refer to the glassy phase. The main result to be
noted is the good parallelism between all the curves in the
aging regime. They can be perfectly fitted with the same
value for X and different values for qEA, which increases
lowering the temperature. As T approaches Tg from below,
FDT is recovered. Also, as qEA�T � decreases, X remains
constant within the numerical precision. The exact behav-
ior near the transition, that is, whether X (and qEA) are
continuous or not [16], is difficult to establish numerically
and will be addressed in a future work.

In summary, we have found that the glassy phase of
a realistic model of structural glass presents two well-
separated time scales, as found in MF models of spin
glasses. The out of equilibrium long-time dynamics can
be characterized by a constant value of the fluctuation dis-
sipation ratio X which is, with a very good approximation,
independent of temperature in the glass phase. This last
observation does not agree with MF predictions. Being a
model in 3D, the frustrated lattice gas is an interesting test
ground for performing a systematic study of activated pro-
cesses, a main ingredient absent in MF models.
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