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Collisionless Relaxation in Non-Neutral Plasmas
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A theoretical framework is presented which allows us to quantitatively predict the final stationary state
achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application,
the theory is used to study relaxation of charged-particle beams. It is shown that a fully matched beam
relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates,
parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the
density and the velocity distributions in the final stationary state.
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Relaxation to a final stationary state (SS) of particles in-
teracting through long-range forces, such as (unscreened)
Coulomb or gravitational, is intrinsically different than that
of systems with short-range interactions [1]. In the latter
case, the interparticle collisions drive the system to an
equilibrium state described by the Maxwell-Boltzmann
distribution. This distribution is unique, in the sense that
it is completely determined by the globally conserved
quantities such as the total energy, momentum, angular
momentum, etc.—and is otherwise independent of specific
initial conditions. The same is true for neutral plasmas for
which the bare Coulomb potential is dynamically screened
by the countercharges, leading to a well defined thermody-
namic limit and equilibrium [2]. Relaxation of particles
interacting by long-range (unscreened) potentials, on the
other hand, is very different. For these systems, the colli-
sion duration time diverges, and the state of thermody-
namic equilibrium is never reached. Instead, the dynamics
evolves to a stationary state in which distribution functions
appear to stop varying with time. Unlike thermodynamic
equilibrium, in SS, however, detailed balance is violated
[3] and neither equilibrium thermodynamics nor equilib-
rium statistical mechanics can be used.

In the limit in which the number of particles goes to
infinity (N — oo) while the total mass and charge are fixed,
the non-neutral plasma is described exactly by the Vlasov
equation [4],

bf _ o1

+ . + . =
S = TV V[ FV =0 (1)

where D is the advective derivative, f(z, r, v) is the one
particle distribution function, and F is the mean force felt
by particles at position r. For simplicity, we have set
particle mass to unity. Vlasov equation shows that the
distribution function evolves in time as an incompressible
fluid. If we now discretize the height of the initial distri-
bution function fy(r, v) into a set of levels »;, with j =
1...p, the Vlasov dynamics of a d dimensional system
preserves each level’s hypervolume y(n;) = [8(f(t,r,v)—
n;)d‘r?v. For a general distribution function, this condi-
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tion is equivalent to existence of an infinite number of
dynamical invariants called the Casimir integrals or simply
the Casimirs [5]. One of the Casimirs is the Boltzmann
entropy which is, therefore, a constant of motion. While
the fine-grained distribution function f(z,r,v) never
reaches a stationary state—the evolution continues on
smaller and smaller length scales ad infinitum—Lynden-
Bell argued that the coarse-grained distribution function
f(t,r,v,), averaged on microscopic length scales, will
rapidly relax to a meta-equilibrium with f(r, v). For gravi-
tational systems, Lynden-Bell called this process “a vio-
lent relaxation” [6]. To obtain the stationary distribution
f(r,v), we divide the phase space into macrocells of vol-
ume d?rd?v, which are in turn subdivided into v micro-
cells, each of volume h?. As a consequence of
incompressibility, each microcell can contain at most one
discretized level m;. The number density of the level j
inside a macrocell at (r, v)—number of microcells occu-
pied by the level j divided by »—will be denoted by
o j(r, v). Note that by construction, the total number density
of all levels in a macrocell is restricted to be

mewsL ()
J

Using a standard combinatorial procedure [6], it is then
possible to associate a coarse-grained entropy with the
distribution of {p;}. The entropy is found to be that of a
p species lattice gas,

p

dv. 7d
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=
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where kp is the Boltzmann constant. Lynden-Bell argued
that collisionless relaxation should lead to the density
distribution of levels which is the most likely, i.e., the
one that maximizes the coarse-grained entropy, consistent
with the conservation of all the dynamical invariants—
energy, momentum, angular momentum, and the hyper-
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volumes y(7;). In terms of the number densities {p,}
which maximize the coarse-grained entropy, the stationary
distribution function becomes f(r,v) = 3 im;p;(r,v). The
maximum entropy state, however, can only be achieved if
there is a sufficient ergodicity (mixing) in the phase space.

If the initial distribution f(r, v) is uniform (p = 1), the
maximization procedure is particularly simple, yielding a
Fermi-Dirac distribution,
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f(r, V) = 771/7(13 V) =

where € is the mean energy of particles with velocity v at
position r, and 8 and u are the two Lagrange multipliers
required by the conservations of energy and number of
particles,

]ddrddve(r, V) f(rv)=¢, ]ddrddvf(r, =1 (5

In the above formula, €, is the energy per particle specified
by the original distribution f,. For an azimuthally sym-
metric system, the mean particle energy € is a function of
only the modulus r and v. By analogy with the usual
Fermi-Dirac statistics, we define 8 = 1/kgT, where T is
the effective temperature of the stationary state (not to be
confused with the usual definition of temperature in terms
of the average kinetic energy which is valid only for
classical systems in thermodynamic equilibrium) and u
is the effective plasma chemical potential.

In this Letter, we will show that when applied to non-
oscillating confined non-neutral plasmas, Eq. (4) describes
very accurately the final stationary state. On the other hand,
if during the relaxation dynamics plasma undergoes col-
lective oscillation, the theory of violent relaxation fails
dramatically. Instead, we observe that the system separates
into two coexisting phases—a cold core surrounded by a
halo of highly energetic particles. The relaxation process is
extremely slow, taking tens of thousands of plasma oscil-
lations to reach the stationary state. A new approach will
then be presented which quantitatively predicts the phase-
space distribution functions in the final relaxed state.

To illustrate the general theory, we will apply it to study
the transport of intense, continuous, charged-particles
beams through a uniform focusing magnetic field [7].
The beam is assumed to propagate with a constant axial
velocity v,€,, so that the axial coordinate s =z = vt
plays the role of time. The external focusing field is given
by B = Byé, and is used to compensate the repulsive
Coulomb force between the beam particles. It is convenient
to work in the Larmor frame [7], which rotates with respect
to the laboratory frame with angular velocity Q; =
gBy/2v,mc, where c is the speed of light in vacuo, and
g, m, and y, = [1 — (v,/c)*]"'/? are the charge, mass,
and relativistic factor of the beam particles, respectively. In
this frame, the beam distribution function f}(s,r,V)
evolves according to the Vlasov-Poisson system [7]

aa_J;b +v-Vf, + (—kr = V) - Vof, =0, (6)

V2§ = —(2@K/Ny)n,(r, s), @)

where N, is the number of particles per unit axial length, r
is the position vector in the transverse plane, v = dr/ds is
the transverse velocity, n,(r, s) = N, [ f,d*V is the trans-
verse beam density profile, k, = ¢*B3/4yiv2m?c? is the
focusing field parameter, and K = 2¢°N,,/y;v2mc? is the
beam perveance, which is a measure of the beam intensity.
In Egs. (6) and (7), ¢ is a scalar potential that incorporates
both self-electric and self-magnetic fields, E* and B*. We
shall take zero of the scalar potential to be at r,, the
position of the conducting channel wall. The distribution
function is normalized so that [ f,d’rd*v = 1. In the
Larmor frame, the system corresponds to a two dimen-
sional non-neutral plasma of pseudo particles of mass
m, = 1 and charge ¢ = /K/N,, interacting by a repulsive
logarithmic potential ¢(r) = —g*In(r/r,,), confined in a
parabolic potential well of U(r) = «.r*/2. We will now
explore the relaxation of these particles from the initially
uniform distribution (p = 1),

fO(rr V) = n1®(rm - r)®(vm - l}) (8)

with n; = 1/72r2,v2,, to the final stationary state.

At time ¢t = 0, the particles are uniformly distributed in
the phase space between r =< r,, and p =< p,,. The distri-
bution function Eq. (8), however, is not a stationary solu-
tion of the Vlasov-Poisson system, and for 7> 0, the
system will start to evolve in time. It is possible to adjust
the values of r,, and v, in such a way that during the
evolution, the beam envelope (rms particle position) oscil-
lates as little as possible. This corresponds to the so-called
matched beam condition—the beam relaxes to equilib-
rium, but without undergoing significant macroscopic os-
cillations. For the distribution function (8), the matching
condition can be determined using the beam envelope
equation [7,8]. It is possible to show that the beam will
oscillate only little if v2, = x,r2, — K. When this condition
is met, we expect the mixing to be efficient and Lynden-
Bell theory to apply. The coarse-grained beam distribution
should then relax to Eq. (4), with e(r, v) = v?/2 + U(r) +
(r), where the mean electrostatic potential (r) is deter-
mined self-consistently by an iterative solution of Eq. (7),
subject to constraints of Eqs. (5) with energy per particle
given by

2 2 1 K
q=tmypKefmy L2 1n<ﬁ>. ©)
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To compare the theory with the simulations, we calculate
the number particles inside shells located between r and
r+dr, N(r)dr = ZWNbrdrfdzvf(r, v), and the number
of particles with velocities between v and v + dv,
N(v)dv = 27N,vdv [ d*rf(r, v). In Fig. 1, the solid lines
show the values of N(r)/N, and N(v)/N, obtained using

040604-2



PRL 100, 040604 (2008)

PHYSICAL REVIEW LETTERS

week ending
1 FEBRUARY 2008

1.2 2.0
(a) (b)
= 09 = 1.5
2 2
E 06 = 1.0
Z Z
0.3 0.5
0.0 0.0
00 1.0 20 3.0 40 00 1.0 20 3.0 40
r v
FIG. 1. Position and velocity distributions for a matched beam

with r,, = 1.48,/K/k, and v,, = 1.1J/K. Solid line is the theo-
retical prediction obtained using distribution function of Eq. (4),
while points are the result of dynamics simulation with N =
5000 particles.

the theory described above, while points are the result of a
self-consistent N-particle dynamics simulation [9]. In all
the figures, distances are measured in units of \/K/«, and
velocities in units of +/K. Excellent agreement between the
theory and the simulation is found for both position and
velocity distributions without any fitting parameters. We
have checked that agreement persists for other values of r,,
and v, as long as the matching condition is satisfied. The
agreement, however, disappears as soon as the matching
condition is violated and the beam begins to oscillate,
Figs. 2 and 3.

Plasma oscillations lead to a number of important con-
sequences which are not taken into account in the theory of
violent relaxation. For space-charge dominated inhomoge-
neous beams, the oscillations result in propagating density
waves which eventually break, emitting high energy parti-
cle jets [10]. The oscillations also excite parametric reso-
nances [11] transferring large amounts of energy to some
particles at the expense of the rest [9], see Fig. 2. Both of
these mechanisms lead to inefficient phase space mixing
and nonergodicity.

As the relaxation proceeds, the oscillating beam core
becomes progressively colder, while a halo of highly en-
ergetic particles is created. Because of the incompressibil-
ity restriction imposed by the Vlasov dynamics, Eq. (2), the
core, however, can not freeze—collapse to the minimum
of the potential energy. Instead, the distribution function of
the core particles progressively approaches that of a fully
degenerate Fermi gas.

The extent of the halo is determined by the location of
the parametric resonance, and its range can be calculated
using the canonical perturbation theory [11]. In Fig. 2(a),
we show the Poincaré section of a test particle moving
under the action of an oscillating beam potential calculated
using the envelope equation [9,12]. The resonant orbit is
the outermost curve of the Poincaré plot. The first resonant
particles move in almost a simple harmonic motion with
energy €x = —KIn(rg/r,,) + k,r%/2, where rg is the in-
tersection of the resonant trajectory with the v = 0 axis. As
more and more particles are ejected from the beam core,
their motion, however, becomes chaotic and a halo distri-
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FIG. 2. (a) Poincaré section of a test particle moving in an

oscillating potential controlled by the envelope equation. The
outermost curve shows the resonance which determines the
halo’s range. (b) A snapshot of the phase space particle distri-
bution obtained using dynamics simulations with N = 5000,
after 40 thousand beam envelope oscillations. The halo’s range
rg is determined by the original parametric resonance, see panel
(a). (c) Position and (d) velocity distributions. Solid curves are
the theoretical predictions obtained using the distribution func-
tion of Eq. (10), and points are the results of dynamics simula-
tions. The initial distribution is uniform with r, =
1.98,/K/k, and v,, = 0.24+/K. It has exactly the same energy
as the fully matched distribution of Fig. 1, showing that SS
depends explicitly on the initial distribution.

bution becomes smeared out. We find that the distribution
function of a completely relaxed halo is very well approxi-
mated by the Heaviside step function ® (e — €).

For an out of (thermodynamic) equilibrium system,
there are no clear parameters which will control the core-
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FIG. 3. (a) Position and (b) velocity distributions. Points are

the result of dynamics simulations. Solid curves are the theo-
retical predictions obtained using the distribution function of
Eq. (10). Dotted curves are the predictions of the violent relaxa-
tion theory based on Eq. (4). The figure demonstrates that for
oscillating beams, mixing is inefficient and violent relaxation
theory does not apply. The initial distribution is uniform with

rm = 1.0{/K/k, and v,, = 2.4VK.
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FIG. 4. (a) Position and (b) velocity distributions. Solid curves
are the theoretical predictions, and points are the result of
dynamics simulations. Initial # = O distribution is a thermal

one given by Eq. (11) r,, = 1.0,/K/«. and o = 0.64/K.

halo coexistence—such as pressure, temperature, and
chemical potentials for usual thermodynamic systems in
coexistence. We can not, therefore, a priori say when the
halo formation will stop and a stationary state be estab-
lished. Empirically, however, we have observed that this
happens when the core temperature becomes sufficiently
low. In all cases studied, we find that the core-halo equi-
librium is achieved when the ratio between the core tem-
perature and the corresponding Fermi temperature is
T/Tr = 1/40—i.e., when Bu = 40. The distribution
function for the core-halo system, then, takes a very simple
form

m

-5 1 T AOler— . (10)

fb(rr V) =

Since all the dependence on r and v enters only implicitly
through €, f, automatically satisfies the Vlasov-Poisson
system. The value of n, = 1/7*r2,v2, is determined by the
initial distribution f, while the value of € is calculated
from the location of the parametric resonance, Fig. 2(a).
This leaves one to determine self-consistently, using
Egs. (5) and (7), the mean electrostatic potential #(r), the
inverse temperature (3, and the amplitude y which will
determine the fraction of particles inside the halo. These
can, once again, be obtained iteratively.

In Figs. 2 and 3, we plot N(r)/N, and N(v)/N,, ob-
tained using the theory presented above for two core-halo
systems characterized by different values of initial r,, and
v,,, and compare these distributions with the ones obtained
using the dynamics simulations. Excellent agreement is
found in all cases. In Fig. 3, we also present the distribution
functions obtained using the violent relaxation theory,
Eq. (4). It is clear that this theory is unable to describe
relaxation of oscillating plasmas.

Up to now, we have considered plasmas which at r = 0
were uniformly distributed. This, however, is not very
usual in practice and more realistically one might expect
a initially thermalized distribution of the form

1 (12 /92
fO(r: V) = 27720'2r2 ®(rm - r)e */20 ) (] 1)

The procedure is then to discretize the Gaussian part of this
distribution into p levels. At the lowest order, we can take
p = 1 and approximate Eq. (11) by Eq. (8). To have equal
energy, both distributions must have the same values of
(v?). This requires that v,, = 20 The final relaxed distri-
bution of this core-halo system should then be given by
Eq. (10) with n, = 1/47?r2,0?. In Fig. 4, we plot
N(r)/N, and N(v)/N, and compare these distributions
with the ones obtained using the dynamics simulation in
which the initial particle positions and velocities were
distributed according to Eq. (11). In spite of the crudeness
of the one level approximation, an amazingly good agree-
ment between the theory and the simulations is obtained
without any adjustable parameters. We have checked that
this good agreement persists for other values of ¢ and r,,.

In this Letter, we have studied confined one component
plasmas of charges interacting by unscreened Coulomb
potential. Unlike normal gases with short-range forces,
non-neutral plasmas do not evolve to the state of thermo-
dynamic equilibrium. Instead collisionless relaxation cul-
minates in a stationary state in which the detailed balance
is violated. Using a combination of nonequilibrium statis-
tical mechanics and the theory of parametric resonances, it
is nevertheless possible to a priori predict the distribution
functions for the final stationary state. Unlike the normal
thermodynamic equilibrium, this state, however, explicitly
depends on the initial distribution of particle velocities and
positions.
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