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What Happened to the Gas-Liquid Transition in the System of Dipolar Hard Spheres?
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We explore the equilibrium properties of a system composed of dipolar hard spheres. A new theory
based on the ideas derived from the work of Debye and Hückel, Bjerrum, and Onsager is proposed to
explain the absence of the anticipated critical point in this system.
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A representation of polar liquid in terms of dipolar
hard spheres (DHS),N rigid spheres of diametera,
and dipole momentp inside a uniform medium of
dielectric constante0 is, probably, one of the most basic
statistical mechanical models. Yet, our understanding
this seemingly simple system is far from complete.
naive argument based partially on intuition and partial
on oversimplified approximations suggests that, as t
temperature is lowered, a fluid composed of DHS wi
phase separate into a coexisting liquid and gas phas
This conclusion seems to be quite intuitive, after all, if th
potential between two dipoles,

Udd�r� �
1

e0r3

µ
p1 ? p2 2

3�p1 ? r� �p2 ? r�
r2

∂
, (1)

is Boltzmann averaged over the relative orientations, o
finds the familiar1�r6 potential of van der Waals [1]
which, of course, leads to phase separation. This arg
ment, however, does not withstand the test of compu
simulations which, until now, have failed to locate an
vestige of phase transition [2–5]. Instead, the simul
tions find that, as the temperature is lowered, the dipo
spheres associate forming polymerlike chains [3]. Ca
the formation of chains explain the disappearance of t
liquid-gas transition?

To respond to this question is not easy. In searchi
for the answer, it is interesting to recall the mechanism
phase separation in a different, but very related, system
the restricted primitive model (RPM) of electrolyte [6]. In
that case, ions are idealized as hard spheres half of wh
carry a positive charge, while the other half carry a neg
tive charge. At low temperatures, formation of cluster
composed of positive and negative ions is energetically f
vored. First appear dimers made of12 pairs, then trimers
1 2 1, etc. [7]. This looks very similar to the formation
of chains in DHS, and yet the RPM does phase separa
while the DHS do not. What is responsible for this fun
damental difference? At first, one might try to appeal t
purely electrostatic considerations. Thus, it is tempting
attribute the phase transition in the RPM to the fact tha
by the time a cluster grows to contain four ions, the lin
ear configuration becomes energetically unfavorable, a
ions tend to arrange themselves in a square. These co
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pact configurations could, in principle, provide the nucle
for the start of condensation. It is tantalizing to think tha
this is the essential difference between the ions and t
dipoles; ions energetically prefer compact clusters, wh
dipoles prefer linear chains. As appealing as this argume
might sound, it is, nevertheless, incorrect. A careful anal
sis of energies clearly demonstrates that the compact c
figurations also become energetically favored for DHS b
the time the clusters grow to contain four or more dipole
[8]. Thus, a square cluster, in which the dipolar vectors a
arranged circularly (head-to-tail) at 45± to the lines con-
necting the centers of the nearest neighbors, has elec
static energysmaller than a linear chain of dipoles. The
fact that the simulations observe polymerlike chains
dipoles, instead of compact configurations favored by ele
trostatics, implies that the entropy plays an essential ro
in the formation of clusters. The energetics alone is i
sufficient to explain the distinct thermodynamic behavio
exhibited by the RPM and the DHS.

The analogy between the RPM and the DHS sugge
that the methods developed to study the RPM might al
be applicable to the exploration of DHS. In this respe
the Debye-Hückel-Bjerrum theory DHBj of electrolyte
has proven particularly illuminating [9,10]. This theory
augments the idea of screening, introduced by Debye a
Hückel [11], to explicitly take into account the formation
of clusters composed of oppositely charged ions [12]. T
estimates of critical parameters based on DHBj theo
are, thus far, the closest to Monte Carlo simulation
[13]. While the idea of cluster formation is directly
applicable to DHS and has already been exploited
various authors [14–17], dipoles, unlike ions, do no
produce any screening. Instead, the thermodynamic eff
of dipolar motion translates into renormalization of th
effective dielectric constant of the medium. The questio
that we would like to answer is whether this residua
interaction is sufficient to produce phase separation.

We shall proceed in the spirit of DHBj theory [10].
The reduced free energy density,f � bF�V , of solu-
tion will be constructed as a sum of terms embodying th
most relevant physical features of the system, starting w
the entropic ideal gas contributionfid � r ln�rL3� 2 r.
Here,r � N�V is the density of dipoles,b � 1�kBT , and
© 1999 The American Physical Society 1159
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L is the thermal wavelength. To obtain the electrostatic
free energy, let us fix one particle at the origin and calcu-
late the electrostatic potential that this dipole feels due to
the presence of other molecules. The electrostatic poten-
tial can be found from the solution of the Laplace equation,
=2f � 0, supplemented by the appropriate boundary con-
ditions. We shall separate this potential into two parts,
fin for r , a, and fout for r $ a. Clearly, r , a cor-
responds to the excluded volume region into which, due
to the hard-core repulsion, no other particles can pene-
trate. The boundary conditions require continuity of the
potential, fin�a� � fout�a�, and the displacement field,
e0f

0
in�a� � ef0

out�a�, across the surface r � a. We have
introduced the renormalized dielectric constant of the bulk
e, the expression for which can be obtained from the On-
sager’ s reaction field theory [18],

�e 2 e0� �e0 1 2e�
e

� 4pbp2r . (2)

The Laplace equation can now be integrated to yield the
potential of the central dipole due to other particles. The
electrostatic free energy of the whole system is obtained
through the Debye charging process [10,11] in which all
the particles in the system are charged simultaneously from
zero to their final dipolar strength,

Fdd � 2
2Np2

e0a3

Z 1

0
ldl

e�lp� 2 e0

2e�lp� 1 e0
. (3)

The integration can be done explicitly yielding the electro-
static free energy density [19],

fdd �
bFdd

V
� 2

1
4pa3

Ω
2 2 1

1
c�u�

1 c�u�

1
9
2

ln

µ
3

2c�u� 1 1

∂

1 3 lnc�u�
æ

, (4)

with

c�u� � e�u��e0 �
1
4

�1 1 u� 1
1
4

p
9 1 2u 1 u2 ,

(5)

and u � 4pr��T�, where we have introduced the re-
duced density r� � ra3 and the reduced temperature
T� � kBTe0a3�p2. Combining Eq. (4) with the entropic
contribution mentioned earlier, the total free energy
density of the system becomes f � fid 1 fdd . It is a
simple matter to see that as the temperature is lowered
this free energy violates the thermodynamic convexity
requirement, which results in a phase separation into co-
existing high and low density phases [19,20]. Specifically,
we find the critical parameters to be r�

c � 0.039 080 7 . . .
and T�

c � 0.138 904 . . . . In principle, we could have also
included the excluded volume contribution to the total free
energy, expressed through the free volume or Carnahan-
Starling approximation, but this would not significantly
affect the location of the critical point [21]. The funda-
1160
mental conclusion of this Debye-Hückel-Onsager theory
(DHO) is that the system of dipolar hard spheres separates
into a coexisting liquid and gas phases. Can this result be
trusted? Clearly, based on our experience with the RPM
[10], this conclusion must be taken with a grain of salt.
Just like pure DH, the DHO theory is linear. This means
that, although the DHO is quite adequate for capturing
physics of large length scales, it fails for short distances.
In particular, the DHO theory does not take into account
the low temperature propensity to form clusters. It is
precisely the importance of these configurations which
is lost in the process of linearizations [18] leading to the
Onsager relation (2). This conclusion is very similar
to the one reached for RPM [10]. A solution, in that
case, had been proposed more than seventy years ago
by Bjerrum, who suggested that the nonlinearities, in the
form of clusters, can be reintroduced into the DH theory
through the allowance of “chemical” association between
particles [12]. A theory based on Bjerrum’s concept
of chemical equilibrium has proven quite successful at
treating the phase separation in RPM [10]. This suggests
that the same kind of methodology might also be useful for
studying DHS. We, thus, suppose that at low temperatures
the system consists of some free unassociated dipoles of
density r1, as well as clusters containing 2 # n , ` hard
spheres. The density of an n cluster is rn. The particle
conservation requires that

r �
X̀
n�1

nrn . (6)

Following Bjerrum, we shall first treat clusters as non-
interacting ideal species. The interactions, therefore, are
restricted to unassociated dipoles, and their contribution
to the total free energy density is given by Eqs. (4) and
(5), with u � 4pr

�
1�T�. In the case of the RPM model,

this approximation has proven to be sufficient to locate
the critical point [10]. The free energy density of an n
cluster reduces to the ideal gas form,

fid
n � rn ln�rnL3n�zn� 2 rn , (7)

where we have introduced the internal partition function
of an n cluster,

zn �
1

Vn!

Z nY
i�1

d3ri
dVi

4p
e2bUdd

n . (8)

Here, Udd
n is the pairwise interaction potential obtained

from (1), and V’ s are the relative angular orientations of
dipoles forming a cluster. In the limit of low tempera-
tures, where the DHO predicts the location of the critical
point, the integrals in (8) can be evaluated for chainlike
configurations to yield [10,14]

zn �

Ω
pT�3a3

18

æn21

exp

Ω
n
T�

�c �2��n� 2 c �2��1��

1
2

T�
�c �1��n� 2 c �1��1��

æ
, (9)
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where c �1��n� and c �2��n� are the polygamma functions
of the first and second order, respectively. The condition
for chemical equilibrium between dipoles and clusters is
expressed through the law of mass action, mn � nm1,
where the reduced chemical potential of a species s is
ms � ≠f�≠rs. Substituting the total free energy density,
f �

P`
n�1 fid

n 1 fdd , we find the distribution of cluster
densities to be

rn � znrn
1 enm

ex
1 , (10)

where the excess chemical potential is defined in terms
of the excess over the ideal gas contribution, in this
case, mex

s � ≠fdd�≠rs. It is important to note that within
the Bjerrum approximation the excess chemical potential
depends only on the density of free dipoles, and the
expression (10) reduces to an infinite set of decoupled
algebraic equations.

We now make the following fundamental observation:
Since the clusters are ideal, their presence can only shift
the critical density, while leaving the critical tempera-
ture unaffected [10]. Thus, the critical point must still
be located at T�

c � 0.138 904 . . . and must still have the
density of free dipoles r

�
1c � 0.039 080 7 . . . ! The distri-

bution of clusters at criticality is obtained by substituting
these parameters into Eq. (10). In order for the sum in
(6) to converge, the Cauchy-Hadamard theorem requires
that D � limn!`r

1�n
n , 1. Inserting the critical parame-

ters into Eq. (10), we find that at criticality Dc � 100
and the theorem is strongly violated. The critical den-
sity r

�
1c lies far outside the radius of convergence of (6).

This means that for any finite total density r the den-
sity of free dipoles remains insufficiently small to reach
phase separation. Clearly, the argument presented above
assumes that only free particles interact while the clusters
are treated as noninteracting ideal species. This certainly
is a very strong approximation which must be considered
in more detail; nevertheless, we note that a similar ar-
gument has proven to be sufficient to locate the critical
point of the RPM [10]. In that case, it was found that, in
the vicinity of the critical point, the series (6) was very
quickly convergent with most of the ions belonging to
dipolar pairs [7,10].

To explore the role played by dipole-cluster and cluster-
cluster interactions, it is necessary to account for their
contribution to the overall free energy. This is far from
simple. Some progress, however, can be made if we make
the following observation. The electrostatic potential
produced by a rigid line of dipolar density p�a is exactly
the same as the potential due to two fictitious monopoles
of charge 6p�a located at the line’ s extremities. This
can be shown explicitly by integrating Eq. (1). The
isomorphism between the line of dipoles and two discrete
monopoles suggests that, for low temperatures, when
the dipolar chains are quite rigid, the dipole-cluster and
cluster-cluster contribution to the total free energy can
be approximated by the energy that is required to solvate
Nc � 2V

P`
n�2 rn monopoles in the sea of dipoles, and

by the energy of their mutual interaction. The solvation
energy of an ion can be obtained following the same
method presented earlier for calculating the dipole-dipole
contribution. We find

Fdc �
Ncp2

e0a3

Z 1

0
ldl

∑
e0

e�lp�
2 1

∏
. (11)

Performing the integration, the reduced free energy den-
sity due to dipole-cluster interactions is found to be

fdc �
X̀
n�2

rn

4pr
�
1

Ω
3
2

2
1

2c2�u�
1

1
c�u�

2 2c�u�

1 2 lnc�u�
æ

. (12)

Finally, the cluster-cluster contribution can now be esti-
mated as the energy of a plasma composed of Nc ions
inside a medium of dielectric constant e. We find the fa-
miliar Debye-Hückel expression [10,11],

fcc �
21

4pa3

∑
ln�1 1 ka� 2 ka 1

�ka�2

2

∏
, (13)

where now

�ka�2 �
8p

P`
n�2 r�

n

T�c�u�
. (14)

It is easy to check that at low temperatures both dipole-
cluster and cluster-cluster contributions are quite small,
and are unlikely to modify the previous conclusion of the
absence of criticality in DHS. The exact calculation is
rather difficult to perform since the law of mass action,
when the dipole-cluster and cluster-cluster interactions are
included into the total free energy, reduces to an infinite
set of coupled algebraic equations. The preliminary
analysis of these, based on a variational approximation
for the distribution of clusters, does not, however, find
any indication of phase separation. The details of these
calculations will be presented elsewhere.

We conclude that the low temperature propensity to
form weakly interacting clusters absorbs most of the
dipoles, preventing the density of free unassociated
particles from reaching the minimum necessary for phase
separation.
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