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Cascade Controlled Pneumatic 
Positioning System with LuGre Model 
Based Friction Compensation 
This paper proposes a cascade controller with friction compensation based on the LuGre 
model. This control is applied to a pneumatic positioning system. The cascade 
methodology consists of dividing the pneumatic positioning system model into two 
subsystems: a mechanical subsystem and a pneumatic subsystem. This division allows the 
introduction of friction compensation at force level in the pneumatic positioning system. 
Using Lyapunov´s direct method, the convergence of the tracking errors is shown under 
the assumption that the system parameters are known. Experimental results illustrate the 
main characteristics of the proposed controller. 
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Introduction 

Pneumatic positioning systems are very attractive for many 
applications because they are cheap, lightweight, clean, easy to 
assemble and present a good force/weight ratio. In spite of these 
advantages, pneumatic positioning systems possess some 
undesirable characteristics which limit their use in applications that 
require a fast and precise response. These undesirable characteristics 
derive from the high compressibility of the air and from the 
nonlinearities present in pneumatic systems.1 

To overcome the difficulties introduced by the high 
compressibility of the air and by the nonlinear air flow through the 
servovalve, a cascade control strategy has been developed in which 
the pneumatic positioning system is interpreted as an interconnected 
system: a mechanical subsystem driven by the force generated by a 
pneumatic subsystem (Guenther and Perondi, 2002).  

Nonlinear friction is another important factor that affects the 
precision of the system position response. In pneumatic positioning 
systems the friction forces between the slider-piston system surfaces 
in contact are strongly dependent on the physical characteristics of 
the contacting surfaces, such as their material properties and 
geometry, and their lubrication conditions.  

Classical friction models use static mappings that describe the 
steady state relation between velocity and friction force, which can 
be characterized by the viscous and Coulomb friction with Stribeck 
effect combination. However, some friction phenomena cannot be 
captured by static mapping, as for example, hysteretic behaviour 
with non-stationary velocity and breakaway force variations. 
Therefore, in the mechanics-related controller design, simple 
classical models are not sufficient to address applications with high-
precision positioning requirements and low velocity tracking. Thus, 
to obtain accurate friction compensation and best control 
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performance, friction forces model with dynamic behaviour is 
necessary (Armstrong et al., 1994). 

A friction model that represents most of the steady state and 
dynamic friction properties, the LuGre model, has been proposed by 
Canudas de Wit et al. (1995). In this model, the friction force is 
modelled as the average deflection force of elastic bristles between 
two contacting surfaces. The tangential force applied to the 
contacting objects causes the bristles to deflect like springs. The 
average deflection is modelled by a first-order nonlinear differential 
equation, which describes the dynamic behaviour of the overall 
friction force. 

Although friction compensation is especially important for 
pneumatic devices, it is particularly difficult to be performed using 
non-model based compensation or even model-based compensation 
(see Armstrong et al., 1994). The model-based friction 
compensation, adopted in this work, uses an on-line friction force 
estimation scheme. The compensation is achieved by adding the 
estimated friction force to the reference force generated by the 
position controller at the force level. To use this compensation 
scheme it is usually assumed that the actuator has a fast and accurate 
force response (Canudas de Wit et al., 1995, Lischinsky et al., 
1999). This assumption is generally verified for positioning systems 
with electric actuators and sometimes for positioning systems with 
hydraulic actuators. Nevertheless, most pneumatic positioning 
systems do not provide a sufficiently fast and efficient force 
response. 

The cascade control strategy adopted in this work allows us to 
introduce the friction compensation at the force level without any 
assumption about the actuator force response. This occurs because, 
according to this strategy, the mechanical subsystem is driven by the 
force generated in the pneumatic subsystem. So, it is possible to 
introduce the friction compensation by adding the estimated friction 
force at the mechanical subsystem, i.e., at the force level. It should 
be remarked that the friction force observer proposed by Canudas de 
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Wit et al. (1995) requires slight modifications to be applied in the 
cascade control scheme. 

This paper presents a cascade controller scheme that applies the 
LuGre model friction compensation technique to a pneumatic 
positioning system. The convergence of the tracking errors is 
demonstrated using the Lyapunov direct method when all the system 
parameters are known and there are no external forces. Experimental 
results illustrate the main properties of the proposed controller. 

This paper is organized as follows. In Section 2, the 
experimental test rig is described. Section 3 is dedicated to the 
presentation of the theoretical model of the investigated system, 
while, in Section 4, the cascade controller and the proposed friction 
force estimator are described. The controller stability properties are 
stated in Section 5. In Section 6, the experimental results are 
presented. Finally, the main conclusions are outlined in Section 7. 

Nomenclature 

A  = piston area, m2 
cp = air specific heat at constant pressure, J/Kg K 
cv = air specific heat at constant volume, J/Kg K 
d(t) = disturbance 
D = tracking error matrix  
e(t) = error function  
F = force, N 
Fa = friction force, N 
Fc = Coulomb friction force, N 
Fe = external forces, N 
Fs  = static friction force, N 
g = continuous vector force, N 
g(t) = action force, N 
gd(t) = desired action force, N 
H(s) = generic transfer function 

ĥ  = pneumatic subsystem dynamics independent of the control 
voltage 
I = identity matrix  
K = positive gain 
KD = cascade controller’s positive gain 
Ko = positive gain 
KP = cascade controller’s positive pressure gain 
kv = real positive constant 
L = piston stroke, m 
M = mass, Kg 
m(.) = smoothing function 
N = state dependent matrix 
p = absolute pressure, Pa 
p∆ = pressure drop, Pa 
P = real positive constant 
P∆δ = desired pressure drop, Pa 
Q = heat transfer energy, J 
qm = mass flow rate, Kg/s 
QN = nominal volumetric flow rate ]s/m[ 3  
R = gas constant, KgJ/K 
R = residual set 
r = specific heat ratio, dimensionless 
s = velocity error function, m/s 
s = Laplace operator 
T = temperature, K 
t = time, s 
u = control voltage signal, V 
ua = auxiliary signal 

*
au  = ideal auxiliary signal 

û = pneumatic subsystem dynamics dependent of the control 
voltage, m3/s 

V10 = fixed volume at chamber 1 end of the stroke, m3 

V20 = fixed volume at chamber 2 end of the stroke, m3 

V = non negative scalar function, Lyapunov´s function  
y(t) = piston position, m 
yd(t) = desired piston position, m 

máxy  = extreme desired position, m 

ry&  = reference velocity, m/s 

sy&  = threshold Stribeck velocity, m/s 

 z = presliding displacement 

Greek Symbols 

γ = maximum/minimum eigenvalue ratio, bounded real number 
η = constant that measures trajectory speed  
λ = cascade controller’s gain 
λmax = maximum eigenvalue 
λmin = minimum eigenvalue 
ρ = density [Kg/m3] 
ρρρρ = closed loop tracking error 
σ0  = elastic stiffness coefficient [N/m2] 
σ0e = estimated elastic stiffness coefficient [N/m2] 
σ1 = friction coefficient [Ns/m] 
σ2 = viscous friction coefficient [Ns/m] 
ω = frequency [rad/s] 
Ω = a specific domain 
ϖn = natural frequency [rad/s] 
ζ = dumping ratio, dimensionless 

Subscripts 
*    relative to exact or known value 
0    relative to initial or normalized conditions 
1   relative to cylinder’s chamber 1 
2   relative to cylinder’s chamber 2 
d   relative to desired condition 
I     relative to initial condition 
max    relative to maximum value condition 
min   relative to minimum value condition 
N    relative to nominal value 
r    relative to reference signal 

∆   relative to gradient 

The Pneumatic Positioning System 

The system under consideration is shown in Fig.1. It consists of 
a proportional servovalve 5/3 (MPYE-5-1/8 FESTO) that drives a 
double action rodless cylinder, with internal diameter of 0.025 [m] 
and 1 [m] stroke (DGPL-1000 FESTO).  

The measured nominal flow rate is QN = 7.10-3 [m3/s] (420 
[L/min]) and, due to an internal feedback, it is independent of the 
supply pressure. This fact assures an approximately linear behaviour 
of the valve opening. A small overlap causes a 4% dead-zone. The 
piston is connected to a linear sensor (Festo POT-1000-TFL), with a 
stroke equal to the cylinder stroke (1.0 [m]). The absolute pressure 
in each cylinder chamber and the supply pressure are measured 
through three piezoelectric pressure sensors. The control and data 
acquisition apparatus consists of a control board (dSPACE GmbH – 
DS1102) and an IBMPC Pentium 100MHz microcomputer. The 
sampling time is 1 [ms]. 
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Figure 1. Experimental rig. 

The Dynamic Model 

The dynamic model used in this work is developed based on: (i) 
the description of the relationship between the air mass flow rate 
and pressure changes in the cylinder chambers, and (ii) the 
equilibrium of the forces acting at the piston, including the friction 
force.  

The relationship between the air mass flow rate and the pressure 
changes in the chambers is obtained using energy conservation laws, 
and the force equilibrium is given by Newton’s second law. The 
friction force is included in the LuGre friction model. 

Conservation of Energy 

The internal energy of the mass flowing into chamber 1 is 
TqC mp 1 , where Cp is the constant pressure specific heat of the air, 

T  is the air supply temperature, and ( )dtdmqm 11 =  is the air mass 

flow rate into chamber 1. The rate at which work is done by the 

moving piston is 11Vp & , where 1p  is the absolute pressure in 

chamber 1 and ( )dtdVV 11 =&  is the volumetric flow rate. The time 

air internal energy change rate in the cylinder is ( ) dtTVCd V 11ρ , 

where CV is the constant volume specific heat of the air and ρ1 is the 
air density. We consider the ratio between the specific heat values as 

VP CCr = and that )(1 RTCV=ρ  for an ideal gas, where R is the 

universal gas constant. An energy balance yields 
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where the rate of heat transfer through the cylinder walls (Q& ) is 
considered negligible. The total volume of chamber 1 is given by 

101 VAyV += , where A is the cylinder cross-sectional area, y is the 

piston position and 10V  is the dead volume of air in the line and at 

the chamber 1 extremity. The change rate for this volume is 

yAV && =1 , where dtdyy /=&  is the piston velocity. After calculating 

the derivative term in the right hand side of (1) we can solve this 
equation to obtain 
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where )1/()( −= rrRCp . 

Similarly for chamber 2 of the cylinder we obtain 
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where L is the cylinder stroke. 

Assuming that the mass flow rates are nonlinear functions of the 
servovalve control voltage (u) and of the cylinder pressures, that is, 

),( 111 upqq mm =  and ),( 222 upqq mm = , expressions (2) and (3) 

result in 
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Piston Dynamics 

Applying Newton’s second law to the piston-load assembly 
results in 

 

)( 21 ppAFFyM ea −=++&&  (6) 
 

where M is the mass of the piston-load assembly, aF  is the 

friction force, eF  is the external force and )( 21 ppA −  is the 

force related to the pressure difference between the two sides 
of the piston (see Fig. 2).  

 

 
Figure 2. Force equilibrium at the piston. 

Friction Model 

In this paper the friction force (aF ) is described according to the 

LuGre friction model proposed by Canudas et al. in [2]. This model 
satisfies the requirements for friction compensation in pneumatic 
systems because it can describe complex friction behavior, such as 
stick-slip motion, presliding displacement, Dahl and Stribeck effects 
and frictional lag. 

In this model the friction force is given by 
 

y
dt

dz
zFa

&
210 σσσ ++=  (7) 

 
where z is a friction internal state that describes the average elastic 
deflection of the contact surfaces during the stiction phases, the 
parameter 0σ  is the stiffness coefficient of the microscopic 
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deformations z during the presliding displacement, 1σ  is a damping 

coefficient associated with dtdz  and 2σ  represents the viscous 

friction. The dynamics of the internal state z are expressed by 
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where )(yg &  is a positive function that describes the “steady-state” 
characteristics of the model for constant velocity motions and is 
given by 
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where CF  is the Coulomb friction force, SF  is the static friction 

force and Sy&  is the Stribeck velocity. In equation (9) it can be 

observed that )(yg &  is bounded by the static friction force sF . 

An important property of the LuGre friction model is that the 
average elastic deflection z is bounded. This statement can be 
outlined by considering the following Lyapunov candidate function: 
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Differentiating (10) and combining with equation (8), it can be 

written: 
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The time derivative of the Lyapunov candidate function dV/dt 

given in (11) is negative if | ( ) 0/σygz &> , since ( )yg &  is strictly 

positive and bounded by Fs  (see equation (9)). It results that the set 
Π = {  z: |z| ≤ Fs /σ0 } is an invariant set for the solutions of equation 
(8), and that the elastic deflection z is bounded. 

The Interconnected Model 

Equations (4), (5), (6), (7) and (8) constitute a fifth order 
nonlinear dynamic model of the pneumatic positioning system with 
friction. To rewrite this model in an interconnected form, 
appropriate for our cascade controller design, we define 
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The pressure difference change rate, calculated using 

expressions (4) and (5), is given by 
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Separating ∆p&  into the terms affected by the servovalve control 

voltage u and the terms which are functions only of piston position 
and velocity, we obtain the functions ),,,(ˆˆ

21 uyppuu = and 
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This allows us to rewrite expression (13) as 
 

),,,(ˆ),,,(ˆ 2121 uyppuyypphp +=∆ &&  (16) 
 
Equations (12) and (16) describe the pneumatic positioning 

system dynamics.  
 

y&

y
u ∆p

Pneumatic positioning system

pneumatic
subsystem

mechanical
subsystem

 
Figure 3. Pneumatic system described as two interconnected subsystems. 

 
Equation (12) represents the mechanical subsystem driven by a 

pneumatic force ∆= Apg . Equation (16) describes the dynamics of 

the pneumatic subsystem in which this pneumatic force is generated 
by commanding the control voltage u appropriately. This 
interpretation reinforces the interconnected model description 
(Fig.3). 

The Cascade Control Strategy 

We present here the cascade control strategy based on the 
methodology of order reduction described in Utkin (1987). This 
cascade control strategy has been used successfully in the control of 
robot manipulators with electric actuators (Guenther and Hsu, 
1993), to control flexible joint manipulators (Hsu and Guenther, 
1993) and  hydraulic actuators (Guenther and De Pieri, 1997, Cunha 
et al., 2002). 

According to this strategy, the pneumatic positioning system is 
interpreted as an interconnected system like that presented in Fig.3 
and its equations can thus be rewritten in a convenient form. To 
perform this task we initially define the pressure difference tracking 
error as 

 

dppp ∆∆∆ −=~  (17) 
 

where dp∆  is the desired pressure difference to be defined based on 

the desired force dd Apg ∆= . This is the desired force required on 

the piston-load assembly mass to obtain a desired tracking 
performance. Using the definition (17), equations (12) and (16) may 
be rewritten as 

 
  )(tdApyM d += ∆&&  (18) 

 

),,,(ˆ),,,(ˆ 2121 uyppuyypphp +=∆ &&  (19) 
 

where )(td  is an input disturbance given by 
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ea FFpAtd −−= ∆
~)(  (20) 

 
The system (18)(19) is in the cascade form. Equation (18) can 

be interpreted as a mechanical subsystem driven by a desired force 

dd Apg ∆=  and subjected to an input disturbance )(td . Equation 

(19) represents the pneumatic subsystem. 
The design of the cascade controller for the system (18)(19) can 

be summarized as follows: 

(i) – Compute a control law )()( tAptg dd ∆=  for the mechanical 

subsystem (18) such that the piston displacement ()(ty ) achieves a 

desired trajectory )(tyd  taking into account the presence of the 

disturbance )(td ; and then 

(ii) – Compute a control law )(tu  such that the pneumatic 

subsystem (19) applies a pneumatic force )()( tAptg ∆=  to the 

mechanical subsystem that tracks the desired force )()( tAptg dd ∆= . 

In this paper the design of the mechanical 
subsystem control law )(tgd  is based on the controller proposed by 

Slotine and Li (1988), including a friction compensation scheme 
based on the LuGre friction model. The control law )(tu  is 
synthesized to achieve good tracking performance characteristics 
related to the pneumatic subsystem.  

Friction Force Observer 

According to Canudas de Wit et al. (1995) the estimated friction 

force aF̂  is given by 
 

y
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where )(ˆ tz  is the estimated friction internal state given by 
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and 0K  is a positive constant. 

In Canudas de Wit et al. (1995) the authors show that the 
friction force observer (21)(22) applied to an electric actuator leads 
the position error )(~ ty  to converge asymptotically to zero if the 
electric actuator position controller is designed such that the 
dynamic relating the position error )(~ ty  and the estimation error 

)(ˆ)()(~ tztztz −=  is strictly positive real (SPR). 
The observer (22) requires a slight modification to be used 

within the cascade control scheme. This modification is required 

because the value of the friction force time change rate aF&  is used 

to calculate the control signal in the cascade control strategy. So, the 
function y&  has to be smoothed by a function )(ym &  (like 

)arctan()2()( ykyym v
&&& π= , where vk  is a positive constant, for 

example). Note that, as with the function y& , the function )(ym &  is 

equal to zero at the origin ( 0)0( =m ). 
Additionally, to achieve the desired stability properties for the 

pneumatic positioning system closed loop, it is proposed in this 
paper that the internal state )(ˆ tz  is estimated using the following 
modified observer 
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where K is a positive constant and s is the measure of the velocity 
tracking error defined in equation (27). 

Introducing the function )(ym & , the residual difference 

0)( ≥∆ y&  is defined as 
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and the friction internal state estimating error )(~ tz  is given by  
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Tracking Control of the Mechanical Subsystem 

Based on Slotine and Li (1988) and including the friction 
compensation, the following control law to obtain trajectory 
tracking in the mechanical subsystem is proposed: 

 

aDrd FsKyMg ˆ+−= &&   (26) 

 
where DK  is a positive constant, ry&  is the reference velocity and s 

is a measure of the velocity tracking error. 
In fact, ry&  can be obtained by modifying the desired velocity dy&  as 

follows 
 

 yyy dr
~λ−= &&  ; dyyy −=~ ;      yyyys r
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where λ  is a positive constant. 
Let the friction force be given according to the LuGre friction 

model (7). Substituting (26) in (18) and using definition (20) and the 
observer (21)(23), the error equation related to the mechanical 
subsystem becomes 
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Consider the non-negative function 
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Using (25) and (28), the time derivative of (29) along the 

mechanical subsystem trajectories is given by 
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Expression (30) will be used in the stability analysis. 

Tracking Control of the Pneumatic Subsystem 

In order to obtain force tracking in the pneumatic subsystem (19) we 
propose the following control law 

 

AspKuu Pa −−= ∆
~ˆ  (31) 
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where au  is an auxiliary control signal, PK  is a positive constant, A 

is the cylinder cross-sectional area, and s is defined in (27). 
Substituting (31) in (19), the resulting pneumatic subsystem 

closed loop dynamics gives 

 

AspKuyypphp pa −−+= ∆∆
~),,,(ˆ 21

&&  (32) 

 
The designs of the auxiliary signal au  and of the constant PK  

are based on the non-negative function 2V  defined as 
 

2
2

~2 ∆= pV  (33) 
 

The time derivative of (33) is given by )(~
2 dpppV ∆∆∆ −= &&& , 

where the time derivative of the desired pressure difference 
( Agp dd /&& =∆ ) is obtained using (26). So, in order to calculate dp∆& , 

we need to know the acceleration signal. In the ideal case (where all 
the parameters are known and there is no friction or external forces), 
the acceleration may be calculated using expression (6) by means of 
the pressure difference ∆p  measurement. 

The time derivative of (33) along the pneumatic subsystem 
trajectories is obtained using the closed loop dynamics (32): 
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Defining the ideal auxiliary signal as 
 

  ),,,(ˆ 21
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results in 
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where *
aaa uuu −=∆  is the auxiliary signal error. In the ideal case, 

*
aa uu = , 0=∆ au , and expression (36) results in 
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~~2

2
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Expression (37) will also be used in the stability analysis. 

The Pneumatic Positioning System Controller  

The pneumatic positioning system cascade controller is a 
combination of the mechanical subsystem position tracking control 
law (26) and the control signal designed to obtain the pneumatic 
subsystem tracking force (31). 

Using (26) we calculate the desired pressure difference to obtain 
the trajectory tracking in the mechanical subsystem, Agp dd =∆ . 

In the ideal case, in which *
aa uu = , the signal û  is calculated 

using equations (31) and (35). The necessary time derivative of the 
desired pressure difference is obtained as described above, and the 

function ),,,(ˆˆ
21 yypphh &=  as defined in (15). 

The servovalve control voltage u is obtained through the inverse 
of the function (14), that is,  

 

)ˆ,,,( 21 uyppuu =  (38) 
 

The use of the inverse defined in (38) and the function 

),,,(ˆˆ
21 yypphh &=  in the control law may be interpreted as a 

feedback linearization scheme (see Khalil, 1996). 

Stability Analysis 

Consider the cascade controlled pneumatic positioning system 
with the friction observer. In this case the closed loop system is 

)}31(),26(),23(),21(),16(),12{(=Ω . 

We assume that the desired piston position )(tyd  and its 

derivatives, up to 3rd order are uniformly bounded. 
For the ideal case, in which all the system parameters are known 

and there is no external forceeF , the tracking errors convergence 

properties are stated below. 
 

Theorem – When all the system parameters are known and there is 
no external force eF , given an initial condition, the controller gains 

can be chosen in order to obtain the convergence of the tracking 

errors, )(~ ty& and )(~ ty , to a residual set R as ∞→t . The set R 
depends on the friction characteristics and the controller gains. 

 
Proof: Consider the lower bounded function 
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where the functions 1V  and 2V  are defined in (29) and (33), 

respectively. 
This expression can be written in the following matrix equation 

form  
 

ρρ 12

1
NV T=  (40) 

 

where the error state vector is defined as Tzps ]~~[ ∆=ρ  and 1N  

is a positive definite diagonal matrix given by 
 

[ ]1
1 1 −= KMdiagN  (41) 

 
In the ideal case 0=∆ au  and, according to the expressions (30) 

and (37), the time derivative of (39) is given by 
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Written in a matrix equation form this expression results:  
 

)(2 ρρρρ DNV TT +−=&  (43) 
 

where 
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The matrix 2N  is state dependent. Specifically it depends on the 

function )(yg &  defined in (9) and on the function )(ym & , used in 

order to smooth y&  in equation (23). In the sequence we establish 

the conditions to make this matrix be uniformly positive definite.  
To this end, first we observe that the function )(ym &  is equal to 

zero in the static friction range ( 0=y& ), and positive ( 0)( >ym & ) if 

0≠y& . 

Out of the static friction range, with 0≠y& , using the Gershgorin 

theorem it should be observed that the matrix 2N  in (44) is positive 

definite if: 
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From (i) it results that: 
 

1

2

σ
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Taken into account that the function )(ym &  grows as the velocity 

grows, consider that, given an initial condition, an upper limit to the 
velocity, maxy& , exists. This implies that an upper limit to )(ym &  

( 0)( >∈≤ tmym & ) also exists.  

Since the function )(yg &  is bounded by the static friction force 

SF , for the given initial condition expression (ii) gives: 
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It should be observed that DK  is a positive constant and so the 

following additional restriction should be satisfied: 
 

   
SF

m
K

2

1<   (48) 

 
Under conditions (46), (47) and (48), the matrix 2N  results 

uniformly positive definite, i.e.: 
 

IN α≥2   (49) 
 

where α  is a positive constant given by: 
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Using (49) in (43) and employing the Rayleight-Ritz theorem, it 

can be written that 
 

)(
2 ρρρα DV +−≤&  (51) 

 
Expression (45) allows the observation that the disturbance 
)(ρD  is caused by the bounded elastic deflection z and by the 

residual difference 0)( ≥∆ y& , defined in (24), which is equal to zero 

as the velocity y&  is null or as vky 2π→& , and is limited otherwise. 

So we may establish a superior limit for DD ≤)(ρ . Therefore: 

 

ρρα DV +−≤ 2&  (52) 

 

The condition in which the time derivative V& is negative is 
given by: 

 

α
ρ D>   (53) 

 
By the Rayleight-Ritz theorem the expression (40)  results 
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Using the condition (53) in (54) allows to verify that the region 

in which the function V is negative is limited by a constant value. 
Expressions (52) and (54) show that ρ  tends to a residual set as 

∞→t . Expression (53) outlines that this residual set depends on 

the value of the disturbance bound D  and on the value α  defined 
in (50). Consequently each error vector component tends to a 
residual. This means that the velocity error measure s(t) tends to a 
residual set. This error can be interpreted as an input of the first 
order filter given in (27), and based on this interpretation we 

conclude that the tracking errors )(~ ty&  and )(~ ty tend to a residual 
set as ∞→t . This completes the proof. 

 

Remark 1: As )(~ ty&  tends to a limited residual set, and as the 

desired velocity ( )tyd
&  is also limited, from the error definition in 

(27) it results that the velocity ( )ty&  is limited, i.e., there is an upper 

bound maxy&  as considered above, which depends on the closed loop 

system dynamics and on the initial conditions. 
Remark 2: From remark 1 it is clear that the initial conditions 
should be chosen in order to satisfy the conditions (47) and (48). 
Therefore, the theorem result depends on the initial conditions, and 
so, it is a local result. 

Remark 3: The “disturbance” upper bound (D ) depends on the 
friction characteristics (see (45)) and on the smoothing function 

)(ym & . The positive constant α  defined in (50) depends on the 
controller gains. Therefore, the residual set given by (53) depends 
on the friction characteristics, on the smoothing function and on the 
controller gains. 
The experimental results presented in the next section validate these 
theoretical statements. 

Experimental Results 

The parameters used in the experiments are: A = 4.19x10-4 [m2], 
r  = 1.4, R = 286.9 [J Kg/K], T = 293.15 [K], L = 1 [m], 

=10V 1.96x10-6 [m3], =20V  4.91x10-6 [m3] and M = 2.9 [Kg]. All 

experimental tests were realized without applying external forces 
( eF = 0). 

The mass flow functions ),( upq imi  defined in Eq. (4) and (5), 

are identified according to the methodology presented in Perondi 
and Guenther (2003). This allows the calculation of the servovalve 
control voltage using the inverse defined in Eq.(38) (see Perondi and 
Guenther, 2003, for details). 
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The experimental tests are performed using a sinusoidal and a 
polynomial desired trajectory. The sinusoidal desired trajectory is 
given by )sin()( wtyty máxd = , 45,0=máxy [m] and 2=w  [rad/s] 

(see Fig. 5a). 
The polynomial trajectory starts with the piston at 0.05 [m] 

measured from the end of the cylinder ( 05,0)0( =dy [m]), and 

reaches a steady-state trajectory at 95,0)2( =dy [m] according to a 

function described by the 7th order polynomial given in (55). This 
position is maintained for 2 [s]. Then, the piston returns to the initial 
position in 2 [s] according to a polynomial similar to (55), where it 
stays for 2 [s], and so on. This desired trajectory is shown in figures 
5 and can be described by equations (55) and (56). 

 
4567 5,102,25216)( tttttydp +−+−=  (55) 

 
The mechanical subsystem controller is designed according to 

Eq. (26) using equations (21) and (23). The pneumatic subsystem 
controller is given by Eq. (31), and by the calculation of the 

auxiliary signal au  through Eq. (35), as in the ideal case ( *
aa uu = ). 

 
]m[  

=)(tyd  )2/(05.0 tydp+            2<t  

95.0                                              42 <≥ t  

)2/)4((95.0 −− tydp                 64 <≥ t  

 05.0                                              86 <≥ t  (56) 
 
In order to obtain a response without actuator vibrations and a 

sufficiently smooth control signal, the control gains are chosen as 
=DK 40, =λ 20, =PK 150, and the friction force observer 

parameters are 0σ = 4500, 1σ = 93.13, 2σ = 89.86, sv = 0.02 [m/s], 

cF =32.9 [N], sF =38.5 [N], K =2.22x10-6. 

In the experimental implementation, the velocity is obtained 
using a filter and a numeric derivative process and the acceleration 
is calculated based on the nominal parameters. 

Figure 4 presents the polynomial desired trajectory, the response 
to this trajectory using the cascade controller with friction 
compensation and the tracking error obtained in this case. In order 
to outline the friction compensation effect, Fig.5 shows the response 
obtained without this compensation and the respective tracking 
error. The tracking errors for both cases are presented in detail in 
Fig. 6. while Fig. 7 shows the control signal using friction 
compensation. 
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Figure 4. Polynomial dyy,  and y~  trajectories with friction 

compensation. 
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Figure 5. Polynomial dyy,  and y~ trajectories without friction 

compensation. 

 
The results presented in Figures 4, 5, 6 and 7 outline the 

efficiency of the proposed friction compensation in diminishing the 
trajectory tracking errors and the steady state position error. These 
experimental results confirm the tracking error convergence 
theoretically established. 
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Figure 6. Polynomial tracking position error for both cases. 
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Figure 7. Control signal u (with friction compensation) for  the polynomial 
tracking case. 
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Figure 8. Sinusoidal dyy,  and y~ trajectories with friction. 

 
Figure 8 presents the desired sinusoidal trajectory, the response 

to this trajectory using the cascade controller with friction 
compensation and the tracking error obtained in this case. Figure 9 
shows the response obtained without this compensation and the 
respective tracking error.  
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Figure 9.  Sinusoidal dyy,  and y~ trajectories without friction 

compensation. 

 
The tracking errors for both cases are presented in detail in Fig. 

10. Figure 11 shows the control signal using friction compensation. 
These experimental results confirm the importance of the friction 
compensation. 

Conclusions 

In this work a cascade controller with friction compensation for 
a pneumatic positioning system was proposed, and the convergence 
of its tracking errors was theoretically and experimentally 
demonstrated. It was outlined that the cascade control strategy 
allows the use of the LuGre friction model without any assumptions 
about the force response in the actuator. The experimental results 
confirm the theoretical results and demonstrate the efficiency of the 
friction compensation. Future research will include methods to deal 
with the system parameter uncertainties. 

 

0 1 2 3 4 5 6 7 8 -0.2 

-0.15 

-0.1 

-0.05 

0 

0.05 

0.1 

0.15 

with compensation 
without compensation 
 

time [s] 

p
o

si
tio

n
 e

rr
o

r 
[m

] 

 
Figure 10. Sinusoidal tracking position error for both cases. 
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Figure 11. Control signal u (with friction compensation). 
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