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Introduction

Pneumatic positioning systems are very attractime rhany
applications because they are cheap, lightweigleane easy to
assemble and present a good force/weight ratisplte of these
advantages, pneumatic positioning systems
undesirable characteristics which limit their useapplications that

require a fast and precise response. These unolesitaaracteristics

derive from the high compressibility of the air afiem the
nonlinearities present in pneumatic systems.

To overcome the difficulties
compressibility of the air and by the nonlinear flow through the
servovalve, a cascade control strategy has beeziaed in which

the pneumatic positioning system is interpretedrasiterconnected
system: a mechanical subsystem driven by the fgecerated by a

pneumatic subsystem (Guenther and Perondi, 2002).
Nonlinear friction is another important factor theffects the
precision of the system position response. In praienpositioning

systems the friction forces between the slideropislystem surfaces

in contact are strongly dependent on the physicatacteristics of
the contacting surfaces, such as their materiapepties and
geometry, and their lubrication conditions.

Classical friction models use static mappings thegcribe the
steady state relation between velocity and fricfimrce, which can
be characterized by the viscous and Coulomb frictiith Stribeck
effect combination. However, some friction phenomeannot be
captured by static mapping, as for example, hystelehaviour
with non-stationary velocity and breakaway forceriatzons.
Therefore, in the mechanics-related controller giesisimple
classical models are not sufficient to addressiegins with high-
precision positioning requirements and low velotigcking. Thus,
to obtain accurate friction compensation and besntrol
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possasse s

introduced by the hig

performance, friction forces model with dynamic &elour is
necessary (Armstrong et al., 1994).

A friction model that represents most of the steathte and
dynamic friction properties, the LuGre model, hagtbproposed by
Canudas de Wit et al. (1995). In this model, thetitm force is
modelled as the average deflection force of eldsistles between
two contacting surfaces. The tangential force a&pgplio the
contacting objects causes the bristles to defli&et $prings. The
average deflection is modelled by a first-orderlma&ar differential
equation, which describes the dynamic behavioutthef overall

hfriction force.

Although friction compensation is especially im@ot for
pneumatic devices, it is particularly difficult be performed using
non-model based compensation or even model-basedersation
(see Armstrong et al., 1994). The model-based idrct
compensation, adopted in this work, uses an onftiegon force
estimation scheme. The compensation is achieveadang the
estimated friction force to the reference force egated by the
position controller at the force level. To use tliempensation
scheme it is usually assumed that the actuatoa lf@st and accurate
force response (Canudas de Wit et al., 1995, Lisklyi et al.,
1999). This assumption is generally verified fosiioning systems
with electric actuators and sometimes for positignsystems with
hydraulic actuators. Nevertheless, most pneumatsitipning
systems do not provide a sufficiently fast and ceffit force
response.

The cascade control strategy adopted in this widwa us to
introduce the friction compensation at the forceelewithout any
assumption about the actuator force response. odusrs because,
according to this strategy, the mechanical subsysealriven by the
force generated in the pneumatic subsystem. Sig, piossible to
introduce the friction compensation by adding thtneated friction
force at the mechanical subsystém, at the force level. It should
be remarked that the friction force observer pregdsy Canudas de
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Wit et al. (1995) requires slight modifications tie applied in the
cascade control scheme.

This paper presents a cascade controller scherhaphhes the
LuGre model friction compensation technique to aeymatic
positioning system. The convergence of the trackamgors is
demonstrated using the Lyapunov direct method veflehe system
parameters are known and there are no externadoExperimental
results illustrate the main properties of the psgabcontroller.

This paper is organized as follows. In Section Be t
experimental test rig is described. Section 3 idicied to the
presentation of the theoretical model of the ingased system,
while, in Section 4, the cascade controller andptteposed friction
force estimator are described. The controller Etalproperties are
stated in Section 5. In Section 6, the experimengsults are
presented. Finally, the main conclusions are cedliim Section 7.

Nomenclature

A =piston area, M

c, = air specific heat at constant pressure, J/Kg K
¢, = air specific heat at constant volume, J/Kg K
d(t) = disturbance

D =tracking error matrix

e(t) = error function

F = force, N

F, = friction force, N

F. = Coulomb friction force, N

F. = external forces, N

Fs = static friction force, N

g = continuous vector force, N

g(t) = action force, N

gq(t) = desired action force, N

H(s) = generic transfer function

h = pneumatic subsystem dynamics independent aittizol
voltage

| = identity matrix

K = positive gain

Kp = cascade controller’s positive gain

Ko = positive gain

Kp = cascade controller’s positive pressure gain
k, = real positive constant

L = piston stroke, m

M = mass, Kg

m(.) = smoothing function

N = state dependent matrix

p = absolute pressure, Pa

p4 = pressure drop, Pa

P = real positive constant

P,s= desired pressure drop, Pa

Q = heat transfer energy, J

0m = mass flow rate, Kg/s

Qn= nominal volumetric flow ratgm® /s]

R = gas constant, KgJ/K

R = residual set

r = specific heat ratio, dimensionless
s = velocity error function, m/s

s = Laplace operator

T = temperature, K

t=time, s

u = control voltage signal, V

U, = auxiliary signal

u, = ideal auxiliary signal

0 = pneumatic subsystem dynamics dependent obtiteot
voltage, n's
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Vi, = fixed volume at chamber 1 end of the stroke, m
V,o = fixed volume at chamber 2 end of the strokk, m
V = non negative scalar function, Lyapunov’s fumcti
y(t) = piston position, m

Yq(t) = desired piston position, m

Yoax = €Xtreme desired position, m

y, = reference velocity, m/s

ys = threshold Stribeck velocity, m/s

z = presliding displacement

Greek Symbols

y= maximum/minimum eigenvalue ratio, bounded reahber
n = constant that measures trajectory speed

A = cascade controller’s gain

Amax= maximum eigenvalue

Amin = Minimum eigenvalue

= density [Kg/m]

p= closed loop tracking error

o = elastic stiffness coefficient [Nfin

Oe = estimated elastic stiffness coefficient [RY/m
o, = friction coefficient [Ns/m]

0, = viscous friction coefficient [Ns/m]

w= frequency [rad/s]

Q= a specific domain

a, = natural frequency [rad/s]

{ = dumping ratio, dimensionless

Subscripts

relative to exact or known value
relative to initial or normalized conditions
relative to cylinder’'s chamber 1
relative to cylinder’'s chamber 2
relative to desired condition

relative to initial condition

max relative to maximum value condition
min relative to minimum value condition
N relative to nominal value

¢, relative to reference signal

4 relative to gradient

— a N Pk O

The Pneumatic Positioning System

The system under consideration is shown in Figdonsists of
a proportional servovalve 5/3 (MPYE-5-1/8 FESTQjtttirives a
double action rodless cylinder, with internal diaeneof 0.025 [m]
and 1 [m] stroke (DGPL-1000 FESTO).

The measured nominal flow rate @ = 7.103 [m’/s] (420
[L/min]) and, due to an internal feedback, it islépendent of the
supply pressure. This fact assures an approximbesr behaviour
of the valve opening. A small overlap causes a £#dezone. The
piston is connected to a linear sensor (Festo P@D-TFL), with a
stroke equal to the cylinder stroke (1.0 [m]). Tiesolute pressure
in each cylinder chamber and the supply pressueensasured
through three piezoelectric pressure sensors. ©heat and data
acquisition apparatus consists of a control bod8PACE GmbH —
DS1102) and an IBMPC Pentium 100MHz microcompufére
sampling time is 1 [ms].
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Figure 1. Experimental rig. Y. 20 Y. 20
The Dynamic Model Piston Dynamics
The dynamic model used in this work is developesttani(i) Applying Newton's second law to the piston-load asdgmb
the description of the relationship between thenaass flow rate resultsin
and pressure changes in the cylinder chambers, (andthe .
equilibrium of the forces acting at the piston,limting the friction My +F, +F = A(p -~ p,) (6)

force.
The relationship between the air mass flow ratethacdressure whereM is the mass of the piston-load assemisly,is the
changes in the chambers is obtained using energgeceation laws, friction force, F, is the external force and(p, - p,) is the

and the force equilibrium is given by Newton's setdaw. The . .
friction force is included in the LuGre friction rel. force related to the pressure difference betweerntio sides

of the piston (see Fig. 2).
Conservation of Energy

The internal energy of the mass flowing into chambeis Ay O

C,4..T , whereC, is the constant pressure specific heat of the air, ¢| chamber 1 y: Y.y chamber ZITI

T is the air supply temperature, ang, = (dm/dt) is the air mass

flow rate into chamber 1. The rate at which workd@ne by the \ M <_Fe
moving piston .|s pV,, where p, is the absolute pressure in o AP ) ~__ - \pz o1
chamber 1 and/, = (d\/l/dt) is the volumetric flow rate. The time P~ P a
air internal energy change rate in the cyIinderd(S:\,plvlT)/dt, Figure 2. Force equilibrium at the piston.
whereCy is the constant volume specific heat of the aif gnis the
air density. We consider the ratio betwee_n theifipéreat val_ues as Friction Model
r=C,/C, and thatp, =C, /(RT) for an ideal gas, wheiRis the
universal gas constant. An energy balance yields In this paper the friction forceR, ) is described according to the
LuGre friction model proposed by Canudas et aj2jnThis model
o pdy_1d v 1 satisfies the requirements for friction compensaiio pneumatic
A C, dt _Ea(pl 1) @ systems because it can describe complex frictidradier, such as

stick-slip motion, presliding displacement, Dahl &tdbeck effects
and frictional lag.

where the rate of heat transfer through the cytingalls (Q) is In this model the friction force is given by

considered negligible. The total volume of chambes given by

V, = Ay+V,,, whereA is the cylinder cross-sectional argds the .

=AY Vo s the ey ona, argas Fo=0,2+0, 240y ™
piston position and/,, is the dead volume of air in the line and at dt

the chamber 1 extremity. The change rate for troturae is . S . .
P = AV wh . is the pi loci lculati wherez is a friction internal state that describes therage elastic
V, = Ay, wherey =dy/dt is the piston velocity. After calculating geflection of the contact surfaces during the isticiphases, the

the derivative term in the right hand side of (1§ van solve this parameter o, is the stiffness coefficient of the microscopic
equation to obtain
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deformations during the presliding displacemer, is a damping

coefficient associated withlz/dt and o, represents the viscous

friction. The dynamics of the internal statare expressed by

E: '—Miz

8
dt a(y) ©®

where g(y) is a positive function that describes the “steatdye”

characteristics of the model for constant velocitgtions and is
given by

9(9) = F. + (F, - F)e 0/° ©

where F, is the Coulomb friction forcef is the static friction
force and ys is the Stribeck velocity. In equation (9) it cae b
observed thag(y) is bounded by the static friction forde, .

An important property of the LuGre friction modsal that the

average elastic deflectiom is bounded. This statement can be

outlined by considering the following Lyapunov catate function:

2

V=41z

N

(10)

Differentiating (10) and combining with equation),(& can be

written:
av _ .
o =it

The time derivative of the Lyapunov candidate fiorcdV/dt
given in (11) is negative if4> g(y)/a,, since g(y) is strictly

%1

- sign( Y)Bsign(z)] (11)
a(y)

positive and bounded Wy, (see equation (9)). It results that the set

5 - Ura (P W) G (P, L)

u(p,, p,, Y,u) = RrT| - 14
(S RAY) { AyrV  AlL-y)+V, (14)

" N — g Py P2
h(p, Py, Y, Y) = —TA + 15
(P, P, YY) y{Ayww A(L—y)+V2J (15)

This allows us to rewrite expression (13) as
bu =0(Py, P2y, 9) +0(p,. P, 1) (16)

Equations (12) and (16) describe the pneumatictiposig
system dynamics.

Pneumatic positioning system

| !

pneumatic
subsystem

]

u Pa mechanical

subsystem

Figure 3. Pneumatic system described as two interconnected subsystems.

Equation (12) represents the mechanical subsystemendby a
pneumatic forceg = Ap, . Equation (16) describes the dynamics of
the pneumatic subsystem in which this pneumaticef@s generated
by commanding the control voltages appropriately. This
interpretation reinforces the interconnected modekcription
(Fig.3).

The Cascade Control Strategy

N ={ z:|z|sFs/ay} is an invariant set for the solutions of equation

(8), and that the elastic deflectians bounded.

The Interconnected Model

Equations (4), (5), (6), (7) and (8) constitute ifthforder
nonlinear dynamic model of the pneumatic positigregstem with
friction. To rewrite this model in an interconnetteform,
appropriate for our cascade controller design, efend

My +F, +F, = Ap, (12)

The pressure difference change

expressions (4) and (5), is given by

rate,

|

calculatedngusi

Oz (P2, Y)
AL - y) +Vy

|

O (P, ) _
Ay +V,

P, = RrT{

- rAy[

o, P,
Ay+V,, AL -y)+V,,

(13)

We present here the cascade control strategy basethe
methodology of order reduction described in Utkir®g&7). This
cascade control strategy has been used successfitlg control of
robot manipulators with electric actuators (Guentlaad Hsu,
1993), to control flexible joint manipulators (Heind Guenther,
1993) and hydraulic actuators (Guenther and Deg, Ri@97, Cunha
et al., 2002).

According to this strategy, the pneumatic positignsystem is
interpreted as an interconnected system like theggmted in Fig.3
and its equations can thus be rewritten in a caemerform. To
perform this task we initially define the pressdifference tracking
error as

Pa = Pa = Pag (17)

where p,, is the desired pressure difference to be defirzd on
the desired forceg, = Ap,, . This is the desired force required on

the piston-load assembly mass to obtain a desiradkihg
performance. Using the definition (17), equatiob®)(@nd (16) may
be rewritten as

Separatingp, into the terms affected by the servovalve control

voltageu and the terms which are functions only of pistosifion
and velocity, we obtain the functions= G(p,, p,, y,u) and

h= ﬁ( P, P,. Y, Y) . given, respectively, by

J. of the Braz. Soc. of Mech. Sci. & Eng.
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M = Ap,, +d(t) (18)

By =Py, P,y ¥, ¥) + (P, Py, Y, L) (19)

where d(t) is an input disturbance given by

January-March 2006, Vol. XXVIIl, No. 1 /51



dt)=Ap, -F,-F, (20)

The system (18)(19) is in the cascade form. Eqoai®) can
be interpreted as a mechanical subsystem driven dgsired force
g, = Ap,y and subjected to an input disturbang@) . Equation
(19) represents the pneumatic subsystem.

The design of the cascade controller for the sygi8j)(19) can
be summarized as follows:

(i) — Compute a control lawg, (t) = Ap,, (t) for the mechanical
subsystem (18) such that the piston displacemg(t)  achieves a

desired trajectoryy, (t) taking into account the presence of the

disturbanced(t) ; and then

(i) — Compute a control lawu(t) such that the pneumatic

subsystem (19) applies a pneumatic forgé) = Ap,(t) to the
mechanical subsystem that tracks the desired fgrge) = Ap,, (t) .

Raul Guenther et al

@ _

dt

. m(y)a, -

-o.K 23
ay) = e (@3)

whereK is a positive constant arglis the measure of the velocity
tracking error defined in equation (27).
Introducing the function m(y ) the

A(y) 20 is defined as

residual difference

A(Y) =]¥] - m(y) (24)
and the friction internal state estimating erzgt) is given by

®
dt

__m(3)gy 5 _ AWy

= - —Z+0yKs
a(y) a(y)

(25)

Tracking Control of the Mechanical Subsystem

In this paper the design of the mechanical

subsystem control lavg, (t) is based on the controller proposed by

Slotine and Li (1988), including a friction compatisn scheme
based on the LuGre friction model. The control lawnt) is

synthesized to achieve good tracking performanceacieristics
related to the pneumatic subsystem.

Friction Force Observer

According to Canudas de Wit et al. (1995) the et friction
force lfa is given by

. =002+Ula+02y (22)
where 2(t) is the estimated friction internal state given by
VO, -
@_y Moy 22)
dt a(y)

and K, is a positive constant.

In Canudas de Wit et al. (1995) the authors shoat the
friction force observer (21)(22) applied to an #fecactuator leads

the position errory(t) to converge asymptotically to zero if the

electric actuator position controller is designedchs that the

dynamic relating the position erroy(t) and the estimation error

Z(t) = z(t) - 2(t) is strictly positive real (SPR).
The observer (22) requires a slight modification b® used
within the cascade control scheme. This modificati® required

because the value of the friction force time charage F, is used
to calculate the control signal in the cascaderobstrategy. So, the
function |y| has to be smoothed by a functiom(y) (like
m(y) = (2/m)yarctank,y) , where k, is a positive constant, for
example). Note that, as with the functil)}b, the functionm(y) is

equal to zero at the originr{(0) =0).

Additionally, to achieve the desired stability peoges for the
pneumatic positioning system closed loop, it isppsed in this

paper that the internal statt) is estimated using the following

modified observer

52 /Vol. XXVIII, No. 1, January-Mach 2006

Based on Slotine and Li (1988) and including thietitin
compensation, the following control law to obtaimajéctory
tracking in the mechanical subsystem is proposed:

g, =My, —K,s+F, (26)

where K, is a positive constanty, is the reference velocity arsd

is a measure of the velocity tracking error.
In fact, y, can be obtained by modifying the desired velogify as

follows

yr:SId_/‘y;y:y_yd; S:y_S/r:y"'/ly (27)
where A is a positive constant.

Let the friction force be given according to theQre friction
model (7). Substituting (26) in (18) and using digbn (20) and the
observer (21)(23), the error equation related te thechanical
subsystem becomes

Ms$+K,s+0,Z+0,Z = Ap, - F, (28)
Consider the non-negative function
A, =Ms® +K™Z? (29)

Using (25) and (28), the time derivative of (29praj the
mechanical subsystem trajectories is given by

. o .
V, = ~(K, +0,0,K)s? + Ap,S— m(y)o,K 524 m(y)o,o, s

a(y) a(y)
. aoalA_(y) 25-Fs-K™ aDAgy) 5 (30)
g(y) a(y)

Expression (30) will be used in the stability asay

Tracking Control of the Pneumatic Subsystem

In order to obtain force tracking in the pneumatibsystem (19) we
propose the following control law

U=u, -K,p, - As (31)

ABCM
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where u, is an auxiliary control signalK,, is a positive constand The use of the inverse defined in (38) and the tfanc

is the cylinder cross-sectional area, amsldefined in (27). ﬁ=ﬁ(p1,p2,y,y) in the control law may be interpreted as a

Substituting (31) in (19), the resulting pneumatiabsystem  feedback linearization scheme (see Khalil, 1996).
closed loop dynamics gives

Stability Analysis

Pa =h(Pu Py, Y) +U, —K Py —AS (32) Consider the cascade controlled pneumatic positgpsiystem
with the friction observer. In this case the clodedp system is
The designs of the auxiliary signal and of the constank, Q ={(12), 16), 21), (23, (26), 3D} .

are based on the non-negative functigndefined as We assume that the desired piston positign(t) and its
derivatives, up to"3 order are uniformly bounded.
2, = p? (33) For the ideal case, in which all the system parametre known

and there is no external forEg, the tracking errors convergence
The time derivative of (33) is given by, = p,(p, — Py), Properties are stated below.

where the time derivative of the desired pressuiféerdnce Theorem —When all the system parameters are known and there
(Pas =94/ A)is obtained using (26). So, in order to calculi¢, no external forc&,, given an initial condition, the controller gains
we need to know the acceleration Signal. In thalidase (Where all can be chosen in order to obtain the Convergendﬁmﬂ:racking
the parameters are known and there is no frictroexternal forces),
the acceleration may be calculated using expreg¢6ijoby means of
the pressure differencp, measurement.

The time derivative of (33) along the pneumatic system  pqof- Consider the lower bounded function
trajectories is obtained using the closed loop dyina (32):

errors, ?(t) andy(t), to a residual seR as t — o . The setR
depends on the friction characteristics and thérober gains.

S _ V(1) =V, + 2V, = MS" + B + KZ* (39)
V, = palu, +h = ppg —Kppy — AY (34)

where the functionsv, and V, are defined in (29) and (33),

Defining the ideal auxiliary signal as

respectively.
. . _ This expression can be written in the following rixaequation
Uz = Pag —N(PL P2, Y, Y) (35) form
results in 1
V= > P'N,p (40)

V, = palBu, ~Kp Py~ AY (36) 3
where the error state vector is defined@s[s p, Z]" and N,
where Au, =u, —u; is the auxiliary signal error. In the ideal casejs a positive definite diagonal matrix given by

u, =u;, Au, =0, and expression (36) results in N. =di [M 1 K’lj (1)
, =diag

o =2 A

Vo =Koy ~ A, (37) In the ideal cas\u, =0 and, according to the expressions (30)

Expression (37) will also be used in the stabditalysis. and (37), the time derivative of (39) is given by

MK 5

The Pneumatic Positioning System Controller V = ~(K, +0,0,K)s* =K, p; - a0
The pneumatic positioning system cascade contrabera Mmoo - .o TAY)
combination of the mechanical subsystem positianking control + ) g+ E.gy) z- _10(_(.)y) z (42)
law (26) and the control signal designed to obthie pneumatic a(y) by 9ty
subsystem tracking force (31). . ) . i ) ) .
Using (26) we calculate the desired pressure diffee to obtain Written in a matrix equation form this expressiesuits:
the trajectory tracking in the mechanical subsystem = A. .
' . Y J . . . . ?m 9a/ V=-p"N,p+p" 'D(p) (43)
In the ideal case, in whicli, =u_, the signalu is calculated
using equations (31) and (35). The necessary tienwative of the \yhere
desired pressure difference is obtained as descabeve, and the
function h = ﬁ(pl, p,.Yy.Y) as defined in (15). 10.0 )
i i i (KD +JJ1K) 0 —_Lm(y)
The servovalve control voltageis obtained through the inverse ° 2 9(y)
of the function (14), that is, N, = 0 K, 0 (44)
- 1o,0, . oK .
u=u(p,, p,, v, 38 ————m(y) —m(Y)

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright 00 2006 by ABCM January-March 2006, Vol. XXVIII, No. 1 /53
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- N . o ise.
) oK) , as the velocityy is null or asy - 77/2k, , and is limited otherwise

a(y)

0TiA(Y) 2

D =
L )

49 sowe may establish a superior limit ffi>(0)| < D . Therefore:

The matrix N, is state dependent. Specifically it depends on the V < -a|o|" + D] (52)

function g(y) defined in (9) and on the function(y), used in

order to smootHy| in equation (23). In the sequence we establish The condition in which the time derivative is negative is
the conditions to make this matrix be uniformly itive definite. given by:

To this end, first we observe that the functiomiy) is equal to _

zero in the static friction rangey(= 0), and positive (n(y) >0) if ol >D (53)
y£0. a
Out of the static friction range, with# 0, using the Gershgorin By the Rayleight-Ritz theorem the expression (4&ults
theorem it should be observed that the maNix in (44) is positive
definie i v=lomo< L v 4
-1
) |2 m(y)( >~ 2 %% (g}, and
9(y) 2 9(y) Using the condition (53) in (54) allows to verilyat the region
1oo in which the functionV is negative is limited by a constant value.
. e ) )
i) |Kp +0,0,K| > ‘Ego(ﬂm(}’)‘ . Expressions (52) and (54) show thiat| tends to a residual set as
From (i) it results that: t - o . Expression (53) outlines_that this residual sgtethds on
the value of the disturbance boul and on the valuer defined
K < 2 (46) in (50). Consequently each error vector componends to a
o, residual. This means that the velocity error meas{iy tends to a

residual set. This error can be interpreted asngatiof the first

Taken into account that the function(y) grows as the velocity order filter given in (27), and based on this iptetation we

grows, consider that, given an initial condition, upper limit to the ~conclude that the tracking errong(t) and y(t) tend to a residual
velocity, ¥, ., exists. This implies that an upper limit mm(y)  Setast — o . This completes the proof.
(m(y)<mt>0) also exists.

! ) T o Remark 1: As ?(t) tends to a limited residual set, and as the
Since the functiong(y) is bounded by the static friction force

F, ., for the given initial condition expression (iivgs:

Ky > aoal[%Fﬂ - KJ

S

(47)

desired velocity y, (t) is also limited, from the error definition in
(27) it results that the velocity/(t) is limited, i.e., there is an upper
bound y,, as considered above, which depends on the closgd |

system dynamics and on the initial conditions.
Remark 2: From remark 1 it is clear that the initial conditio
should be chosen in order to satisfy the conditi@f® and (48).

It should be observed tha€, is a positive constant and so theTherefore, the theorem result depends on the limitinditions, and

following additional restriction should be satisfie

K<=—

2 F “8)

Under conditions (46), (47) and (48), the matii, results
uniformly positive definite, i.e.:
N, = al
where a is a positive constant given by:

a= inf Aa(N,) OT=0 (50)

Using (49) in (43) and employing the Rayleight-Rieorem, it
can be written that
v < -a|of +|floco)] (51)

Expression (45) allows the observation that theudisnce
D(p) is caused by the bounded elastic deflectioand by the

residual differenceA(y) = 0, defined in (24), which is equal to zero
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so, it is a local result.

Remark 3: The “disturbance” upper bound) depends on the
friction characteristics (see (45)) and on the dmag function
m(y) . The positive constantr defined in (50) depends on the
controller gains. Therefore, the residual set gilsagn(53) depends
on the friction characteristics, on the smoothingction and on the
controller gains.

The experimental results presented in the nexiseetlidate these
theor@@)’;ﬂ statements.

Experimental Results

The parameters used in the experiments/are4.19x10* [m?],

r = 14,R = 286.9 [J Kg/K],T = 293.15 [K],L = 1 [m],
V,, =1.96x10° [m?], V,, = 4.91x1C° [m’] and M = 2.9 [Kg]. All
experimental tests were realized without applyintemal forces
(F.=0).

The mass flow functiongy,,(p,,u) defined in Eq. (4) and (5),
are identified according to the methodology preseérih Perondi
and Guenther (2003). This allows the calculatiorthef servovalve
control voltage using the inverse defined in Eq).(38e Perondi and
Guenther, 2003, for details).
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The experimental tests are performed using a sidalsand a
polynomial desired trajectory. The sinusoidal dasitrajectory is
given by vy, (t) =y, ,SinWt), vy, = 045[m] and w=2 [rad/s]

(see Fig. 5a).

The polynomial trajectory starts with the piston (a5 [m]
measured from the end of the cylindey, (0) = 005[m]), and

reaches a steady-state trajectoryyg(2) = 095[m] according to a
function described by theé"7order polynomial given in (55). This
position is maintained for 2 [s]. Then, the pisteturns to the initial
position in 2 [s] according to a polynomial simitar (55), where it
stays for 2 [s], and so on. This desired trajeci®ighown in figures

5 and can be described by equations (55) and (56).

Yap(t) = —6t7 +21t° - 252t° +105t*

The mechanical subsystem controller is designedrdiog to
Eq. (26) using equations (21) and (23). The pneignsatbsystem
controller is given by Eqg. (31), and by the caltola of the

(55)

auxiliary signalu, through Eg. (35), as in the ideal casg € uy ).

[m]
Ya(t)= 005+ Yap (t
095
095- Y4, (t-412)
005

In order to obtain a response without actuatoratibns and a
sufficiently smooth control signal, the control mgiare chosen as
K, =40, A=20, K, =150, and the friction force observer

parameters arer, = 4500, g, = 93.13, g, = 89.86,v,= 0.02 [m/s],

12) t<2
2=2t<4
4>t<6

6=>t<8

F.=32.9 [N], F, =38.5 [N], K =2.22x1(F.

In the experimental implementation, the velocity olstained
using a filter and a numeric derivative process #medacceleration

is calculated based on the nominal parameters.

Figure 4 presents the polynomial desired trajectibiy response

(56)

to this trajectory using the cascade controller hwiriction

compensation and the tracking error obtained is thise. In order
to outline the friction compensation effect, Figlows the response

obtained without this compensation and the respectiacking
error. The tracking errors for both cases are ptesein detail in
Fig. 6. while Fig. 7 shows the control signal usifriction

compensation.
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Figure 4. Polynomial Y,y4 and y trajectories with friction

compensation.
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Figure 5. Polynomial Y,Yyy and S7 trajectories without friction

compensation.

The results
efficiency of the

presented in Figures 4, 5, 6 and 7ineuthe
proposed friction compensatiordiminishing the

trajectory tracking errors and the steady statétipnserror. These

experimental

results confirm the tracking error \Ggence

theoretically established.
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Figure 6. Polynomial tracking position error for both cases.
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tracking case.
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position [m’

Figure 8. Sinusoidal y,y, and y trajectories with friction.

Figure 8 presents the desired sinusoidal trajectbe/response
to this trajectory using the cascade controller hwiriction
compensation and the tracking error obtained is thise. Figure 9
shows the response obtained without this compemsatnd the
respective tracking error.
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Figure 9. Sinusoidal y,y, and y trajectories without friction

compensation.

The tracking errors for both cases are presentekdtail in Fig.
10. Figure 11 shows the control signal using fictcompensation.

These experimental results confirm the importantcéhe friction
compensation.

Conclusions

In this work a cascade controller with friction qeemsation for
a pneumatic positioning system was proposed, anddhvergence
of its tracking errors was theoretically and exmemtally
demonstrated. It was outlined that the cascaderalostrategy
allows the use of the LuGre friction model withauy assumptions
about the force response in the actuator. The ewpatal results
confirm the theoretical results and demonstrateeffieiency of the
friction compensation. Future research will includethods to deal
with the system parameter uncertainties.
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