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ABSTRACT 

GARCH models are being largely used to estimate the volatility of 

financial assets, and GARCH (1,1) is the one most used. However, 

identification of GARCH models is not fully explored. Some specialist 

systems technology have been used in some applications of time 

series models such as time series classification problems, ARMA 

models identification, as well as SARIMA. The aim of this paper is to 

develop an intelligent system that can accurately identify the 

specification of GARCH models providing the right choice of the model 

to be used, thus avoiding the indiscriminate usage of GARCH (1,1) 

model. 
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1 INTRODUCTION 

“Identification of the right GARCH model specification, to be adjusted for a 
time series, is generally difficult. So it is recommended to use low orders 
models, like (1,1), (1,2) or (2,1), and then choose the best one using a 
criteria, for example AIC or BIC, ...” (MORETTIN; TOLOI, 2004). 

 ARCH and GARCH models have being largely explored technically and 

empirically since their creation in 1982 and 1986, respectively. However, the focus is 

always on stylized facts of financial time series or volatility forecast, where GARCH 

(1,1) is commonly used. Hardly ever do we find a study concerning the identification 

of GARCH models. Some studies have been developed using specialized systems 

applied to time series models (REYNOLDS, et al., 1995) and identification of both 

ARMA (MACHADO, 2000) and SARIMA (SILVA, 2005) models. In this context, this 

paper has as its aim the development of an intelligent system which could improve 

the specification identification, thus avoiding the indiscriminate usage of GARCH 

(1,1) model. In order to validate the accuracy and efficacy of the system proposed, 

simulated time series will be used. The results derived from such system will then be 

compared to chosen model derived from AIC (Akaike Information Criterion) and BIC 

(Bayesian Information Criterion) criteria. 

 This paper is developed in five chapters. The following chapter presents 

theoretical concepts relevant to this paper such as the foundation to the development 

of the system. The third and fourth chapters present the identification results using 

AIC and BIC criteria and using the specified system proposed by this paper. The 

concluding chapter focuses on further discussion on the subject meter and proposes 

new development. 

1.1 GARCH Models 

 Currently, financial markets suffer significant influence of daily news. On 

analyzing a series of financial asset returns which present a shift between periods of 

high and low volatility forming clusters, volatility can be defined “as a conditional 

variance of a time series” (VEIGA, et al., 1993).  

 During the high-level volatility period, the investor may feel reluctant to invest, 

and as a consequence many assets values are penalized because of their liquidity.  

However, when volatility is not so high, it is good for the financial market. 
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 The excess of volatility can bring many consequences into the financial market 

such as: 

 in asset prices: the volume of investment reduces and investors are 

induced to change from a high-risk to a low-risk asset in other markets; 

 in interest rate: the cost of credit increases, and as a consequence there 

may be an impact on the economy level; 

 in currency exchange rate: whenever there is a significant decrease in the 

total amount of importation, the price of important and exported goods may 

increase due to exchange rate risks. In addition there may be a decrease 

in consumption levels of imported goods. . 

 Volatility is extremely important for the economy and financial markets, and by 

taking this into account, studies concerning financial time series are being developed 

using models different then the classic ARMA time series models (BOX; JENKINS, 

1976). Such classic models cannot reproduce financial time series with essentials 

characteristics known as stylized facts. 

 Many kinds of models have being developed to estimate volatility, for example, 

the Exponential Weight Moving Average (Known as Risk Metrics), stochastic volatility 

models and GARCH models. This study focuses on GARCH models; for further 

details about other models see Clark (1973), Taylor (1980, 1986 e 1994), Tauchen 

and Pitts (1983), Hull and White (1987) and Harvey et al. (1994). 

 The concepts of stylized facts of financial time series are really necessary to 

understand the inspirations of GARCH models. For further information on stylized 

facts of financial time series, see Bernardo and Fernandes (1999). 

 The main stylized facts of financial time series could be ranked as such: 

 stylized fact 1: Stationary Series – Statistical proprieties are static over 

time. 

 stylized fact2: Weak or no linear dependence and non-linear dependence 

(GARCH effect). Series are not or are little auto-correlated, but the 

quadratic series are auto-correlated.  
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 stylized fact3: Non-Gaussian – Financial time series commonly presents 

skewness and higher kurtosis.  

 stylized fact4: Existence of volatility clusters – Financial time series 

commonly present alternate periods of high volatility and low volatility. The 

conditional variance is time dependent. 

 A central hypothesis of the option valuation model proposed by Black e 

Scholes (1973) is that the financial time series performs as a Brownian movement, or 

the distribution of the returns is log-normal with the same mean and variance over 

the time. However, Mandelbrot (1963) and Fama (1963 and 1965) proposed that 

those series have higher kurtosis and they discussed the existence of volatility 

clusters. Those characteristics were interpreted as an evidence of stochastic volatility 

of financial assets. 

 For the purpose of representing those characteristics, since approximately two 

decades ago, GARCH models are being largely used in financial studies, especially 

in financial derivatives studies. The initial success of ARCH models to represent the 

non-linear dependence made possible many extensions.  

1.1.1 GARCH models representation 

 The first model from the GARCH family was introduced by Engle (1982). This 

model can represent some stylized facts of a financial time series. Engle proposed to 

model the quadratic of the return time series using an autoregressive model with q 

parameters (AR(q)). This model was called Autoregressive Conditional 

Heteroskedastic or ARCH(q), which can be written by the expression: 

 

 
2 2 2 2

1 1 2 2t t t q t q tu a u a u a u w        
    (1.1) 
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 Sometimes it is convenient to re-write this expression like this: 
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 Suppose: 

 t t tu h
        (1.3) 

 Where: 

 
   20 1t tE E  

      (1.4) 
 

 If th  is written as: 

 

 
2 2 2

1 1 2 2t t t q t qh a u a u a u       
     (1.5) 

 
 This implies: 

 

 
 2 2 2 2

1 2 1 1 2 2, ,t t t t t q t qE u u u a u a u a u         
   (1.6) 

 

 So, if tu  is generated by (1.3) e (1.5), then tu  follows an ARCH(q) process, 

and if (1.3) and (1.5) are used in (1.1), it becomes: 

 

 t t t th h w           (1.7) 
 

 Using (1.3) specification, the tw  innovation in AR(q) representation for 
2
tu  in 

(1.1)  can be expressed by: 

 

  2 1t t tw h  
       (1.8) 

 

 Notice that even if the unconditional variance of tw  is assumed to be a 

constant in (1.8), the conditional variance of tw  changes over time. Thus, the ARCH 

model can describe volatility clusters.  

 In 1986, Bollerslev observed, by empirical evidence, that it would be 

necessary to estimate ARCH models with high orders to reproduce the conditional 

variance dynamics. In order to solve this problem, he proposed a more general and 

parsimonious form of ARCH model, which he called Generalized Autoregressive 

Conditional Heteroskedastic (GARCH) (BOLLERSLEV, 1986). 

 The same idea of parsimony used in ARMA models was then applied to 

GARCH models. So, it can be demonstrated that a Moving Average model (MA) with 
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order one is equivalent to an Autorregressive model (AR) with infinite order. In order 

to reduce the number of parameters to be used, the AR is merged with MA, thus 

creating the ARMA model. GARCH model is based on ARCH model with infinite 

order and th  can be expressed as: 

 

 2 2

1 1

q p

t t i t i t j t j
i j

h k u h    
 

         (1.9) 

 
 For the same reason that ARCH models depend on some restrictions 

concerning th  to be positive for every t, GARCH models depend on restrictions of 

0k  , 0i   and 
0j 

. Nelson and Cao (1992) observed that the conditions 

0i  and
0j 

 were sufficient, but not necessary. So, they argued that by imposing 

such conditions could be excess of precaution and could become a limitation 

considering some empirical works, and in practical applications, even if there is some 

negative coefficients, the conditional variance becomes positive. Such restrictions 

could be relaxed and in practical works it is used to estimate the coefficients with 

none of those restrictions. 

 In many applications using high frequency time series, the estimated 

conditional variance by a GARCH (p,q) model demonstrates a strong persistence, 

that is: 
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, the process ( tu ) is second order stationary and the noise on 

the conditional variance of 
2
t  has a decrease impact on 

2
t h  , when h increases, and 

is asymptotically insignificant. This feature is called persistence. 

 Other variations of GARCH models were proposed  having in mind many 

objectives, as for example the Exponential GARCH (EGARCH) (NELSON, 1991; 

ENGLE; NG, 1993) and the TGARCH (ZAKOIAN, 1991; GLOSTEN, et al., 1993; 

RABEMANANJARA; ZAKOIAN, 1993), that were proposed to capture the 

asymmetric effect on the volatility clusters 
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 GARCH and ARCH models will be applied in this paper. 

1.1.2 Modeling Strategy 
 

 Franses and Djik (2000) proposed a modeling sequence which uses the 

following steps: 

 calculate some time series statistics (ACF, Auto-correlation Function, and 

PACF, Partial Auto-correlation Function); 

 compare those values with theoretical values to specify the right model 

(Identification); 

 estimate parameters of the specified model (Estimation); 

 evaluate the specified model using adequacy metrics (Validation); 

 re-specify the model if necessary; 

 use the model to make the forecast (Forecasting). 

 The specification of the appropriate structure (identification) for the equation of 

the conditional variance of a time series which follows a GARCH process is the main 

concern of this paper. Autocorrelation function (ACF) and Partial Autocorrelation 

function (PACF) are commonly used in the identification and validation of the ARMA 

model specification (BOX; JENKINS, 1976). On the other hand, Bollerslev et al. 

(1988) showed that those functions, when applied on the square of the time series, 

could be used to the specification and validation of the GARCH model. 

 Suppose that n  is the n-th autocorrelation and kk  is the k-th partial 

autocorrelation of 
2
tu  obtained through the solution to the equations for the GARCH 

models, analogues of Yule-Walker equations. Thus, the usual interpretation for 

ARMA models can be used for GARCH models. For an ARCH(q) process, kk  has an 

abrupt cut after the q-lag, which behavior is identical to the partial autocorrelation 

function of an AR(q) process. On the other hand, the autocorrelation function of 
2
tu  

for a GARCH(q,p) process is different from zero and has an exponential decay. By 

using these patterns, such functions can help identify the right specification of the 

GARCH model. 
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 Another way to identify the specification of GARCH models is to use the AIC 

(Akaike Information Criterion) and BIC (Bayesian Information Criterion) statistics. The 

model which shows the lowest statistic is the one selected to be the identified model. 

Some results using this means of identification are presented in chapter 3. 

 
2 PROPOSED IDENTIFICATION METHODOLOGY  
 
 The proposed identification methodology blend the procedure of 

autocorrelation and partial autocorrelation functions described by Bollerslev, et al. 

(1988) with the identification using AIC and BIC, and further test over-specification of 

Box and Jenkins (1974). Erro! Fonte de referência não encontrada. represents 

such methodology. 

 First step is to train a neural network to represent the pattern configuration of 

each model using autocorrelation, partial autocorrelation function and statistics AIC 

and BIC. Therefore, the next step is to test models with high orders then the selected 

one. Using both steps the final identification is done.  

 
Figure 1: Proposed Identification Methodology 

3 Applied Study on Simulated Data 

 In order to compare the identification performance of the statistics AIC and 

BIC with the proposed neural network, the first step is to simulate a time series 

sample generated by GARCH processes using MatLab software for this purpose.  

 The models to be compared are ARCH(1), ARCH(2), GARCH(1,1), 

GARCH(2,1) and GARCH(1,2). The simulated data total showed 8,000 series, of 
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which 1,600 were series generated for each model, divided in four lengths of series, 

in which one moth was represented by 22 observations, one quarterly period was 

represented by 66 observations, one semester was represented by 132 observations 

and one year was represented by 264 observations. Each length had 400 series for 

each model. 

 Random numbers between zero and one were used to represent the 

coefficients of the specified model, taking into account two restrictions: lower lags 

have higher coefficient than higher ones, and the sum of all coefficients is lower than 

one, which is a condition for GARCH models. 

3.1 Model Identification using AIC e BIC 

 By using those simulated data, the model selected as the best was the one 

which has the lower AIC and BIC. Table 1 show this identification criteria results. 

Because the data are simulated, the generated model is known. So, it is possible to 

know whether AIC or BIC classified them with accuracy or not. 

Table 1: Results of identification using AIC and BIC 

Series 
Length 
observations 

 
Correctly classified 
series by AIC 
identification 

Correctly classified 
series by BIC 
identification 

Series Percentage Series Percentage  
22 488 24.4% 465 23.3% 
66 809 40.5% 734 36.7% 
132 1,070 53.5% 947 47.4% 
264 1,371 68.6% 1,200 60.0% 
Total 3,738 46.7% 3,346 41.8% 

 Identification with AIC and BIC present high level of misclassified percentage, 

higher than 50% considering the total data classification. Considering just the annual 

series, (264 observations) that identification reached almost 70% of correctly 

classified series, but taking a look on the smaller series, the results presented a 

lower level of correctly classified series. For example, considering data from recent 

Initial Public Offering (IPO), those data should probably show high probability of 

misclassification. 

 Tables 2 and 3 show the percentage of correctly classified series of each 

model using AIC and BIC criteria. It can be observed that when the number of 

parameters increases, misclassification also increases, as it is already expected by 

the time that AIC and BIC penalize the model when a new parameter is introduced 
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with the aim of looking for parsimony. Therefore, those criteria tend to bias the 

classification due to parsimony. 

 As long as the AIC presents a higher percentage of correctly classified series, 

such criteria will be used from now on as a benchmark in this study. 

Table 2: Percentage of correctly classified series using AIC 
Series Length 
observations ARCH(1)  ARCH(2) GARCH(1,1) GARCH(2,1) GARCH(1,2) Total
22 94.5% 22.5% 3.5% 1.5% 0.0% 24.4%
66 92.8% 64.8% 29.5% 8.0% 7.3% 40.5%
132 92.3% 82.5% 54.0% 23.3% 15.5% 53.5%
264 93.0% 89.8% 74.5% 53.0% 32.5% 68.6%
Total 93.1% 64.9% 40.4% 21.4% 13.8% 46.7%

 
Table 3: Percentage of correctly classified series using BIC 

Series Length 
observations ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) GARCH(1,2) Total
22 96.8% 16.0% 3.0% 0.5% 0.0% 23.3%
66 98.8% 56.5% 25.0% 2.0% 1.3% 36.7%
132 99.3% 79.0% 53.8% 3.5% 1.3% 47.4%
264 99.5% 91.5% 83.0% 19.8% 6.3% 60.0%
Total 98.6% 60.8% 41.2% 6.4% 2.2% 41.8%

 
3.2 Intelligent System Identification 

 As presented in section 2, the first step of intelligent system identification is to 

specify the neural network to be trained. Figure 2 represents proposed neural 

network specification.  

ACF
Lag 1 to 10

PACF
Lag 1 to 10

Sigmoid

Hidden Layer Output Layer

Sigmoid

Sigmoid

...
Sigmoid

Dummy 
model i

ACF
Lag 1 to 10

PACF
Lag 1 to 10

Sigmoid

Hidden Layer Output Layer

Sigmoid

Sigmoid

...
Sigmoid

Dummy 
model i

 
Figure 2: Neural Network Specification to identify GARCH structure 

 Neurons of the hidden layers and the neuron of the output layer are 

represented by sigmoid functions. Once more MatLab software was used. 
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 The same 8,000 series of section 3.1 were used to test the neural network. 

For the training data, were generated other 8,000 series with the same 

characteristics of the simulated data as seen in section 3.1. 

 Before specifying the best structure for the neural network to be trained, it is 

needed to select which input features will be used, therefore it was applied the 

Fischer Score feature selection method (BISHOP, 1995). Such method selected the 

following variables: ACF (lag1), ACF (lag2), ACF (lag3), PACF (lag1), PACF (lag2), 

Difference between ACF (lag2) and ACF (lag1), and Difference between ACF (lag3) 

and ACF (lag2). 

 After the feature selection, neural network topology needs to be specified, so a 

sensitive analysis was done, varying the number of neurons and the number of 

layers, the results can be seen on Figure 3.  
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Figure 3: Accuracy by varying number of layer and number of neurons 

 By analyzing previews chart it can be seen that the best result was reached by 

the topology with two hidden layers using twenty neurons in each hidden layer. It can 

also be observed that the misclassification of the neural network with lower layers 

increases as the number on neurons increases. Such results might indicate over-

fitting. 

 Table 3 and Table 4 present classification results using neural network 

methodology. 
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Table 3: Percentage of correctly classified series using Neural Network 
Series 
Length 
observations ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) GARCH(1,2) Total
22 66.3% 23.5% 27.3% 9.0% 38.8% 33.0%
66 86.0% 61.8% 25.5% 8.5% 54.5% 47.3%
132 89.3% 81.5% 42.5% 23.5% 62.8% 59.9%
264 92.0% 89.5% 57.0% 53.0% 69.3% 72.2%
Total 83.4% 64.0% 38.1% 23.5% 56.3% 53.1%
 
 

Table 4: Cross-classification percentage using Neural Network 
Real / Classified ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) GARCH(1,2)
ARCH(1) 84.1% 2.9% 3.1% 0.8% 9.1%
ARCH(2) 15.8% 64.0% 5.9% 6.8% 7.6%
GARCH(1,1) 21.1% 15.4% 33.3% 6.6% 23.6%
GARCH(2,1) 12.8% 26.7% 17.3% 29.0% 14.2%
GARCH(1,2) 17.5% 4.7% 16.0% 4.9% 56.9%

 
 The experiment suggests that AIC and BIC can be improved by using 

computational intelligence. The specified neural network presented 53.1% of 

correctly classified series, representing an improvement of 640 bps considering the 

results of AIC, and if they are compared to the BIC results, there is an improvement 

of 1130 bps, especially considering GARH(1,2).  

 Those results suggest that the neural network methodology increases the  

percentage of correctly classified series. However, Table 4 shows many GARCH(2,1) 

misclassified as GARCH(1,1) or ARCH(2), and GARCH(1,1) misclassified as 

ARCH(1), for example. Even though, it is notorious that ARCH(1) and ARCH(2) have 

better classifications results.  

 Those results can be improved by over specifying such models. In other 

words, the number of parameters of the identified model can be increased and its 

significance tested. Thus, for this purpose, Table 5 describes which models are 

tested using the T-test for the significance of the new parameter. 

Table 5: Overspecify procedure 
Identified Model Overspecified model 1 Overspecified model 2 
ARCH(1) ARCH(2) GARCH(1,1) 
ARCH(2) GARCH(2,1) None 
GARCH(1,1) GARCH(2,1) GARCH(1,2) 
GARCH(2,1) None None 
GARCH(1,2) None None 

 
 Figure 4 shows the classification performance as the significance of T-test is 

applied on the over specifying procedure. 
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Figure 4: Accuracy by varying T-test significance 

 By applying best results for each length of series, the performance improved 

by almost 5%. The results can be shown on Table 6 and Table 7. 

Table 6: Right classification percentage using Neural Network after over specifying 
N ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) GARCH(1,2) Total 
22 55.8% 24.5% 26.0% 23.3% 48.5% 35.6% 
66 72.0% 57.5% 35.3% 41.8% 47.8% 50.9% 
132 86.3% 79.8% 44.8% 50.5% 56.8% 63.6% 
264 92.5% 91.0% 56.8% 54.3% 77.3% 74.4% 
Total 76.6% 63.2% 40.7% 42.4% 57.6% 56.1% 

 
Table 7: Cross-classification percentage using Neural Network after over specifying 

Real / Classified ARCH(1) ARCH(2) GARCH(1,1) GARCH(2,1) GARCH(1,2) 
ARCH(1) 76.6% 5.9% 7.4% 0.9% 9.1% 
ARCH(2) 13.8% 63.2% 6.4% 8.6% 8.0% 
GARCH(1,1) 8.2% 16.3% 40.7% 10.3% 24.5% 
GARCH(2,1) 1.4% 18.5% 21.7% 42.4% 16.0% 
GARCH(1,2) 0.4% 7.3% 23.1% 11.7% 57.6% 

 
 Table 6 shows that the over specification improved the results by almost 5%, 

so if those results are compared to the AIC results they present an increase of 20% 

of right identification on overall results. They improved the overall performance 

classification from 47% of the AIC identification to 56% of neural network. 
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4 FINAL CONSIDERATIONS 

 As presented in section 3.1, the statistics AIC and BIC were able to classify 

correctly just 46.7% and 41.8% respectively. However, if the annual series are 

excluded, the performance reaches 39.5% and 35.8% respectively. Therefore, the 

performance of the proposed neural network improves considerably, from 46.7% of 

overall correctly identified series by the AIC to 56.1% of overall correctly identified by 

neural network, demonstrating that there are opportunities to gain performance in the 

identification of the GARH model. 

 As a follow up to this study, an application using real time series can be done 

to test predicted performance of each model selected by the criteria tested. This 

application can be of great importance especially to emerging capital markets as they 

can be good resources capitalization option to middle-sized and large-sized 

companies. 
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