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Abstract: Realistic image synthesis is one of the most relevant subjects in computer 
graphics, and many algorithms have been developed to try to reproduce the visual 
complexity perceived in the real world. However, rendering realistic images in real 
time  remains  a  challenge  even  with  the  support  of  modern  graphics  hardware. 
Precomputed  Radiance  Transfer  (PRT)  is  a  new  graphics  technique  capable  of 
synthesizing highly realistic images in real time. This is achieved by restricting the 
solution of the rendering equation to a subset of the light transport paths that handle 
only energy exchange among diffuse surfaces. Due to the quality of its results, PRT 
has attracted the attention of many computer graphics researchers and practitioners. 
However,  understanding and implementing PRT requires familiarity with concepts 
such  as  projection  into  basis  functions,  empirical  function  integration  and  light 
transport theory. This tutorial provides a gentle introduction to PRT and its required 
background, enabling the readers to understand and implement the technique.
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1 Introduction

Global illumination algorithms are at the heart of photorealistic image synthesis, but 
the high cost usually associated with them has limited their use in real-time applications. 
Because of that, a common practice has been to use algorithms that only implement part of 
the light transport defined by the rendering equation [12]. More specifically, a solution for 
the transport among diffuse surfaces in static scenes can be precomputed and then used for 
real-time  rendering.  This  is  the  case  of  radiosity  [9]  methods  and,  more  recently, 
precomputed  radiance  transfer  (PRT)  [24].  This  new  class  of  algorithms  is  capable  of 
producing  high-quality  renderings,  can  take  advantage  of  recent  developments  in 
programmable  graphics  hardware,  and  has  already  been  incorporated  into  Microsoft's 
DirectX SDK [7]. However, its use by the research community and practitioners is still timid, 
probably due to the technique's elaborate formulation, which has traditionally involved the 
use  of  Monte  Carlo  methods  [11]  for  approximating  the  solution  of  some  integrals  of 
empirical  functions,  and the use of  spherical harmonics as a basis for  the space of both 
lighting and transfer functions [6].

This tutorial presents a step-by-step introduction to precomputed radiance transfer, 
providing  a  detailed  treatment  of  all  aspects  necessary  for  understanding  and  efficiently 
implementing  the  technique.  In  particular,  it  focus  on  practical  aspects  not  covered  in 
sufficient detail in previous publications. The presentation is illustrated with sample code 
extracted from a real application, which can be used as a reference by researchers, game 
developers and graphics programmers in general. The goal is to provide the readers with a 
solid intuition and understanding of the underlying algorithms, enabling them to incorporate 
the technique in their future applications.

The tutorial  is  organized as follows: Section 2 presents a review of  the rendering 
equation. Section 3 introduces the notion of precomputed radiance transfer and derives the 
PRT equation from the rendering equation. Sections 4 and 5 provide the background on 
spherical harmonics and Monte Carlo integration, respectively, necessary for understanding 
and  implementing  PRT.  Section  6  describes  a  PRT  implementation,  providing  code 
fragments for all the core functions. Finally, Section 7 discusses possible extensions to the 
plain PRT rendering, including the incorporation of specular highlights and the use of tone 
mapping.

2 Illumination Models and the Rendering Equation

Real  world  scenes  tend  to  be  visually  rich  (Figure  1),  resulting  from a  complex 
interaction among several factors, such as object geometry, material properties, and the many 
paths followed by the light on its way from its source to the object surfaces. In computer 
graphics,  illumination  models are  abstract  representations  that  attempt  to  express  the 
interplay between light and object surfaces, and can be classified as local and global. Local  
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illumination models compute the shading at a point on a surface considering only its local 
properties. As a result, such a simplification does not handle blocking light (i.e., occlusions), 
which is responsible for producing shadows (an important element for achieving realism), 
and also ignores indirect lighting (i.e., light reflected from other objects that ends up arriving 
at the given point). Global illumination models, in contrast, take into account the entire scene 
when  computing  the  illumination  at  a  surface  point.  While  they  can  produce  more 
sophisticated renderings, this comes at higher computational costs, which has traditionally 
prevented their use in real-time applications.

For  the  specific  case  of  static  scenes  containing  only  diffuse  surfaces,  real-time 
renderings can be achieved using pre-computed solutions for the light transport. This tutorial 
describes one such technique called precomputed radiance transfer. The reader should notice, 
however,  that  with  the  advent  of  modern  programmable  graphics  hardware  capable  of 
performing  several  computations  in  parallel,  the  gap  separating  global  illumination 
algorithms and real-time performance gets thinner every day. This opens up exciting new 
possibilities and the prospect for rendering more complex light phenomena in real time on 
commodity hardware. 

2.1 The Rendering Equation

All  rendering  algorithms can  be  seen  as  solutions  to  particular  formulations  of  a 
general expression known as the rendering equation [12] (Equation 1). Its interpretation can 
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Figure 1: A real world scene exhibiting a variety of geometric shapes,  
different  materials  and  light  paths.  Its  appearance  results  from  the  
interplay of all such elements. 
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be stated as: the light leaving any point x in a given direction o is computed as the amount  
of  light  that  x  emits  in the direction  o,  plus the reflected/scattered light  from x in  the  
outgoing direction o after it has reached x from all incoming directions.

L  x , o = Le x , o∫ L  x' ,  i   x , i , o V  x , x '  G  x , x'  d i 1

where

  represents the domain of all possible directions
L x ' , i  is the amount of light arriving at x  from another point x '  along i

x , i , o  is a function that tells how much of the incoming light 
                     arriving at x  along the direction i  is reflected along the outgoing
                     direction o

V x , x '   is a binary visibility function involving x  and x '
G x , x '   is the geometric relationship between x  and x'

In Equation (1)  one can identify the factors responsible for the visual  complexity 
observed  in  real  scenes:  local  geometric  aspects  are  implicitly  defined  by x;  material 
properties  are  expressed  as ;  the  incoming  light  is  represented  by L.  Occlusions  are 
obtained as the result of the visibility function V, so it is related to light transport. Since the 
rendering equation is  defined recursively (L appears in both sides of  the equation),  it  is 
useful to think about it as an infinite series, expressed by the Neumann expansion:

L  x , o = Le  x , o L0 x , o  L1 x , o  L2 x , o  2

The first term of the expansion (Le) represents the light emitted by x in the direction 
o. The second term (L0) represents the light reflected/scattered at x in the direction o after 

arriving directly from light sources or other emitting surfaces along all possible incoming 
directions.  The  following term  (L1)  represents  the  light  reflected/scattered  at  x in  the 
direction o after it has bounced once before reaching x. Likewise, Li,  i≥2, represents the 
light reflected/scattered at  x in the direction  o after it has bounced (or been transmitted 
through) i times on scene before reaching x.

All terms besides  Le and  L0 represent indirect lighting (bounces). The first level of 
indirect  lighting  can  be  computed  using  the  results  obtained  with  directing  lighting. 
Similarly, a second bounce can be performed with the results of the first one, and so on. This 
behavior is expressed by Equation (3), which describes the indirect light contribution exiting 
a point x along the direction o after n bounces. Notice the emittance term has been omitted 
since it has already been accounted for in L0. Also, the visibility function must be inverted, 
as one must only consider, for indirect lighting purposes, directions that were blocked when 
direct lighting was computed.

Ln x , o =∫ Ln−1 x ' , i   x , i , o 1−V  x , x' G  x , x ' d i 3
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Despite its elegance and compactness, directly solving the rendering equation is not 
practical. Its integration domain consists of infinite directions and its recursive nature also 
leads to an infinite number of levels to solve for. Precomputed radiance transfer is an attempt 
to surpass the challenge of real-time global illumination by splitting the problem into two 
parts: one that is solved in a precomputed step and another that is solved in real time. The 
PRT  equation  can  be  derived  directly  from  the  rendering  equation  though  a  series  of 
simplifications and approximations.

3 Precomputed Radiance Transfer

PRT is based on two main assumptions: (i) all objects in the scene are non-emitters, 
and (ii) the light sources are infinitely distant. The second assumption makes the incoming 
light direction independent of the position of point x. As a result, the term L0 (direct lighting) 
in Equation (2) is illustrated in Figure 2 and rewritten as:

L0 x , o =∫ L i  x , i , o V  x , x '  G  x , x '  d i 4

Another  common  assumption  in  PRT  is  to  treat  all  surfaces  in  the  scene  as 
Lambertian reflectors. In this case,  becomes just the surface reflectance divided by  [3], 
and can be taken out of the integral, substantially simplifying the equation. In this tutorial, 
however, we will continue to use the more general form of Equation (4), postponing such a 
simplification  until  the  implementation  section.  The  idea  is  to  give  the  reader  a  better 
appreciation for the potential of the technique. The functions , V and G can be grouped into 
a single function T , known as transfer function.

L0 x , o =∫ L i T  x , o , i , x'  d i 5

Basically, the lighting function  L describes the arriving light intensity at point  x, 
while the transfer function expresses how x responds to the incoming illumination. In PRT, 
these functions are independent from each other and, therefore, can be estimated separately 
and combined later to produce the final result. 

Even  with  such  simplifications,  Equation  (5)  is  not  yet  practical  for  real-time 
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Figure 2: To determine the illumination of a point over a surface, it is necessary  
to integrate, along with its material properties, the lighting function (leftmost), the  
visibility function (center) and the geometric factor (rightmost).
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implementation. First, one needs a way to estimate the functions L and T , none of which has 
an  analytical  solution.  And second,  we  need  to  efficiently  evaluate  Equation  (5)  during 
runtime. In PRT, the lighting and transfer functions are estimated during a preprocessing step 
and their values are used to approximate the integral in real time. These operations will be 
discussed in more detail later. Next, we describe the use of basis functions to project and 
reconstruct arbitrary functions. These operations are essential for understanding how PRT 
can evaluate an estimate of Equation (5) in real time. Figure 3 illustrates how lighting and 
transfer functions can be combined to produce the final shading.

3.2 Projection and Reconstruction of Functions

Given a function space, a basis functions   is an infinite set of functions used to 
project and reconstruct arbitrary functions. The projection of a function f  into any function 
 i gives  a  measure  c i of  how similar  these  two  functions  are,  and  is  accomplished  by 
integrating the product of f  and i over the entire domain of f :

ci =∫ f  x i  x dx 6

The  original  function  f  can  be  recovered  as  a  linear  combination  of  the  basis 
functions   i, each modulated by its corresponding coefficient  c i. This process is known as 
reconstruction  and its accuracy depends on how many terms are added. The more basis 
functions are used, the better the reconstruction. In fact, when using an infinite number of 
basis  functions,  which  requires  an  infinite  number  of  coefficients,  one  is  guaranteed  to 
recover the original function:
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Figure 3: The visibility term (a) is combined with the geometric factor (b), which  
gives a transfer factor (c). This transfer factor (c) will be then combined with the  
incoming radiance (d) to determine the final illumination (e).
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f  x  = lim
n∞
∑
i=1

n

ci i x 

By using just a finite number n of terms will produce an approximation  f  of the 
original function f . 

f  x≈ f  x=∑
k=1

n

ck k  x

For PRT purposes, the use of orthonormal basis functions,  i.e., functions exhibiting 
the following property, is highly desirable:

∫i x   j xdx ={0 when i≠ j
1 when i= j

Orthonormality guarantees that the integral of the product of two basis functions will 
be either zero, if the functions are different, or one, in case they are the same. Thus, let ck and 
d k be the coefficients associated with the projections of any two functions f  x and g  x, 
respectively, into the basis function k, for all k. The integral of the product f  xg  x can 
then be obtained as the sum of the products ck d k. More formally:

ck =∫ f x k x  dx
d k =∫ g x  k x  dx

∫ f  x  g  x  dx ≈∫∑
k=1

n

c k k x ∑
k=1

n

d k k x  dx =

∑
k=1

n

c k d k ∫k x k  x  dx =

∑
k=1

n

ck d k 7 

This provides a powerful mechanism for factoring the evaluation of Equation (5) in 
two steps: (i) the projection of both L and T  into an orthonormal basis, which can be done 
during preprocessing, and (ii) the evaluation of the integral as a dot product (Equation 7), 
which can be efficiently done in real time. This will be explored in detail next.

3.3 Precomputed Radiance Transfer Equation Derivation

Let both lighting and transfer functions from Equation (5) be projected into the same 
set basis functions k. In this case, the original functions can be approximated as: 

L i ≈∑
k=1

n

l k k  i where l k=∫ L i k  i d i 8
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and

T x , o , i , x '  ≈∑
k=1

n

t k k  i where t k=∫T x , o , i , x '  k  i d i 9 

Substituting  the  value  of  the  approximate  lighting  function  (Equation  8)  into 
Equation (5):

L0 x , o =∫ [∑
k=1

n

l k k  i T x , o , i , x '  ] d i

Using the fact that integration is a linear operation – the integral of sums equals the 
sum of integrals – the equation above can be rewritten as:

L0 x , o =∑
k=1

n

l k ∫ k  i T x , o , i , x ' d i

For each term k of the sum, the associated lighting coefficient will be multiplied by 
the entire integral. But this integral represents a projection operation. So, each term of the 
sum will produce a new coefficient that is the result of projecting the transfer function into 
the associated basis function, resulting in the following equation:

L0 x , o =∑
k=1

n

l k t k 10

This equation is identical to Equation (7), and it can be seen as a dot product of the 
lighting and the transfer coefficients. One should note that Equation (10) only handles direct 
lighting (i.e., the light leaving  x after having arrived there directly from the light source). 
Notice, however, that it handles occlusions with respect to the light source. To be able to 
perform extra  bounces,  a  similar  derivation can be done with higher  order  terms of  the 
Neumann Expansion, which leads to the final PRT equation, shown below:

L  x , o =∑
k=0

n

l k t k
0 t k

1 t k
2 11

It  can  be  seen  that  one  set  of  transfer  coefficients  should  be  obtained  for  each 
outgoing direction, which is  explicit  in the transfer  function  T .  This is  the general  case, 
which can  be simplified to  a  single  set  of  transfer  coefficients  (i.e.,  independent  of  the 
outgoing direction)  by assuming that  all  surfaces are ideal diffuse reflectors (Lambertian 
surfaces). Such a simplification will be discussed later in Section 6.

At this  point,  one is  still  left  with  two important  questions:  which basis  function 
should be used and how to solve the integrals required to perform the projection? These 
questions will be addressed in the next sections.
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4 Spherical Harmonics

Spherical  harmonics  (SH) are orthonormal  functions  defined over the unit  sphere, 
where  the  2D domain can be  seen as  the set  of  all  possible  directions.  In  their  general 
formulation, SH functions are defined over complex numbers, but for PRT purposes, we are 
interested in approximating real functions. Therefore, this tutorial will focus on real spherical 
harmonics only.

4.1 The Legendre Polynomials

Legendre  Polynomials  are  the  core  of  the  spherical  harmonic  functions.  The 
Associated Legendre polynomials return real numbers and are recursively defined as follows:

{ l∈ℕ }
{ m∈ℕ ∣ m≤l }
{ x∈ℝ ∣ −1≤x≤1 }

P l
m  x = {x 2m1P m

m when l=m1
−1m 2 m−1 ! ! 1−x 2m/2 when l=m
x 2 l−1P l−1

m − lm−1 P l−2
m

l−m 
otherwise

They are characterized by two parameters, l, which is usually called band, and m, that varies 
according to l, and they are defined over real numbers in the interval between [−l , l ]. The 
unusual operator ! ! is called double factorial, and is defined as follows:

n! != {1 when n≤1
n n−2 ! ! when n1

4.2 Spherical Harmonic Functions

Spherical harmonic functions are parameterized using  and , as shown below, with 
scaling factors K l

m for normalizing the functions.

{ l∈ℕ }
{ m∈ℤ ∣ −l≤m≤l }

yl
m  ,={2 K l

m cos m P l
m cos  when m0

2 K l
m sin −m P l

−m cos  when m0
K l

0 P l
0cos  when m=0

where
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K l
m= 2 l1l−∣m∣ !

4l∣m∣!

A  spherical  harmonics  approximation  of  a  function  using  l bands  requires l 2 
coefficients. An alternative representation using a single index can be obtained using the 
following relationship:

{ yl
m ,= yi  , ∣ i=l l1m }

That is all one needs to know about spherical harmonics to use them in PRT. The next 
section discusses Monte Carlo integration, a method for numerically evaluating the integral 
of any function, be it analytical or empirical.

5 Monte Carlo Integration

The expected value E of a function f  with a random variable x associated to it is an 
average value that will tend to return most often if evaluated to a large number of samples. A 
random variable  is  a  value  that  lies  within  a  specific  domain  and  has  a  probability  p 
associated to it. Thus, E can be obtained by computing the following integral over the entire 
domain of the random variable:

E [ f  x] =∫ f  x p  x dx 12

Another way to get the expected value of a function is to take the mean of an infinite 
number of random samples within its domain:

E [ f x ] = lim
n∞

1
n ∑i=1

n

f x i 13

Using a finite number of random samples will  give only an approximation of the 
expected value:

E [ f x] ≈ 1
n ∑i=1

n

f  xi 14

Combining Equations (12) and (14), one gets a numerical solution for estimating the 
integral of an arbitrary function, which is known as Monte Carlo integration (Equation 15).

∫ f  x  dx =∫ f x  p  x 
p x  dx≈ 1

n∑i=1

n f  xi
p xi

15

To solve an integral using the Monte Carlo, it is then necessary to take lots of samples 
of  the function and each one must  have an associated probability.  Equation (15) can be 
rewritten in terms of a weight function w as:
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∫ f  x  dx ≈ 1
n∑i=1

n

f xi w xi where w xi =
1

p xi
16

5.2 Using Monte Carlo to Solve the Projection into Spherical Harmonic basis 

Replacing  the  general  basis  functions   used  in  Equation  (6)  by  the  spherical 
harmonic basis  functions  y and parameterizing the  function  f  in  terms  of  the  space  of 
directions, Equation (6) can be rewritten as:

c l
m=∫ f   yl

m  d  17

and it is useful to think of both spherical harmonic functions and coefficients in terms of a 
single index. In this case

c k =∫ f   yk   d  18

Applying  Monte  Carlo  integration,  the  coefficients  obtained  with  the  projection 
operation can be approximated using  n samples as shown in Equation (16). Note that the 
more samples are used,  the better  the approximation. It  should be emphasized that  each 
sample  f   j is  associated  with  a  direction   j.  Thus,  both  the  lighting  and  transfer 
functions need to be sampled along the set of directions  j, 1≤ j≤n.

c k ≈
1
n ∑j=1

m

f   j yk  i w   j 19 

Although one knows how to evaluate both the function f  and the SH basis functions 
for an arbitrary direction, it is still necessary to associate a probability to the occurrence of 
this direction. Since these functions are defined over the space of all  possible directions 
(geometrically, this space can be seen as the surface of a unit sphere), the probability of any 
sample (direction) occurring in such a surface will be one over the area of this unit sphere 
(i.e., 1 /4). So, the probability associated to each directions is:

p   j =
1

4

Substituting  the  weight  function  in  Equation (19),  one gets  Equation  (20),  which 
describes the projection of an arbitrary function  f  defined over the space of all  possible 
directions into the spherical harmonic basis. 

ck ≈
4
n ∑j=1

m

f   j  yk   j  20 

Since our Monte Carlo formulation assumes that each sampling direction is equally 
probable1, the actual samples of the function  f  should be evenly distributed over the unit 

1 An alternative to this approach is the use of importance sampling.

RITA ● Volume XIII ● Número 2 ● 2006 141



A Gentle Introduction to Precomputed Radiance Transfer

sphere.  Moreover,  the  same set  of  sampling  directions   j should  be  used  for  both  the 
lighting and the transfer functions.  In order to guarantee a  uniform sampling of the unit 
sphere, the following algorithm known as stratified sampling is often used:

(i) Evenly distribute the number n of samples over the unit square. For this, subdivide 
the unit square into n × n  cells, and randomly select a sample inside each cell;

(ii) Map the coordinates of the samples in the unit square to coordinates on the unit 
sphere using Equation (21). 

 x , y  2 acos 1−x , 2 y   ,  21

The idea of stratified sampling is illustrated in Figure 4. On the left,  one sees the 
distribution of the generated samples on the unit square. Each sample on the square has been 
mapped to one sample on the sphere on the right, according to Equation (21).

6 PRT Implementation

At this point, the reader has all the background necessary to implement PRT, which is 
the subject of this section. As mentioned before, the PRT algorithm consists of two steps: (i) 
the projection of the lighting and transfer functions into some orthonormal basis functions, 
which happens as part of preprocessing, and (ii) the evaluation of Equation (11), which is 
done in real time.

For this tutorial, lighting functions will be represented as environment maps stored as 
spherical  maps (light  probes),  but  it  is  also possible  to  use  cube maps.  We also briefly 
discuss the use of analytical representations for lighting functions. For the case of transfer 
functions, two types will be considered: (i) unshadowed transfer functions, which ignore the 
visibility function (V  x , x ' in Equation 4), and (ii) shadowed transfer functions, which take 
the occlusion term into account. We also briefly discuss what it takes to add indirect lighting 
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(also called interreflected transfer function) to the shadowed case. The transfer function will 
be evaluated for each vertex present in the scene.

The  code  fragments  shown in  this  section  were  written  in  C/C++.  There  is  also 
sample code for GPU execution written in Cg [15], with its corresponding CPU version.

6.2 Precomputation Step

This is the core of a PRT implementation, concentrating most of the coding effort. 
The following sections discuss each of the precomputation steps.

6.2.1 Sampling Directions

The first step is to generate the  m sampling directions using the stratified sampling 
strategy  described  in  Section  5.2  and  illustrated  in Figure  4.  Before  generating  these 
directions, it is necessary to define the sample data structure:
struct Vector3
{
float x;
float y;
float z;

};

struct Spherical
{
float theta;
float phi;

}

struct Sample
{
Spherical spherical_coord;
Vector3 cartesian_coord;
float* sh_functions;

};

Each  sample  stores  its  spherical  coordinates   , and  its  Cartesian  coordinates 
 x , y , z .  The  spherical  coordinates  will  be  used  to  evaluate  the  spherical  harmonic 
functions, while the Cartesian ones will be used to evaluate the lighting function (compute 
dot products). The samples also store the result of the evaluation of the specified bands of the 
spherical harmonic functions (for the associated spherical coordinates). The details behind 
this extra storage will be explained later.
struct Sampler
{
Sample* samples;
int number_of_samples;

};

The sampler data structure (above) stores the samples,  providing access and the 
ability  to  iterate  over  the  samples  (created  using  stratified  sampling).  The  conversion 
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between spherical coordinates obtained with Equation (21) to Cartesian coordinates is given 
by:

 ,   sin cos , sin sin , cos   x , y , z 

The following code fragment performs the sampling and initialization of the Sampler 
data structure with NxN samples. The sh_functions variable is initialized with NULL and, in 
a later step, memory will be allocated to store the values for the evaluated bands.
void GenerateSamples(Sampler* sampler, int N)
{
Sample* samples = new Sample [N*N];
sampler->samples = samples;
sampler->number_of_samples = N*N;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
float a = ((float) i) + Random()) / (float) N;
float b = ((float) j) + Random()) / (float) N;
float theta = 2*acos(sqrt(1-a));
float phi = 2*PI*b;
float x = sin(theta)*cos(phi);
float y = sin(theta)*sin(phi);
float z = cos(theta);
int k = i*N + j;
sampler->samples[k].spherical_coord.theta = theta;
sampler->samples[k].spherical_coord.phi = phi;
sampler->samples[k].cartesian_coord.x = x;
sampler->samples[k].cartesian_coord.y = y;
sampler->samples[k].cartesian_coord.z = z;
sampler->samples[k].sh_functions = NULL;

}
}

};

float Random()
{
float random = (float) (rand() % 1000) / 1000.0f;
return(random);

}

As it is a C based implementation, the rand() function works properly, a random seed 
must be initialized. So, at the early stages of the main() function, it can be initialized with 
the call showed below:
srand(time(NULL));

6.2.2 Spherical Harmonics Evaluation

In  order  to  evaluate  real  spherical  harmonic  functions,  one  needs  to  be  able  to 
evaluate the associated Legendre polynomials, which can be done with the following code 
fragment.
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float Legendre(int l, int m, float x)
{
float result;
if (l == m+1)
result = x*(2*m + 1)*Legendre(m, m);

else if (l == m)
result = pow(-1, m)*DoubleFactorial(2*m–1)*pow((1–x*x), m/2);

else
result = (x*(2*l–1)*Legendre(l-1, m) - (l+m–1)*Legendre(l-2, m))/(l-m);

return(result);
}

float DoubleFactorial(int n)
{
if (n <= 1)
return(1);

else
return(n * DoubleFactorial(n-2));

}

Now, the spherical harmonic functions can be evaluated
float SphericalHarmonic(int l, int m, float theta, float phi)
{
float result;
if (m > 0)
result = sqrt(2) * K(l, m) * cos(m*phi) * Legendre(l, m, cos(theta));

else if (m < 0)
result = sqrt(2) * K(l, m) * sin(-m*phi) * Legendre(l, -m, cos(theta));

else
result = K(l, m) * Legendre(l, 0, cos(theta));

return(result);
}

where the normalization factors can be computed as:
float K(int l, int m)
{
float num = (2*l+1) * factorial(l-abs(m));
float denom = 4*PI * factorial(l+abs(m));
float result = sqrt(num/denom);
return(result);

}

The presented implementations for both the associated Legendre polynomials and for 
the  double  factorial  are  recursive.  They were  used  here for  simplicity,  as  the mappings 
between their mathematical definitions and implementations are straightforward. Also, these 
functions are only used in the preprocessing stage. More efficient ways to implement these 
functions iteratively can be found in [20]. 

6.2.3 Precomputing the Spherical Harmonic Bands

It is useful to compute and store the SH bands at the samples to avoid evaluating them 
several times in further steps. The following code fragment does this.

RITA ● Volume XIII ● Número 2 ● 2006 145



A Gentle Introduction to Precomputed Radiance Transfer

void PrecomputeSHFunctions(Sampler* sampler, int bands)
{
for (int i = 0; i < sampler->number_of_samples; i++)
{
float* sh_functions = new float [bands*bands];
sampler->samples[i].sh_functions = sh_functions;
float theta = sampler->samples[i].spherical_coord.theta;
float phi = sampler->samples[i].spherical_coord.phi;
for (int l = 0; l < bands; l++)
for (int m = -l; m <= l; m++)
{
int j = l*(l+1) + m;
sh_functions[j] = SphericalHarmonic(l, m, theta, phi);

}
}

}

This function takes two parameters: the sampler, which was created previously, and 
the  number  of  spherical  harmonic  bands  to  be  used  (the  more  bands,  the  better  the 
approximation).  Recall  that  an  approximation  using  l bands  uses l 2 spherical  harmonic 
functions. The code iterates over the bands and evaluates these functions. This process must 
be repeated for all samples.

6.2.4 Lighting Function Representation

There  are  essentially  two  ways  to  represent  a  lighting  function:  empirically  and 
analytically. In this tutorial, light functions are represented empirically using  light probes 
(Figure 5). A light probe is an omnidirectional image that records the incident illumination at 
a particular point in space and can be captured from real world scenes. There are several 
freely available light probe images on the Internet [14].

Since a light probe is only a 2D image, one needs to convert spherical or Cartesian 
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coordinates into image coordinates. This can be done using the following code fragment 
available from Paul Debevec's  IBL Tutorial  [5].  Basically,  the function converts  the  3D 
Cartesian  coordinates  (direction)  into  2D texture  coordinates  (tex_coord)  and,  finally, 
converts them to the pixel offset in the image (pixel_coord), based on image dimensions. 
The output parameter  color will have the RGB color associated to that direction, after its 
execution.
struct Color
{
float r;
float g;
float b;

};
void LightProbeAccess(Color* color, Image* image, Vector3 direction)
{
float d = sqrt(direction.x*direction.x + direction.y*direction.y);
float r = (d == 0) ? 0.0f : (1.0f/PI/2.0f) * acos(direction.z) / d;
float tex_coord [2];
tex_coord[0] = 0.5f + direction.x * r;
tex_coord[1] = 0.5f + direction.y * r;
int pixel_coord [2];
pixel_coord[0] = tex_coord[0] * image.width;
pixel_coord[1] = tex_coord[1] * image.height;
int pixel_index = pixel_coord[1]*image.width + pixel_coord[0];
color->r = image.pixel[pixel_index][0];
color->g = image.pixel[pixel_index][1];
color->b = image.pixel[pixel_index][2];

}

The lighting function can also be represented as a cube map, but it is a lot easier to 
fetch the desired value from a spherical map, such as a light probe. Another way to evaluate 
a lighting function is to use an analytical representation. An example of such a function is 
shown below, which corresponds to two monochromatic light sources, at 90 degrees from 
each other [10]. Figure 6 provides an illustration for this lighting function.

light  , = max0, 5 cos−4 max 0,−4sin − cos −2.5−3
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Figure  6: A  3D plotting  of  an  analytical  spherical  lighting 
function that defines two monochromatic light sources, at 90 
degrees from each other.
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6.2.5 Projection into Spherical Harmonic basis using Monte Carlo Integration

Everything that is necessary to implement the projection operator is now available: 
the samples, the function, and the SH basis functions. It is time to take a look at Monte Carlo 
integration in action, and it is really simple to implement it. The weight function is just a 
constant and the number of samples is known. The following code fragment implements the 
projection operation using Monte Carlo integration:
void ProjectLightFunction(Color* coeffs, Sampler* sampler,

    Image* light, int bands)
{
for (int i = 0; i < bands*bands; i++)
{
coeffs[i].r = 0.0f;
coeffs[i].g = 0.0f;
coeffs[i].b = 0.0f;

}

for (int i = 0; i < sampler->number_of_samples; i++)
{
Vector3& direction = sampler->samples[i].cartesian_coord;
for (int j = 0; j < bands*bands; i++)
{
Color color;
LightProbeAccess(&color, light, &direction);
float sh_function = sampler->samples[i].sh_functions[j];
coeffs[j].r += (color.r * sh_function);
coeffs[j].g += (color.g * sh_function);
coeffs[j].b += (color.b * sh_function);

}
}

float weight = 4.0f*PI;
float scale = weight / sampler->number_of_samples;
for (int i = 0; i < bands*bands; i++)
{
coeffs[i].r *= scale;
coeffs[i].g *= scale;
coeffs[i].b *= scale;

}
}

The code initializes all coefficients with zero. The sum operates over all samples. For 
each sample, the directional Cartesian coordinates are used to access the light probe and the 
spherical harmonic precomputed values associated with each band are retrieved. They are 
combined and accumulated. At the end, all values are scaled using the weight function.

One  important  thing  to  note  is  that  three  sets  of  coefficients  were  generated 
independently, one for each color channel. For monochromatic lighting functions, one vector 
of  coefficients is  enough. The same principle applies when projecting transfer functions, 
which will be discussed next.

6.2.6 Transfer Functions

Recall  that  the transfer function, as defined within Equation (5),  is  the product of 
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three  other  functions:  the  surface  scattering  function  ,  a  visibility  function  V ,  and  a 
geometric term G that expresses the relationship between the emitter and the receiving point. 
These intuitively simple functions are surprisingly the most difficult to implement in the 
whole PRT technique.

The function  can be as complex as we want, handling phenomena such as caustics, 
refraction, subsurface scattering, and so on. For this tutorial, a simple scattering function will 
be used, assuming that the surfaces are ideal diffusers (i.e., Lambertian surfaces), meaning 
that  they  reflect  the  incident  light  with  equal  intensity  in  all  directions.  Using  such  a 
simplification,  the  dependence  between  the  transfer  function  and  an  outgoing  direction 
disappears. Also, the scattering function will be a constant value given by [3]:

x , i , o =
d



The d term in the equation above is a reflectance coefficient associated to the point x 
where the transfer function will be evaluated, just like the diffuse coefficient used in the 
Phong Illumination Model [19].

For  the  geometric  term  G,  one  can  use  the  one  known as  Lambert's  cosine  law 
(Equation 22). Here, x '  is the emitter, i is the normalized incident light direction, and n x is 
the normalized surface normal at x. For some incident directions, the dot product in Equation 
(22) can be  negative,  representing  light  arriving  from behind the  surface.  Equation (22) 
clamps such values to zero.

G  x , x '  = max 0, nx⋅i 22

By blocking some light paths, the visibility function is responsible for a great deal of 
realism. Despite its simple definition – returns 0, if the light is blocked; 1, otherwise – it is an 
intricate  function to  implement.  In  fact,  the  visibility  function is  implemented  as  a  ray-
casting  procedure.  Before  going  any  further  into  the  details  about  visibility  function 
implementation, it is worthy to take a look at some kinds of transfer function variations.

6.2.6.1 Unshadowed Transfer Function

By simply ignoring the visibility function, one can produce renderings similar to that 
obtained  with  the  use  of  local  illumination  models,  such  as  Phong  and  Cook-Torrence 
models [19] [4], but with one advantage: the use of any number of light sources without any 
additional rendering cost. Figure 7 exemplifies how unshadowed transfer works:

Before implementing the transfer function, it is necessary to have a data structure to 
handle the scene information (e.g., objects, vertices, triangles, materials). The following data 
structure will be used to describe the scene:
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struct Triangle
{
int a;
int b;
int c;

};

struct Scene
{
Vector3* vertices;
Vector3* normals;
int* material;
Triangle* triangles;
Color* albedo;
int number_of_vertices;

};

Consider a scene composed of triangles, each with three indices to vertices and the 
same indices also used for the normals. Each vertex has an associated material, which is an 
index to a color (albedo).
void ProjectUnshadowed(Color** coeffs, Sampler* sampler,
                       Scene* scene, int bands)
{
for (int i = 0; i < scene->number_of_vertices; i++)
{
for (int j = 0; j < bands*bands; j++)
{
coeffs[i][j].r = 0.0f;
coeffs[i][j].g = 0.0f;
coeffs[i][j].b = 0.0f;

}
}

for (int i = 0; i < scene->number_of_vertices; i++)
{
for (int j = 0; j < sampler->number_of_samples; j++)
{
Sample& sample = sampler->samples[j];
float cosine_term = dot(&scene->normals[i], &sample.cartesian_coord);
for (int k = 0; k < bands*bands; k++)
{
float sh_function = sample.sh_functions[k];
int materia_idx = scene->material[i];
Color& albedo = scene->albedo[materia_idx];
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Figure 7: For the unshadowed transfer function, occlusions are 
ignored. As a result, 1 will be considered when illumination is 
evaluated for x.
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coeffs[i][k].r += (albedo.r * sh_function * cosine_term);
coeffs[i][k].g += (albedo.g * sh_function * cosine_term);
coeffs[i][k].b += (albedo.b * sh_function * cosine_term);

}
}

}

float weight = 4.0f*PI;
float scale = weight / sampler->number_of_samples;
for (int i = 0; i < scene->number_of_vertices; i++)
for (int j = 0; j < bands*bands; j++)
{
coeffs[i][j].r *= scale;
coeffs[i][j].g *= scale;
coeffs[i][j].b *= scale;

}
}

The projection of unshadowed transfer functions into SH basis is pretty similar to 
light projection. The main difference is that each vertex will have a transfer vector (thus the 
double  indirection  Color** is  necessary  for  the  coeffs variable).  Inside  the  sum,  the 
geometric factor must be evaluated, which is the dot product of the vertex normal and the 
sample direction. Since each vertex may have a different material, this must be retrieved for 
each vertex. The associated spherical harmonic function is retrieved just as it was for light 
projection. At the end, the resulting value is scaled as before.

The previous code fragment implements the projection of the transfer function into 
SH basis.  The  transfer  function is  evaluated using the scattering function (constant)  and 
Lambert's cosine law (Equation 22) for the geometric term. Obviously, the visibility function 
is omitted. It is important to notice that the transfer function will be evaluated and projected 
for every vertex in the model, and each vertex will have as many transfer coefficients as the 
number of basis functions used. Recall that this number is the square of the number of SH 
bands used, just like when projecting the lighting function.

Figure 8 illustrates the use of the unshadowed transfer function for rendering a teacup 
using three different lighting functions. Note the influence of the lighting function in the 
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Figure  8: A Teacup rendered using an unshadowed transfer function under three different lighting 
functions.
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perceived color of the object.

6.2.6.2 Shadowed Transfer Function

In order to produce a shadowed transfer function, the visibility term must be taken 
into  account,  which  can  be  implemented  using  ray-casting.  The  code  fragment  below 
implements the Möller et al. algorithm for ray-triangle intersection [16]:
bool RayIntersectsTriangle(Vector3* p, Vector3* d,

     Vector3* v0, Vector3* v1, Vector3* v2)
{
float e1 [3] = { v1->x – v0->x, v1->y – v0->y, v1->z – v0->z };
float e2 [3] = { v2->x – v0->x, v2->y – v0->y, v2->z – v0->z };
float h [3];
cross(h, d, e2);
float a = dot(e1, h);
if (a > -0.00001f && a < 0.00001f)
return(false);

float f = 1.0f / a;
float s [3] = { p->x – v0->x, p->y – v0->y, p->z – v0->z };
float u = f * dot(s, h);
if (u < 0.0f || u > 1.0f)
return(false);

float q [3];
cross(q, s, e1);
float v = f * dot(d, q);
if (v < 0.0f || u + v > 1.0f)
return(false);

float t = dot(e2, q)*f;
if (t < 0.0f)
return(false);

return(true);
}

This code is called inside the visibility function. Since this is an unoptimized code, it 
will check all other triangles of the mesh against the ray. If no triangle is intercepted, the 
direction is free from obstacles, and the visibility function returns 1; otherwise, it returns 
zero. The code fragment below implements the visibility function.
bool Visibility(Scene* scene, int vertexidx, Vector3* direction)
{
bool visible (true);
Vector3& p = scene->vertices[vertexidx];
for (int i = 0; i < scene->number_of_triangles; i++)
{
Triangle& t = scene->triangles[i];
if ((vertexidx != t.a) && (vertexidx != t.b) && (vertexidx != t.c))
{
Vector3& v0 = scene->vertices[t.a];
Vector3& v1 = scene->vertices[t.b];
Vector3& v2 = scene->vertices[t.c];
visible = !RayIntersectsTriangle(&p, direction, &v0, &v1, &v2);
if (!visible)
break;

}
}
return(visible);

}
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For the case of  the  shadowed transfer  function (Figure  9),  the projection code is 
identical to that  presented for unshadowed transfer, except for the addition of the binary 
visibility function.
void ProjectShadowed(Color** coeffs, Sampler* sampler,
                     Scene* scene, int bands)
{
...
for (int i = 0; i < scene->number_of_vertices; i++)
{
for (int j = 0; j < sampler->number_of_samples; j++)
{
Sample& sample = sampler->samples[j];
if (Visibility(scene, i, &sample.cartesian_coord))
{
float cosine_term = dot(&scene->normals[i], &sample.cartesian_coord);
for (int k = 0; k < bands*bands; k++)
{
float sh_function = sample.sh_functions[k];
int materia_idx = scene->material[i];
Color& albedo = scene->albedo[materia_idx];
coeffs[i][k].r += (albedo.r * sh_function * cosine_term);
coeffs[i][k].g += (albedo.g * sh_function * cosine_term);
coeffs[i][k].b += (albedo.b * sh_function * cosine_term);

}
}

}
}
...

}

Figure 10 shows the result of using the shadowed transfer function for rendering the 
teacup from the same viewpoint shown in Figure 8 and under the same lighting functions. 
Note  the  considerable  increase  in  realism  due  to  the  presence  of  soft  shadows,  when 
compared to the images shown in Figure 8. 
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Figure  9: For the shadowed transfer function, occlusions are 
considered,  producing  shadows.  The  direction  1 has  been 
occluded  by  other  elements  of  the  scene  and  will  not  be 
considered when illuminating x.
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One should notice, however, that the plain shadowed transfer function only computes 
one level of transport (i.e., the direct lighting transport level). For additional bounces, some 
considerations should be done, and will be discussed in the next section.

6.2.6.3 Interreflected Transfer Function

Given the shadowed transfer function, it is possible to consider some refinements to 
perform indirect lighting and make the renderings even more realistic. However, one should 
note that any additional level of indirect lighting implies more transfer coefficients that need 
to  be  precomputed,  stored and  then handled  during  runtime.  However,  as  it  was  shown 
previously, these transfer coefficients can be used to compute the next bounce (Equation 3) 
and, when all bounces were performed, they can be merged, resulting in a final  transfer 
vector (Equation 2), which handles all bounces plus the one for direct transfer, obtained from 
the shadowed transfer vector.

To  implement  interreflected  transfer,  first  the  transfer  coefficients  for  shadowed 
transfer should be computed. By doing so, each vertex of the scene will have a transfer 
vector associated to it.  The next step is to perform the additional bounces, obtaining the 
terms step by step and adding them at the end.

Even if it is easy to understand the basics, implementing such a transfer function may 
be challenging (and complicated to debug). But it is just a matter of brute force. For more 
details on how to implement the interreflected transfer function, please see [10].

6.3 Real Time Step

Once computed, the light and transfer coefficients are ready to be used for real-time 
rendering. This is the easiest part of the entire technique, which consists of computing a per-
vertex dot product -- one that can have lots of coefficients, but still a dot product.
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Figure  10: The  teacup rendered  using a  shadowed transfer  function  under  three  different  lighting 
functions. Notice the soft shadows that greatly increases the realism of the scene.
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6.3.1 Evaluating the PRT Equation in the CPU

To determine the final shading of a point (vertex), it is necessary to evaluate the PRT 
equation  (Equation  8  or  9,  depending  on  the  existence  of  indirect  lighting)  for  it  by 
computing the dot product between its transfer vector and the lighting vector. The following 
code fragment computes the dot product for each color channel and renders the results using 
OpenGL (with Gouraud shading).
void Render(Color* light, Color** coeffs, Scene* scene, int bands)
{
glBegin(GL_TRIANGLES);

for (int i = 0; i < scene->number_of_triangles; i++)
{
Triangle& t = &scene->triangles[i];
Vector3& v0 = scene->vertices[t.a];
Vector3& v1 = scene->vertices[t.b];
Vector3& v2 = scene->vertices[t.c];

Color c0 = { 0.0f, 0.0f, 0.0f };
Color c1 = { 0.0f, 0.0f, 0.0f };
Color c2 = { 0.0f, 0.0f, 0.0f };
for (int k = 0; k < bands*bands; k++)
{
c0.r += (light[k].r * coeffs[t->a][k].r);
c0.g += (light[k].g * coeffs[t->a][k].g);
c0.b += (light[k].b * coeffs[t->a][k].b);
c1.r += (light[k].r * coeffs[t->b][k].r);
c1.g += (light[k].g * coeffs[t->b][k].g);
c1.b += (light[k].b * coeffs[t->b][k].b);
c2.r += (light[k].r * coeffs[t->c][k].r);
c2.g += (light[k].g * coeffs[t->c][k].g);
c2.b += (light[k].b * coeffs[t->c][k].b);

}

glColor3f(c0.r, c0.g, c0.b);
glVertex3f(v0.x, v0.y, v0.z);

glColor3f(c1.r, c1.g, c1.b);
glVertex3f(v1.x, v1.y, v1.z);

glColor3f(c2.r, c2.g, c2.b);
glVertex3f(v2.x, v2.y, v2.z);

}

glEnd();
}

6.3.2 Evaluating the PRT Equation in the GPU

Evaluating the PRT equation in the GPU is pretty straightforward. All it takes is to 
declare  one  uniform  parameter (i.e.,  a  parameter  that  will  remain  constant  over  the 
processing  of  all  vertices),  which  contains  the  lighting  function  coefficients.  It  is  still 
necessary to declare the transfer vector, which varies for each vertex. Given that, the vertex 
program only needs to compute the dot product and forward the result to the rasterizer.
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The following code implements the vertex shader for PRT:
struct app2vertex
{
float4 f4Position : POSITION;
float4 f4Color : COLOR;
float3 vf3Transfer [N*N];

};

struct vertex2fragment
{
float4 f4ProjPos : POSITION;
float4 f4Color : COLOR;

};

vertex2fragment VertexShader
(
app2vertex IN,
uniform float3 vf3Light [N*N],
uniform float4x4 mxModelViewProj

)
{
vertex2fragment OUT;

OUT.f4ProjPos = mul(mxModelViewProj, IN.f4Position);

OUT.f4Color = float4(0.0f, 0.0f, 0.0f, 1.0f);
for (int i = 0; i < N*N; i++)
{
OUT.f4Color.r += (IN.vf3Transfer[i].r * vf3Light[i].r);
OUT.f4Color.g += (IN.vf3Transfer[i].g * vf3Light[i].g);
OUT.f4Color.b += (IN.vf3Transfer[i].b * vf3Light[i].b);

}

return(OUT);
}

The following code implements the pixel shader for PRT:

struct fragment2screen
{
float4 f4Color : COLOR;

};

vertex2fragment PixelShader
(
vertex2fragment IN

)
{
fragment2screen OUT;
OUT.f4Color = IN.f4Color;
return(OUT);

}

7 Extensions to the Plain PRT Rendering

PRT  provides  a  global  illumination  solution  for  scenes  containing  only  diffuse 
surfaces.  To increase the realism of  the generated images,  it  is  possible  to  add specular 
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effects to the final rendering. Sloan et al. [24] described a method to render glossy reflections 
using PRT. It is  also possible to add high frequency specular reflections using reflection 
mapping [2] [8]. In this case, the results will not be physically correct, but the technique is 
very easy to implement, very fast to evaluate in real time, and produces more sophisticated 
images. Figure 11 shows the result of integrating diffuse PRT with reflection mapping. On 
the left, pure diffuse and specular renderings are shown. On the right, both techniques have 
been combined, producing a more realistic image. A code fragment showing how to combine 
the diffuse and specular contributions is shown below.

The reflection mapping implementation should use an environment mapping that is 
consistent with lighting function (light probe). To implement reflection mapping on the CPU, 
one  can use  the  EXT_texture_cube_map OpenGL extension,  for  which a  tutorial  can be 
found at [18]. For a GPU implementation of reflection mapping, refer to the NVIDIA SDK 
[17].

When using high dynamic  range  images for  the environment  texture,  a  blooming 
effect [17] and tone mapping [22] [27] can also be used to enhance the the image quality 
even further. These techniques were used to synthesize Figure 11 (right). A comprehensive 
discussion on how to combine diffuse PRT, reflection mapping and high dynamic range 
images in real time can be found in [26].
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Figure 11: A teacup rendered using both diffuse PRT and reflection mapping. An high dynamic  
range  image  was  used  for  lighting  function  and  environment  texture,  so  tone  mapping  was  
employed to properly exhibits the generated image.
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specular

diffuse + specular

material specularity:
teacup: 0.3
plate: 0.1
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Once both diffuse PRT result and reflection mapping color have been computed, one 
can combine them using the following formula, where  specular factor is equivalent to the 
specular coefficient used in the Phong model [19]. Remember that the diffuse coefficient was 
already encoded in the PRT diffuse color, as explained on section 6.2.6:

FinalColor=PRTDiffuseColorSpecularFactor∗SpecularColor

8 Conclusion

Precomputed radiance transfer is capable of rendering highly realistic images of static 
diffuse environments in real time. It assumes an infinitely distant light source, and consists of 
factoring the rendering equation into incident light and light transport terms. By projecting 
these terms into a family of orthonormal basis functions, the resulting simplification of the 
rendering equation can be estimated using dot products. PRT has a big advantage over the 
commonly used local illumination models since it is able to render scenes using any number 
of  light  sources without compromising performance.  It  is  also capable of  producing soft 
shadows that highly increases the realism of the scenes. By taking extra light bounces into 
account, one can simulate diffuse interreflection among the objects in the scene, increasing 
the realism even further.

PRT can produce glossy reflections  [24], and specular ones can be easily combined 
with PRT renderings by using reflection mapping. In this case, the resulting images tend to 
look quite realistic even though the approach is not physically correct.

Currently, PRT cannot be used with dynamic scenes. Although, spherical harmonic 
functions allow the lighting function or the scene to be rotated, preserving the precomputed 
light transport, it  does not allow object translation, since this would change the visibility 
function. Some research has been done to try to remove this limitation [1] [13] [23] [25] 
[28], but no definitive solution has been found yet.

The  quality  of  the  renderings  obtained  with  PRT depends  on  the  basis  functions 
chosen to perform the projections. Using a small number of coefficients, spherical harmonic 
functions are acceptable just  to approximate low frequency characteristics of the lighting 
function. One way to support high-frequency approximation of the lighting function with less 
coefficients is to use Haar Wavelets [21].

This tutorial focused on a gentle introduction to PRT, using diffuse reflection and 
direct  lighting  only.  More  sophisticated  transfer  functions  are  possible  supporting,  for 
instance, interreflections, caustics, refractions, and subsurface scattering. PRT has proved to 
be a very interesting and promising rendering technique.
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