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ABSTRACT. 

Impact diamonds were found in several inipactites from the Ries crater. 

Geriiiaiiy including fallout and fallback (crater f i l l )  suevites. a glass bomb, impact melt 

i-ock and shocked gneiss. These diamonds formed two distinct grain size populations: 

50-300 pii apographitic. platy aggregates with surface ornamentation and etching that 

\vere observed using optical and scanning electron microscopy and 5-20 pm diaiiionds 

which displayed two different inorphologies identified using traiisinission electron 

microscopy and selected area electron diffraction. These 5-20 pm grains comprised 

apographitic. platy gi-nins with stacking faults, etching and graphite intergrowths 

together with elongate skeletal grains with prefemd orientations to the individual 

crystallites. Thermal annealing of stacking fa~i l is  and surface features was also detected. 

Stepped combustion coiiibined with static mass spectrometry to give carbon 

isotopic analysis of iiidividunl diamonds. graphite and acid-residues indicate that the 

priinai-y carbon source is graphite. This graphite was found to be %depleted with 

i-cspcct to similar samples firom the Popigai impact crater. 

The admixture of presumably carbonate derived carbonaceous material is 

wzyxteù  to account for the "C-enriched 6°C coinpositions encountered in whole-i-ock 

we\.ites known to include carbonate melts. 

011 the busis of moiphology. iiineralogicnl associations. diamoncVgraphite ratios 

aiid carbon isotopic compositions three possible formation mechanisms for impact 

dimionds are suzgested: fast. high temperature conversion of graphite following the 

pissage of the shock wave, a vapour phase condensation or growth within substrate 

iiiiiicrnls 01- an orientated stress field and the incomplete translomiation of a mixture of 

aiiiorphous and 

iiitcriiiediary carbyne phases cannot be discounted. 

r a l h e  graphite. Further niore exotic mechanisms such as 

linpact diamonds, 1-5 pni in size. were also identified in suevite residues and a 

hlack matrix lithic breccia from the Gardnos impact crater. Norway. The carbon isotopic 
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conipositions are in agreement with previous measurements of whole rock saiiiplcs with 

;i riiiall "C-cnriched component probably representing diamond. 
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The distribution is apparently concentrated in the northern hemisphere and 

Australia because these are regions of old stable cratons and the areas most 

systematically searched (Grieve and Pesonen, 1996). 

Impact cratering has shaped the surface of rocky bodies in the Solar System, 

following the condensation of interstellar dust and planetary accretion. The surfaces of 

many of the planets and satellites have been extensively restructured by cratering, for 

example one hypothesis for the origin of the Earth and the Moon is that it was formed 

by the impact of a Mars-sized planetisimal with the proto-Earth, (Hartmann and Davies, 

1975. Newson and Taylor, 1989). The crust on the far side of the Moon is thicker which 

may be related to the redistribution of crustal material by giant impacts (Jones, 1999). 

The high elevation of the southern hemisphere of Mars compared to the northern 

hemisphere has been attributed to redistribution of the crust as a result of the formation 

ofthe Hellas impact crater (Smith et al., 1999). Infalling material may have helped shape 

the terrestrial atmosphere by the dispersal and introduction of volatiles (Melosh, 1989). 

Studies of the cratering history of the Moon provide evidence of astesoid and cometary 

impacts in newEarth space back almost to the formation of the Solar system, and so 

therefore the terrestrial cratering rate. The proximity of a satellite such as the Moon is 

important as the cratering rate through the Solar System varies with proximity to the 

asteroid belt (Jones, 1999). 

1.1. THE LUNAR AND TERRESTRIAL CRATERING RECORD. 

The cratering record of the Earth is biased towards younger and larger craters on 

stable cratonic regions due to a high level of geological activity (Grieve, 1997). The lack 

of an atmosphere and weathering on the Moon means that craters are well preserved. 

Observations of the Moon have provided an almost complete record of the near-Earth 

impact history (McEwan et al., 1997). The lunar highlands are near-saturated with 

craters which have an average age of 3800-4300 Ma. This provides evidence for near 

Earth cratering from close to the formation of the solar system at 4500 to 3900 Ma, the 
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period of heavy bombardment and then up to the present day (Jones, 1999). Figure 1.2. 

illustrates the impact cratering rate for the Earth-Moon system; the peak in this cratering 

rate represent the period of late-heavy bombardment. The terrestrial cratering rate has 

been calculated as 5.6 

(Grieve, 1986). 

2.8 x l0~"km~'  a.' for structures over 20 km in diameter 

i o' 

1 
I 
5 4 3 2 1 O 

Time before presenti 1000 Ma 

Figure I .2. Crateriiig rates of the Earth-Moon system (Jones, 1999) 

Impact craters have two main forms, simple and complex. Figure 1.3 shows the 

simple-complex transition for the E d h ,  Moon, Mars and Mercury. The transition 

between simple and complex craters has been observed to scale inversely with the 

gravitational acceleration of the planet (Melosh, 1989, Pike, 1988). Thus the transition 

occurs at IO km on Mercury and between 2 to 4 km on the Earth when the gravitational 

pul1 of the planet results in collapse of the simple crater structure forming complex rings 

and domes (Melosh, 1989). Further data from the Mars Orbiter Laser Altimeter 

indicated that the transition occurs at 8 km d . 5  km on Mars (Garvin and Frawley, 

1998). 
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Simple craters are generally small in size and form howl like depressions with 

little detailed structure. This type of crater is formed by high speed impact and typifies 

the craters found on the Moon and Mercury (Melosh, 1989). 

30 

ii 
W - 5  5 

2 

200 500 I o00 
g. cms-I 

Figure 1.3. Crater diameter and gravitational acceleration (g)  at the simple to complex 

transition on the Earth, Moon, Mercury and Mars (Melosh, 1989) 

Possibly the hest example of a simple terrestrial crater is the Barringer Meteor 

crater, Arizona, that was formed by the impact of a 3-4 x 10' t (45-50 m diameter) iron 

meteorite called Canon Diablo (Roddy and Shoemaker, 1995). Roddy and Shoemaker 

( I  995) also suggest that the impactor originated from a collision in the main asteroid 

belt (0.5 by), fragmenting the Fe-Ni core of an asteroid which collided with the Earth 

50,00013000 yr ago. 

Gravitational collapse produces more complex crater forms such as central 

uplifts, terraces and ring faults. These are illustrated by the lunar crater Theophilus a 
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102 kni diameter crater which displays a series of terraces and central peaks up to 3 km 

in height, Melosh. (1989). Currently one of the largest known craters on the Earth is the 

Chicxulub crater which was identified using seismic exploration techniques (Hildebrand 

et al.. 1991) and is associated with the KT boundary layers (Alvarez, 1980). Vredefort 

and Sudbury impact craters may be larger. 

Much of the interpretation of the mechanics of cratering and crater forms has 

been based on astronomical observations of the Moon and other planets. Hydrocode 

modelling using computer simulations of impacts has been used to demonstrate the 

potential influences of different factors. Hydrocode simulations of Chicxulub (Pierazzo 

et ai., 1998) have been used to model changes in the atmosphere, especially in CO:, S 

and H,O a s  a result of the impact and its effects on the target rocks. 

1.2. ASTEROIDS AND COMETS. 

The objects which create impact craters are asteroids and comets. The asteroids 

and c«incts which could impact the Earth are known as neai’ Earth objects (NEOs), these 

are primarily short-term comets and asteroids. There are also less frequently 

encountered long-period comets. Over 400 NEOs have been identified (Lupishko and 

Diniaiiino, 1998). 

Asteroids are primarily derived from the asteroid belt between Mars and Jupiter 

and the Edgeworth-Kuiper belt (EKB) and may emerge due to resonant phenomena 

(Morbidelli and Gladman, 1998). Collisional fragmentation of asteroids within the 

asteroid belt may also result in the ejection of material into unstable orbits and 10% of 

the short-period comets could be supplied by Trojan asteroid collisions (Marzari et al., 

1997). Collisions within the EKE3 are sufficient to replenish the short term comets 

(Davis and Farinella, 1997). 

Comets encompass the long-period comets with orbits greater than 200 years of 

which 1000 are known and over 180 short-period comets with orbits of less than 200 

years (Jones, 1999). Long period comets appear at random and are uniformly 
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distributed (Weissman, 1997). The main source of short period comets is the Oort 

cloud where there are an estimated IO" comets (Farinella and Davies, 1996). Many 

comets are passed from the Oort cloud by galactic perturbations through the planetary 

system and into Earth-crossing orbits (Napier and Clube, 1997; Valtonen et al., 1995). 

Comet showers may be triggered by perturbations of the Oort cloud by massive 

interstellar clouds (Stothers, 1998), the Solar System oscillation perpendicular to the 

galactic plane (Matese, 1995; Shoemaker, 1990) and the passage of Suns through the 

cloud (Weissman, 1996). From extraterrestrial 'He found in pelagic limestones it has 

been suggested that a comet shower occuired over a 2.5 Ma period covering the 

formation of the Popigai (35.7 Ma) and Chesapeake Bay ( 35.5 Ma) impact craters 

(Farley et al., 1998). Periodicity in the impact cratering rate is ii controversial subject 

with suggested increases in the cratering rate as a result of periodic variations in comet 

and asteroid ejection, from 30-500 Myr (Rampino, 1997: Rampino and Haggcrty, 1996: 

Matese et al., 1995). Analysis of the known terrestrial cratering rate has not shown 

evidence of such events (Fcrnandez, 1992; Montanari, 1998). 

The nature and size of the impactor, comet or asteroid has a great influence on 

the size of  impact crater produced. Comets impact at much higher velocities than 

asteroids; the mean impact velocity of a long period comet is between 56-58 km s ~ '  

(Weissinan, 1997) whereas asteroids impact at between 17-20 km s~' (Steel, 1998). The 

peak shock prcssurcs generated by impactors of the samc radius varies with 

composition in the order of iron > stony > ice (Kieffer and Siinonds, 1980) as a result 

of density differences. 

Geochemical evidence has indicated that the majority of impactors are chondritic 

especially in the case of large craters, suggesting a greater role for comets in large 

craters (Grieve and Pesonen, 1996). 
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1.3. EXPERIMENTAL CRATERING. 

Experimentally generated craters such as those produced by nuclear explosions 

(Polailsky and Ahrens, 19941, the NASA Ames vertical gun range (Shultz and Gault, 

1982) and two-stage light gas gun (Taylor et al., 1997) have been used to calculate the 

pressui-es and temperatures produced by impacts, atmospheric effects and crater scaling 

relationships. These experiments operate on a variety of scales; light gas gun 

experiments produce small-scale craters (cm-scale) often to test materials such as 

samples of the LEO remote sensing platform (Taylor et al., 1997). 

Shock recovery experiments have been used to calculate the pressures and 

temperatures required to produce the observed shock features found in quartz (Stöffler 

et al., l975), quartz and feldspars (Huffman et al., 1993) and a variety of other materials 

(Stöffler, 1972). As well as the production of gases such as CO, (Martinez et al., 1995) 

and SO,/SO, (Yang and Ahrens, 1998) from shocked rocks. 

Experimental simulations of impacts have been used to determine the influence 

of the velocity and mass of the impactor (Giblin, 1998). Hypervelocity impact tests 

using simulated comet and asteroid material were performed at the Air Force Arnold 

Engineering Development Centre SI Range Facility, USA (Tedesci et al., 1995). 

1.4. ATMOSPHERIC EFFECTS. 

An asteroid of I km diameter has an average impact velocity of 20 k m k  with a 

kinetic energy (KE) of 4 x IO2’ ergs (Jones and Kodis, 1982). A significant proportion 

of this energy would be deposited in the atmosphere, although the majority would be 

exchanged with target rocks (Jones and Kodis, 1982). Ahrens and O’Keefe (1987) 

investigated the interaction of a 10 km bolide with the atmosphere and calculated that 

8% of its energy would exchange with the atmosphere during its passage. Following 

impact with the ground, vapour, melt and solid ejecta thrown from the crater would 

transfer an additional 40% of the energy to the atmosphere (Ahrens and O’Keefe, 

1987). As the meteorite passes through the atmosphere it will punch a hole in the upper 
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atmosphere which is then filled with an upward inward flow field carrying vapour, melt 

and fragmented rock or dust (O’Keefe, 1982). This ionized gas cloud expands 

explosively behind a spreading curtain of ejecta forming a toroid which dissolves as it 

ascends (Schultz, 1982). Expansion of the vapour plume or fireball associated with the 

impact may result in widely distributed ejecta, for example the KT bounday clay forms 

a 3 cm thick globally distributed layer (Hildebrand, 1993). 

Large impacts could result in the distribution of tektites and fine grained ejecta 

across a wide area by entrainment in the upper atmosphere. Calculations indicate that an 

impact the size of the KT event would only affect a column of atmosphere up to 50 km 

in radius and only 7% of the ejecta and vapour would escape from the upper atmosphere 

(Newman et al., 1999). A chondritic asteroid would need to be >250 m in diameter in 

order to produce a vapour plume capable of carrying material into the stratosphere 

(Kring et al., 1996). 

Computer models of impacts have also been used to calculate the effects of 

vapoi-ised target rocks on the composition of the atmosphere. Pierrazzo et al., (1  998) 

calculate that an impact on the scale of Chicxulub would result in a maximum increase 

in atinospheric CO, of40  % and that the most important component would be sulphur 

combined with water. Shock vaporisation experiments of anhydrite showed that an 

impact on thc scale of the KT event would yield 0.5 to 2 xl0”g of SO, and SO, 

resulting in a model global cooling effect of 10°C (Yang and Ahrens. 1998). 

1.5. SHOCK METAMORPHISM. 

The shock waves produced by an impact, shock metamorphose the target rocks 

to varying degrees but are rapidly attenuated by distance (Simmonds et al., 1976). 

Shock metamorphism is the process whereby a series of irreversible changes occur in 

rocks and minerals subjected to pressures above their Hugoniot Elastic Limit (HEL) 

(Sharpton and Grieve, 1990). These include structural dislocations (kink bands, planar 

deformation features), shatter cones and high pressure mineral polymorphs. The type 
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and extent of thesc changes depends on the shock pressures experienced, as the degree 

of shock metamorphism increases with increasing pressure and temperature (PR) 

conditions. The HEL represents the critical shock pressure at which a solid yields under 

the uniaxial strain of a plane shock wave (Stöffler, 1972), where the stress reaches a 

limiting value between plastic and brittle deformation. HELs wuy considerably between 

different rock types and minerals, for example granodiorite at 4.5 Gpa (Borg, 1972), 

basalt ai 5 Gpa (Nakazawa et al., 1997) whilst quartz may have a HEL in the range of 

4.5- 14.5 Gpa depending on the orientation of the crystal (Duvall and Graham, 1977). 

Le Chateliers Principle states that when an external force is applied to an 

equilibrium system the system adjusts to minimise the effects of the force. One way in 

which this is accomplished is by the formation of high pressure mineral polymorphs. 

The fomiation of high pressure minerals results in a reduction in rock volume (Riedel 

and Karato. 1997) associated with the higher density and smaller crystal form of high 

pressure phases. For instance, the formation of diamond from graphite results in a 50% 

reduction in molar volume (Anthony, 1999) and the density of SiO, increases from 2.63 

gkm‘ to 2.93 gkm7 in coesite and 4.23 gkm’ in stishovite (Stöffler, 1972). Increased 

pressure conditions will eventually result in rock melt or vaporisation (Kieffer and 

Sinionds. I 980; Rodonot, 1994). 

The high pressure polymorphs of quartz. coesite and stishovite (Coes, 19.53) 

have been used extensively as indicators of shock metamorphism (Melosh, 1989) and 

they are considered to be among the best-known indicators of shock in quartz-rich 

rocks (Gilniour, 1998). Coesite, which has been found around the rims of the Ries 

crater is formed at temperatures of 4.50 to 800 (IC and pressures in excess of 38 kbar 

and stishovite at 130 kbar and >12ûû”C (Deer et al., 1992). Table 1.1 summarises the 

shock indicator phases and associated conditions of formation. 
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Table I .  I .  Summary of shock features and formation conditions. (After Graup, 1990). 

Pressure 

Gpa) 

>xo 
XO-60 

60-45 

45-35 

35- I o 

10-1 

Post shock Shock effects 

tempcraiure 

(“C) 

>3000 Vaposisdtion 

3000-1700 Complcte melting of rocks 

1700-900 Sclcctive fusion of quarcr and feldspar 

glass, thennal dccoinp»sition of 

amphihole. pyroxene, biotite. 

900-300 Diaplectic glasses ofquastz and 

feldspar. Coesite and stishovite. 

Deformation larnellae and kink hands. 

300-100 Diaplcctic crystals with planar 

dciorniation featul-es. Planai- eleiiients 

and kink hands. 

Fracturing (11 iiiinesals. Kink hands, 

planar elemcnir and shattes cones. 

100-0 

Occurrence 

(at the Kies crater) 

Suevitc 

Sue\,ilc 

Suevite 

Polymict breccia 

(Bunte Breccia) 

Sucvite 

Polyinict hi-eccia 

(Bunk Brcccia) 

Suevile, Bunte 

Breccia, incgahlocks. 

1.5.1. General shock effects. 

The products of shock metamorphism (table 1. I )  form a rough series through 

increasing pressure and temperature conditions. Shatter cones are a relatively low 

pressui-e feature which form conical structures generally orientated towards the centre of 

the ci-atcr and were first observed from the Kentland stnicture (Dietz, 1947: 1959). Kink 

bands are a common feature observed in layered ininerals such as graphite, biotite and 

feldspars. They are most commonly reported from biotites, as the result ofciystal 

- rrliding along the basal plane with external rotation of the crystal lattice (Stöftler, 1972). 

Planar deformation features (PDFs) are formed with increasing shock pressures 

and may be observed in minerals such as quartz, micas and feldspars and were first 

described in quartz from the Cleanvater Lake structure, Indiana, USA (Mclntyre, 1962). 

PDFs are themselves an internal structure resulting from the shock transformation of 

the crystal lattice, forming sets of intersecting parallel lamellae. There are four different 

forms of PDF: ( I )  bands of dislocations, (2) lamellae with different proportions of 

amorphous silica, (3) brazil twin lamellae and (4) seimted ladder stnicture parallel 
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hmellae (Goltrant et al., 1992). Their formation may result from shock pressures 

between 15-35 Gpa (Martinez and Aginner, 1998). Goltrant et al., (1992) proposed a 

model where discontinuities are formed in certain structural planes by the movement of 

atoms towards energetically more favourable positions and predicted an increase in the 

density of PDFs with shock intensity. Theoretical calculations have shown that at 

pressures > I O  Gpa the energy of the shock front is released by the nucleation of 

amorphous and increasingly compressible zones whose growth is driven by the 

propagating shock front (Goltrant et al., 1992). 

Diaplectic glasses or maskelynite, i.e. glass that is formed in the solid state by 

shock induced melt, not melting due to temperature increases, are also used as shock 

indicators. Diaplectic glasses occur as shock induced solid state transformations in 

quartz, plagioclase and alkali-feldspars, as the reversion products of corresponding high 

pressure phases during pressure release (Stöffler, 1972). Under high pressures (>25 

Gpa) PDF consist of superheated melt which forms diaplectic glass following 

quenching (Langenhorst, 1994). 

High pressure mineral polymorphs have been described from a number of 

craters. for example the high pressure forms of quartz (i.e. coesite and stisliovite) in 

rocks from the Ries crater (Chao, 1967), Vredefoii (Martini, 1978) and Haughton 

(Martinez et al., 1993). The high pressure forni ofplagioclase (jadeite) forms at 

pressures >I50 Gpa (Stöffler, 1972) and has been found at the Ríes crater (James, 

1969). Diamonds may be fomied by the shock compression of carbon io high 

pressures and temperatures, yielding metastable diamond on quenching (Erskine and 

Nellis, I99 1 ), This is discussed in greater detail in section 4.8. 

1.6. CLASSIFICATION OF IMPACTITES (with particular reference to the 

Ries crater). 

The nature and type of impactites (rocks affected by impact) which are formed 

by aiteroid or comet impact vary according to the composition ofthe target rocks. The 
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iarget stratigraphy inay be sedimentary, igneous, metamorphic or a combined sequence 

for example, sedimentary cover overlying an igneous and metamorphic basement such 

as the Ries (Hörz et al., 1983). Relatively dry metamorphic and crystalline basement 

rocks will tend to result in the foimation of impact melt sheets and dikes, whilst targets 

coniposed of sedimentary rocks overlying a crystalline basement will tend to result in 

the formation of lithic impact breccias with glass associated with minor impact melt 

(Kieffer and Siminonds, 1980). The explosive expansion of vapour derived from 

hydrous minerals, devolaiilised by high pressure and temperature conditions, and pore 

waters incorporated in sedimentary rocks, increases the dispersion and fragmentation of 

melt (Kieffer and Simmonds, 1980). 

Inipactites may be classified into two broad subheadings, proximal and distal 

with numerous sub-classifications. Figure I .4 shows a suggested classification scheme 

for inipactites with their location in relation to the crater (Stöffler and Grieve, 1996). 

Proximal deposits occur around the site of impact whereas distal deposits may occur 

globally, for example, the KT boundary clay or up to several 100 kni from the site of 

impact. The Ries tektites, known as moldavites illustrate this and are found up io 400 

km from the Ries crater (Bouska, 1994). There are a considerable number of different 

terms used in the literature to describe impactites many of which ace local terininology; 

the suggested classification scheme was intended to simplify this ternunology. 

1.6.1. Proximal impactites. 

Proximal impactites include cataclastic breccias, lithic impact breccias, and 

impact melt rocks. Cataclastic breccias are rocks which have been deformed by shearing, 

granulation and pervasive microfracturing by the movement of rocks relative to each 

other as a result of impact generated shock waves, post impact re-bound and ring 

Faulting movements. The Nördlingen 1973 drill core in the Ries crater, Germany 

(Stöffler, 1977 and Chao. 1977) revealed cataclastic breccia dikes below the transient 

crater floor and within the fractured basement rocks (Stöffler et al., 1977). 
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Similar structures were found in the 1992 drill core of the Kalkkop impact crater, 

Eastem Cape Province, South Africa which contains cataclastic breccias within the 

basement rocks (Reimold et al., 1998). As well as injection dikes oflithic impact 

breccias (Reimold et al., 1992). 

Lithic impact breccias are breccias formed by the shock fragmentation of the 

target rocks but do not contain impact melt glass. An example is the Bunte Breccia from 

the Ries crater which is predominantly (90-95 vol%) composed of sedimentary rock 

fragments (Hörz et al., 1983) and was derived from the shallowest levels of the target 

stratigraphy (Stöffler, 1973 ). The lithology represents the main excavation and ejection 

stage during the crater foimation as it comprises over 90 vol% of the total ejecta blanket 

(Hörz, 1982). 

Suevite is a term local to the Ries crater that is used to describe a lithic impact 

breccia with glass. Suevites contain fragments of crystalline and sedimentary rock, 

variable percentages of aerodynamically formed glass bombs and fragments with a 

finely comminuted matrix of the same composition (Masaitis, 1994). In the case of the 

Ries, the i-ock is predominantly derived from basement rocks which underlie a thin 

sedimentai7 sequence (Hörz et al., 1983). The bulk composition of the suevite glasses is 

consistent with the proportions of crystalline rock clasts within the suevite, indicating 

that the glasses originated from the shock-fusion of a similarly composed basement 

(Von Engleha-dt, 1997). Lithic impact breccias are described from a number of other 

impact craters, for example Popigai (Masaitis, 1994; 1998 ), Ilyinets (Gurov et al., 

1998). Chicxulub (Claeys et al., 1998) and Gardnos (Andersen and Burke, 1996). Lithic 

impact breccias may be deposited within the crater itself or form part of the ejecta 

blanket outside the crater structure. 

Impact melt rocks may be subdivided into 3 sub-groupings on the basis of their 

clast content (Stöffler and Grieve, 1996). Impact melt rocks occur at the Popigai impact 

crater where they are teimed tagamites and consist of a glassy or crystalline matrix with 

fragments of the target rocks and minerals (Masaitis, 1994). Large volumes of impact 
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melt may result in the formation of melt sheets or lenses, for example Lappajiirvi 

(Kukkonen et al., 1992) and Sudbuty (Grieve et al., 1991). Thick impact melt sheets and 

lenses tend to be found near the centre of impact craters although they may form 

disci-ete deposits within the ejecta blanket outside the crater cavity. Impact melt rocks 

from Polsingen quarry, Ries have been re-interpreted as high temperature suevites, 

abnormally rich in melt which recrystallized at higher temperatures than normal suevite 

(Von Englehardt and Graup, 1984). 

All these impactites may occur as layered deposits within the crater, ejecta 

blanket 01' as dikes within the crater floor. Depending on the nature of the target 

stratigraphy they are all commonly polyniict except in cases of single lithology targets 

(Stöffler and Grieve, 1996). 

1.6.2. Distal impactites. 

These represent the deposits which are found at some distance from the impact 

crater and inay be subdivided into shocked melt and unshocked air fall deposits (fireball 

layers). Target material which has been vaporised by the impact event may be ejected to 

form tektites, microtektites and mikrokrystites. 

Tcktites are glass bodies, often with unusual forms and textures which are found 

in groups or strewn fields. These are defined on the basis of radiometric dating and 

geographical proximity (Bouska, 1994). Table 1.2. lists the principal tektite groups and 

fields. although there are considerable subdivisions within some of these groupings. For 

instance the Indochinite group includes Javanites, Philippinites, Thailandites, Billitonites 

and Malaysianites (Bouska, 1994). 
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Tcktite group[i] 

Bediasiics and 

Georgianites 

Moldavim 

Urcngoites 

Irgliiritcs 

ivory Coast Tektites, 

I ivorites I 

Location[ I] Associated crater Age (Ma)[ i ]  

North American Strewn Field - Chesapeake Bay121 35 

inc. Texas, Georgia, Cuba, 

Barbados, Carihhean Sra. Gulf oï 

Mexico. 

Central European Strewn Field. Ries 14.7 

S .  Bohemia. S-W. Moravia. 

Novyi Urengoi, W. Siheria. Unknown 24 

Zarnanshin crater, N .  Kazakhstan 

Ouelle region, Ivory Coast. Botsumtwi [4 I 1 . 1  

Zamans hin [ 31 0.81 t o  1.1 

Ausifiilnsian Tcktites Australia and Tasmania. Unknown 0.7x 

Indochinites S.E. Asia. Unknown 0.69 

I.ihynn descri glasslii] W. Desert. Egypt. Aerial hurst 2Y - 
Wnssoii 3nd Moore, (1998). 

Tektites have been the source of considerable debate with two main schools of 

thought. the lunar volcanic theory and the terrestrial impact theory. The lunar volcanic 

theory suggested that tektites are lunar volcanic glass ejected by volcanic activity 

(O’Keefe, 1976; 1985; 1994). This was modified with many of the textural and 

structural features of tektites and their association with impact events explained by 

volcanic e.jection from small icy Moons such as Io, Callisto and Triton (Izokh, 1997), 

This theory has now been largely discounted in favour of the terrestrial impact 

theory, where tektites are formed from impacts on Earth and represent melts of surficial, 

predominantiy sedimentary rocks (Koeberl, 1994). The Ries nioldavites have been 

attributed to melting and vaporisation of surficial sands by the approaching impactor on 

the basis of their gcochernical compositions and melting experiments (Von Englehardt 

et al.. 1987). Similar geochemical and isotopic evidence has been used to link the 

Chesapeake bay impact crater with the North American strewn field (Mchugh, 1998; 

Glass, 1998) and the Bosumtwi crater, Ghana with the Ivory Coast tektites (Taylor and 

Epstein, 1966; Koeberl et al., 1998). Libyan desert glass (LDGs) have a close 
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compositional relationship with mature sandstones from the Jurassic-Cretaceous Nubia 

group (Barrat et al., 1997) and may he the result of an aerial burst analogous to the 

Tunguska event (Wasson and Moore, 1998). 

Microtektites are glassy bodies (<lm in diameter) which occur within widely 

distributed layers often in deep sea sediments. Spherical, transparent and colourless 

microtektites with a similar composition to the North American microtektites are found 

in the Ocean Drilling Project (ODP) Hole 689B and represent distal ejecta from the 

Chesapeake Bay impact crater (Glass and Koeberl, 1999). 

Microkrystites are sand-sized spherules of silicate melt which have been found 

associated with the KT boundary layer (Snit et al., 1992) and in a 2.54 Ga layer in the 

Hammersley Group, Western Australia (Simonson et al., 1998). Microkrystites are 

snialler than tektiteshicrotektites, do not show splash forms and may represent re- 

condensed material from the vapour cloud (Smit, 1992). 

Microspherules, such as microtektites and microkiystites form widely dispersed 

distal deposits due to theii- small size which allows dispersion through the atmosphere 

and thus further afield from the source crater. They are commonly associated with 

shocked quartz and grdins of spinel, e.g. in upper Eocene sediments from Massignano, 

Italy (Pierrard et al., 1998). 

Distal deposits of diamond from the Popigai impact crater (yakutites) can be 

found over 400 km from the centre of the crater forming a strewn field of diamonds 

(Vishnevsky et al., 1997) similar to those formed by tektites. 

Airfall beds are most notably described from the KT boundary (Alvarez et al., 

1980). These globally distributed deposits are associated with high iridium 

concentrations (Alvarez et al., 1980; 1992), fragments of shocked quartz (Bohor et al., 

1984), spinels (Alvarez et al., 1980) and diamond (Gilmour et al., 1992; Hough et al., 

1995b). The KT boundary clay is also associated with a global soot layer from the 

combustion of biomass within impact generated wildfires (Wolbach et al., 1990a). 

Jennifer I Abhott Chapter 1 17 



1.7. CARBON. 

Carbon is unique in the number and complexity oí‘ compounds it is able to form, 

elemental carbon posesses 3 bonding states: sp3, sp’ and sp hybridisation (Kudtyavtsev, 

1999). Carbon can occur as (1) diamond (the sp’ allotrope of carbon), (2) graphite (the 

sp’ allotrope), (3) fullerenes (sp2/sp’ mixed), (4) carbynes (sp’kp‘ mixed and 

hybridized). ( 5 )  soot, (6) complex organic polymers, (7) hydrocarbons and (8) 

carbonate minerals. As well as carbide minerals such as silicon carbide (Sic). The 

crystalline structure of five of the allotropes of concern: diamond, londsdaleite, graphite, 

fullerenes and carbyne are illustrated in figure 1.5. 

Diamonds can exist and be formed in a wide range of environments, such as 

meteorites, impact craters, gas-phase experimental reactions and from a wide range of 

carbon based source material (e.g. coal, carbynes, hydrocarbons and fullerenes). This 

has opened new fields of research and many questions concerning the actual 

formational constraints on diamond and other high-temperature or high-pressure carbon 

phases. 

1.7.1. Diamonds in meteorites. 

Diamonds were first found in ureilites such as the Novo Urei meteorite 

(Yerofeev and Lachinov, 1888) and Goalpara (Urey et al., 1957) as well as irons, such as 

Canyon Diablo (Foote, 1891) ALHA-77283 (Clarke et al., 1981) and Chuckwalla 

(Clarke et al., 1994). The diamond is often found in association with lonsdaleite 

(Hanneman, 1967; Clarke, 1994) and has been attributed to shock synthesis from 

graphite (Abee) or soot (Novo Urei) (Fisenko et al.. 1995). 

Presolar grains such as diamond and silicon carbide found in primitive 

meteorites are the carrier phases for anomalous noble gas signatures such as Xe-HL 

(Lewis ei al,, 1987). The formation of these grains has been attributed to shock 

synthesis from precursor carbon material by collisions of the parent meteorite 

~ 
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throughout its history as well as relict presolar interstellar diamonds, which may be 

fornied by gas-phase reactions. Comparison of microwave assisted chemical vapour 

deposition (MWCVD), hot filament assisted CVD (HFCVD) and shock-produced 

diamonds indicated that the most likely model for the formation of diamond found in 

ureilites was a vapour growth model (Matsuda et al., 199 i ;  1995). 

1.7.2. Diamonds associated with impacts. 

Diamonds were initially reported from the Popigai impact crater (Masaitis, 

1972) and subsequently from the Ries crater (Rost et al., 1978), the KT boundary layer, 

(Carlisle and Braman, 1991; Gilmour et al., 1992) and a number of other European 

craters (Vishnevsky et al., 1997). 

Diamonds in the Popigai impact crater, Siberia are found within shocked gneiss 

clasts in tagamites (iinpact nielt rocks) and suevites (iinpact breccia with glass) 

(Masaitis. 1993). These diamonds display forms and characteristics suggestive of direct 

transformation from graphite by shock (Masaitis, 1993; 1995; Koeberl et al., 1997). 

Diamonds containing lonsdaleite were reported from the Ötting and Bollstadt 

suevites of the Ries crater (Rost et al., 1978) as polycrystalline aggregates up to 300 pm 

in size. Many of the diamonds are polyciystalline aggregates showing Characteristics 

indicative of the shock transfoimation of graphite similar to those from the Popigai 

impact crater. However, nanometre (< 6 nm) diameter diamonds in association with 

silicon carbide have also been reported from the Ries crater and are considered to be the 

result of a CVD-like formational process (Hough et al., 199%). 

The polytypes of diamond are analogous to the various polytypes of silicon 

carbide (Sic) and the two end-member polytypes, 3C (cubic diamond) and 2H 

(hexagonal lonsdaleite) are well known. A further intermediate polytype 6H has been 

identified in vapour deposited diamond powder, and further polytypes 4H, 8H, 15R 

(rhombohedral) and 21R are predicted (Spear et al., 1990). The structure of polytypes 
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4H, 6H, SH, IOH. 15R and 21R have been calculated by replacing the silicon atom in 

Sic with carbon (Phelp et al., 1993). 

Carbonado is a form of diamond which occurs as porous polycrystalline 

aggregates composed of single crystallites up to 250 p i  in diameter. They are notably 

found in placer deposits in Carnot-Berberati and Ouadda-"dele in the Central African 

Republic and Bahia, Brazil (Master, 1997), North Yakutid, Sayan and the North Russian 

platform (Kaminsky et al., 1978) and have clear crustal mineral associations (Smith and 

Dawson, 1985). Several theories for the formation of these aggregates have been 

suzgested, including; 

( i )  impacts (Smith and Dawson, 1985) on the basis of their crustal 6°C and 6"N 

isoiopic ratios (Shelkov et al., 1994; 1995). 

(7) the effects of radiation on organic matter, a mechanism siiiiilar to that found to 

produce diamond in coal (Kaminsky et al., 1987; Ozima and Tatsumoto, 1997), 

(3) high-pressure growth and sintering over a long period achieving thermal equilibrium 

boundary structures (Chen and Van Tendeloo, 1999) 

(4) meteoritic, and formed through solar or presolar processes (Haggerty, 1996). 

De et ai., (1998) found a close genetic relationship between Brazilian and 

Ccntral African carbonados proposing their formation within a united landmass during 

the lair Archean. Carbonados from Brazil and Central Africa do not contain londsdaieite 

unlike iiiipact diamonds but may have Sic inclusions (De et al., 1998). 

1.7.3. Graphite associated with impacts. 

Graphite commonly occurs in metamorphic rocks as well as carbonaceous and 

iron meteorites. Most natural graphite is a mixture of two different configurations. 2H 

hcxagonal graphite and 3R rhombohedral graphite. Rhombohedral graphite may form 

up to 30% ofthe graphite structure as the individuai crystals increase in size (Shi, 

1996). Small-scale structural and compositional heterogeneities may be retained 

depending on the degree of crystallinity and maturity (Rietineijer, 1991) 
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Natural graphite may be metamorphic graphite formed from regional or contact 

metamorphism of organic matter, or fluid-deposited graphite from carbon which has 

bcen mobilised by fluids and then reprecipitated (Luque et al., 1998). During prograde 

metamorphism, oxygen, hydrogen and nitrogen are released from organic matter and the 

residual carbon atoms become increasingly ordered (Grew, 1974; Itaya, 1981; Buseck 

and Huang, 1985). The nature of the precursor carbon, e.g. aromatic structures with 

hexagonal benzene ring structures, greatly affects the ease of graphitisation and degree 

of structural order attained (Buseck and Huang, 1985). Amorphous Corms of carbon 

and carbon black are now seen to be poorly crystalline forms of graphite rather than 

another carbon allotrope (Kudryavstev, 1999). Anthracite and bituminous coals have 

been converted to graphite using simple shear at temperatures up to 900 ‘IC and 

pressurcs of I Gpa indicating that strain cnergy provides the majority of the activation 

energy required for graphitisation (Bustin et al., 1995). 

Graphite has been found to show low-level shock features common to other 

layered minerals such as biotite, for example kink bands (Stöffler, 1972). These shock 

structures may become preserved in impact diamonds subsequently formed by direct 

shock transformation (Valter, 1986). 

Crystalline and poorly crystalline graphite is believed to be the main carbon 

source for impact diamonds found at the Popigai crater (Koeberl et al., 1997). Graphite 

occurs within Archean crystalline basement rocks which form part of the target area. 

Many of the impact diamonds recovered show inherited hexagonal platy graphitic 

structures (Koeberl et al., 1997). 

1.7.4. Fulierenes and soot associated with impacts. 

Fullerene (C,) is a complex carbon molecule with the form of a truncated 

isohedron, which was discovered from experiments involving the laser vaporisation of 

graphite (Kroto et al., 1985). Pure C,, crystallises in cubic close-packing (c.c.p) and 

hexagonal close-packing (h.c.p) structures which form a series of phase transitions 
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corresponding to different degrees of molecular structural disorder (Van Tendeloo et  ai., 

1993) with h.c.p and c.c.p domains sepurated by stacking faults (Blanc et al., 1996). 

These structures form a homogenous solid state polymerisation phase transformation 

with increased temperature (Marques et ai., 1996). Kroto et al., (1985) postulated that 

the stability of the molecule meant that it could be a major constituent of circumstellar 

shclls and interstellar dust. Since then fullerenes have been found in a variety of 

terrestrial environments. 

Fullerenes have been reported in the carbon-rich mineral shungite (Buseck et al., 

1992), fulgurite (Daly et al., 1993), the KT boundary layers (Heymann et al., 1994; 

1996: 1998), the carbon-rich layer in the Sudhury impact crater (Becker et al., 1994) and 

the Peniio-Triassic boundary sections (Chijiwa et al., 1999). Fullerenes and fullcranes 

have also been detected in meteorites such as Allende where they are considered to be 

the products of gas-phase reactions (Becker et al., 1994; Becker and Bunch, 1997). 

Fullerenes have been detected in a tiny impact crater on the Long Duration Exposure 

Facility (LDEF) and may have originated from a chondritic impactor or have been 

produced in situ by the impact (Di Brozolo et al., 1994). 

There is still some controversy regarding the formation or origin of fullerene at 

iinpact sites and its relationship with the other carbon allotropes such as diamond, 

cai-byiie (chaoite) and graphite. However, a number of arguments have been proposed 

which include wildfires (Wolbach et al., 1990a) and the pyrolysis of meteoritic organic 

matter and synthesis in the impactor with the fullerene suiliiving the impact event 

(Giliiiour, 1999). Kroto, (1991) showed that fullerenes can form froin the incomplete 

combustion of organic material (trees and plants) containing unsaturated hydrocarbons. 

Fullcrenes are synthesized experinlentally by the laser vaporisation of carbon (Kroto et 

al., 1985; Taylor et al., 1990) and can he transfoimed to diamond by shock compression 

and mpid quenching (Sekine, 1992; Hirai et al., 1995). 

Soot, 100-300 Å spherical carbon particles attached in necklace like chains 

(Harris and Weiner, 1985). has been reported from at least 13 KT boundary layer sites 

~~ ~ ~ 
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and is used as evidence for widespread forest fires (Gilinour et al., 1989) and may be 

formed from the incomplete combustion of organic matter in a mechanism similar to 

thai of C,,, (Kroto, 1991). The carbon isotopic composition (6°C -25.8 %) indicates the 

main carbon source was terrestrial vegetation (Wolbach et al., 1990b). Soot is another 

fonn of carbon which can be experimentally transformed into diamond under conditions 

of high pressure (Donnet et al., 1997). 

1.7.5. Carbynes associated with impacts. 

The carbyne chaoite, a high temperature chain-structure polymorph of carbon, 

was found within graphite in fragments of shocked basement gneisses from the Ries 

crater (El Goresby and Donnay, 1968). Chaoite has different mineralogical 

characteristics to graphite and was considered to be a product of the shock 

transformation of graphite via a similar mechanism to diamond (El Goresby and 

Donnay, 1968). Carbynes are triply bonded chain allotropes of carbon stable between 

7600 K and 3800 K (Whittaker. 1978). 

Carbynes were subsequently found in graphite in  meteorites, for example 

diamond-graphite aggregates in ureilites (Vdovsykin, 1972), within complex impact 

diainond grains containing lonsdaleite and disordered graphite from the Popigai impact 

crater (Vishnevsky and Palchik, 1975) and the Allende meteorite (Hayatsu et al., 1980). 

They are also found in terrestrial graphite from Sri Lanka and California (Whittaker, 

1979) and marble from the Santa Rosa mountains, USA (Whittaker and Kintner, 1985). 

Although Rietmeijer (1991) reanalysed graphite from Sri Lanka and determined that thc 

carbyiie domains represented distorted pre-graphitic C-(H, O, N) material. 

It has been suggested that chaoite and other carbynes may forni a n  intermediary 

stage in the transformation of graphite to diamond (Whittaker, 1978; Heimann, 1994). 

Whiitaker, (1979) proposed that the Ries chaoite may pre-date the impact, occurring 

naturally in graphite within the basement gneisses. although it should have been 

transformed to diamond. Graphite may be shock compressed to a carbyne form which 
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then collapses hack into the diamond structure after the passage ofthe shock front 

(Heimann. 1994). Borodina et al.. (1996) produced nanocrystalline cubic diamond from 

thc shock loading of amorphous carbyne films. Further experimental evidence has 

indicated that shock pressures of <5 Gpa with no thermal activation can transform 

caihync to diamond through the cross-linking of periodically arranged sp-hybridized 

short chains (Heimann, 1999). 

1.8. IMPACT DIAMOND OCCURRENCES AND CHARACTERISTICS. 

Diamonds have been identified and described from several impact structures to 

date including Popigai (Masaitis et al., 1972), Ries (Rost et al., 1978), Kara (Koeberl et 

al., 1990), Puchezh-Katunki (Mai-akushev et al., 1993), Zapadnaya (Masaitis, 1993), 

Ilyinets and Obolon (Gurov et al., 1995), and the K-T boundary layer (Carlisle and 

Braman, 1991: Gilmour et al., 1991). 

Some characterisation of impact diamonds has been made; Vishnevsky et ai. 

(1997) published a comprehensive review of impact diamonds which provides access to 

Russian data. Table 1.3 summarises the current data available for diamonds from the 

published literature. 

The structural features of impact diamonds together with mineral associations 

indicates that there are a wide range of possible sub-classifications including 

puramorphs of graphite or coal formed by direct transformation, skeletal aggregates 

formed by etching or a restricted carbon feedstock, nano-diamonds formed by shock, 

explosion, vapour condensation or homogenous nucleatioii. 

From table 1.3 a number of comparisons can be made, primarily the association 

of cubic diamond with lonsdaleite (which is the high pressure hexagonal polymorph of 

diamond that can be jdentified using single grain x-ray analysis). The impact diamonds 

themselves are commonly small (1 -500 pm), porous, microciystalline aggregates of 
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<6 niii- Ipm crystallites. These are often coloured as a result of numerous inclusions, 

such as  graphite (black) and nitrogen (yellow) (Valter et al., 1992) and apographitic with 

the preservation of the original graphite morphology (Masaitis. 1994). 

Suevite 

Onaping 
fonnation 

Sueviic 

Table 1.3. Summary of the characteristics of impact diamonds 

a<.<,re<Tates 

idorange Prelerential -23 to -24 low Coal as carbon 

0.4-0.5 iiiin 

colourless- 40.50 
ycl lowl 
hiack 
10Iìnm- Ipm Friahie, <30% - 
crystallites aggregates. 

in apgrcgates connded 
1 0 0 n m - l ~ i i n  Tahular, <XI% Primary graphite 
crystalliies aggreptes twins. strong 

orientation source 
5- I O and 

Ci-atcr 
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[1.2.1] 

Kies [4.5] 

Popigai 
lh.7,Xl 
Popigai 
j9.10. I I j 

K .  'li,i112] .. 

7~ixidnaya. 
Oholm, 
Illyinets 
1121 
Sudhur) 
1131 

Lappajirv 
[13;14j 

Tunguskn 
1151 
KT 
116.171 
[i]. Hougl 

Peat i 5  pm Anhedral -2s 6"N=0 'Z, 

Firehail 
layer 

6 nm-30 pm Near cubic -I i to - I9 

al. (1996; 1998a; 1998b). [SI. Siebenschock et al. (1998). Schmitt et al. (1999). [6].  

Koeherl et al. (1997). [7]. Grieve, (1994). [ X I .  Masaitis and Shrafraiiovsky, (1994). [9]. 
Vishi i rvsky et al. (1993, [IO]. Shelkov et al. (1998). [ i  I]. Masaitis et al., (1998). [ I l ] .  
Ezersky. 1987; Gurov et al. (1995) [ i3] .  Langenhorst et al. (1998). [14]. Laiigenhorst et 
al. (1999). LIS]. Hough et a1..(199Sd), [16]. Hough et al. (199Sb: 1997). [ i7].  Gilinour 
et al. ( 1992). 

Figure 1.6 illustrates the range in the carbon isotopic composition of these 

diamonds, the main feature is the wide range of values obtained. 

The isotopic composition of the diamonds vary within and between localities 

depending on the nature of the precursor carbon, e.g. diamonds from both Kara and 
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Tunguska are isotopically lighter than those from the KT fireball layer as the carbon 

sources are different. The diamonds from Kara have been ascribed an origin from coal 

in the basement rocks vaporised by the impact (Ezersky, 1982; 1986). The source of 

carbon in Tunguska was not directly identified, although poorly ciystalline 

I Eheliakh l i ]  
W Popigai [1-4] 

Ries 151 

Q Kara [ X I  
K/T 16.71 

-27 -26 -75 -24 -23 -22  -21 -20 -19 - I S  -17 -16 -15 -14 -13 -12 - I l  -10 -9 -X  -7 

$ 1  

Figure 1.6. Summary of impact diamond 6 C compositions. 

I I l. Shclkov (IYY7j 121. Koeherl cl al. (IYY7) [3] .  Grieve (1994) 141. Masaitis and Shralianowky, 

(1994) 151. Hough ci al. (1995~)  [ h ] .  Hough ci al. (1997) /7]. Gilm«urct ill. ( I Y Y ? )  [XI. Vishrievsky ct 

al., i IYYS) IYI .  Hough ci ill. (1995d) 

graphite or amorphous carbon is the most likely source (R. Hough, Pers. Conim.). 

Nano-diamonds (< 6 rim) from the KT fireball layer may be derived from graphite 

known to exist in samples of the Chicxuluh drill core (V. L. Sharpton (1997). Pers. 

Coinm.), with a possible contribution from end-member mixing with carbonates which 

form a significant proportion of the Chicxulub target stratigraphy (Sharpton et al., 

1996). The Ries diamonds are similarly suggested to be the result of mixing between 

carbonate rock and basement graphite material (Hough et al., 199%). 

Diamonds tiom the Popigai crater hwe apographitic morphologies with 

inhcrited graphite twinning (Masaitis, 1995; Koeberl, 1997) and aie perhaps the best 

examples of direct graphite-diamond transformation. It has however, been suggested 
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that carbynes may form an intermediary phase during this transfornlation (Whittaker, 

1967; Heimann, 1998). Alternatively the variation may indicate the heterogeneous nature 

of the source material,. Note that the carbon stable isotopic composition of metamorphic 

graphite is highly heterogeneous in composition. Graphite is formed froni the 

progressive metamorphism of organic matter and thus initially inherits its stable isotopic 

composition. During prograde metamorphism the degree of crystalline maturity in the 

graphite increases and is associated with a carbon fractionation of around 3% (Scheele 

and Hoefs. 1992) due to isotopic equilibrium with carbonate minerals during 

metamorphism (Arneth et al., 1985). Further graphite heterogeneity may be the result of 

changes in fluid compositions (Duke and Rumble, 1983). 

Clearly characterisation of the carbon isotopic composition of potential local 

source lithologies and the shocked fragments incorporated in the suevite host rock is 

required in order to attempt to constrain both the source lithologies and formational 

mechanisms. 

1.9. STABLE CARBON ISOTOPES. 

Stable carbon isotope ratios are used extensively to characterise and constrain 

carbon sources and to some extent formational processes. 

The stable isotopic ratio of carbon, "C (98.89%) and "C ( I .  11%) is determined 

by measuring the ratio of "C/"C. Results are presented using the standard delta 

notation (6) as, 

Equation 1.1 6 "C = ( (I 'C/' 'C )sample - ( I  'C/' 'C) standard ) xIO'%( 
"C/"C standard 

Standard normalisation is commonly to the Pee Dee Beleinite (PDB) standard, 

with laboratory standards normalised against this. Thus il sample with 6°C = -17% is 

depleted in "C by 1.7% relative to the PDB standard. 
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For the stable isotopes. such as "C"C, "O'hO their chemical properties are 

determined by their atomic number. thus isotopic ratio differences and variations are due 

to mass differences and SO vibrational energy of the iitoms. This is especially iiiiportant 

in the light eleiiienrs where the Mio of the inass difîereiices are higher and thiis 

v;iriations in tlie isotopes iiioi-e likely to be apparent (table i .4). 

T;ible I .4. Mash differeiices for light stahle isotopes 

Mas diffei-ence 

' W ' C  

1/14 

7/16 

Fr, <ictioii;it . ' ion i s  caused by any  process inducing the isotopic ratios iii different 

phases or regions to differ. These processes include equilibriurii fractionation. non- 

equilibi-iiini chciiiicnl processe< and physical processcï. 

For eq~iilibri~iiii fi-nctioiiation, the fractionation f x t o r  (a)  cai1 be calculated 

theoretically. liowe\er due to unceiTaiiity in much of the theriiiodynaniic data. this is 

p i c r a l l y  ¡nipractica1 m d  tlic values a r t  detci-iiiincd exp~rIiiiciita1ly. or 13) calculatioiir 

hnsed o n  n;itLiI.;iI systctns which ail: assumed to be i i i  equilibriuin. Thc size of tlie 

îrnctionaticm f~ictor ( a )  ai specific prcssure and teiiiperaturc conditions (PKì deiei-mines 

thc degi-ec of friictionatioii possible in  a given procehs or reactioii. Althciugh the effects 

of pi-cssure (ß factor - reduced isotopic parlition function) on equilibrium isoiopic 

fractionation is siiinll, it does produce isotopic shifts at high pressure and theoi-eticnlly 

graphite will be enriched in "C compared tco diainoiid under cquiviileiit P/T conditions 

(Polyikov and Kharlashina. 1 YY4). 

~oii-c~iLiilibriuiii chemical processes arc commonly kinelically driven. when an 

cquilibriiini is not  ituintUined. The strength of bonds i n  compounds will vary due io 

iiioleculni- vibrations; for example, the "C-O bond is weaker than the " C O  bond due to  
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the higher energy of thc lighter isotope, thei-efore in kinetic processes "C will be 

fixtionated froin "C which will be concentrated in the residue. Thus, cheli,ical 

processes such as biological activity can fractionate "C from I'C, for example organic 

matter is usually depleted in "C with negative delta values, relative to the dissolved 

carbonate (mainly HCO'~) in the oceans which has a 6°C value of - 0%. 

Photosynthesis concentrates "C in organic matter and depending on the biological 

pathway employed, organic carbon is in general depleted in "C compai-ed to oxidised 

carbon or cai-bonates. The observed isotopic heterogeneity of graphite has been 

atirihiited i« changes in fluid conipositions with iimc (Duke and Rumble, 1983). 

hetci-ogeneity i n  thc original precursor carbon (with isotopic equilibrium being achieved 

alongside crysinlline maturity) (Buscck and Huang, I985), o r  variable c j s t a l l i n e  

inaturity and ioiopic cquilibriurii wiih riietainoiphic decarbonation of carbonate 

iiiiuci-als iAi.netli et al.. 198Sì. li has heen observed that the values of 6°C in associated 

schists and marbles i n  the Paniirnint Mountains, California. \vas controlled by the 

relative proportions of calcite and graphite (Bergfeld et al.. 1996). 

Physical processes such as vapour-liquid fractionation will depend on the 

diffcrence i t i  vapour pressure between tlie lighter and heavicr isotopes. Incornplete i-apid 

evapor;iti«ii OI- v«latilisation niay enrich the vapour in "C leaving il "C-rich residue. 

Dctailcd riiinernlogical stiidies of shocked carbonate beni-ing iiiipaciites from the 

H:iiiglitoii cra~ei,  Cmida  indicated that decarbonation outgassing of C O ~  occuri-ed in  the 

ccntrc of the crirter and a significant proportion of this back-reacted with ixnctive 

icsiduel oxides (CaO and MgO) to  provide tin ascocieied carbon lrnctioiiation (Mai-tinez 

et al.. 1994). Shocked calcite at the Ries is  believed to heve fornied tinder both i-educing 

arid oxidised conditions from CO,. .~ O, and Ca within a vnpour pluiiic (Miurn, 1993). 

I . IO.  SUGGESTED ITOKR;IATION MECHANISMS. 

A number of niechanisrns have been proposed for the formation of the dianiond 

associated with impact processes. The initial mechanism which satisfies a lot of tlie 
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textural and structural cvidence from impact diamond sainples is a iiiechanism of direct 

tr:insforination (Masnitis, 1995). Subsequently a CVD-like \iipour plinse iiieclianis~ii 

was i?riip«sed to account f«r ¿in obsei-vcd association with silicon carbide and fine- 

5 orained textural features (Ho~igh et al., I99Sc). Experimental synthesis of diamonds has 

produccd additions1 suggestions regarding the exact mechanisiiis of transformation. 

These are outlined briefly within this section aiid discussed in greater depth in 

subsequent chapters. 

Apogriiphitic. hexagonal and platy diamond structures, which have been 

observed i n  many impact diainorid examples (Vishiievsky. 1997), are used as evidence 

f«r the dircct shock transforination of graphite to diamond. The inechaiiism for the 

traiisfoi.iiiatioii of minei-als to their high pressure phases involves the formation of a 

denser incirc compact ciystallinc form in order to minimise the high shock pressures 

expci-iericed during the impact event. There ai-e a number o f  different mechanisms 

proposed fo I  this transformation (De Carli, 1967: De Cai-li and Jarnieson. 1961; De 

Carii. 1998: Choiiicnko ei al . ,  1975) operating over a variety of pressure and temperature 

coiiditioiis. Carhynes have been suggested as an interiiiediate phase i n  the shock 

ti-aiisformriti«ii of graphite to diamond (Whittaker. 197X: Heirnann. 1998). In addition 

tullercnes (Epanchintsev et al . .  1995: 1997). soot (Donnei et al., 1997; 

Koliselloiiighaus. 1908) and hydrocarbons (Matsumoto ct al., 1982) can bc 

triinsforiiied t o  di;iiii«rid cxperinientally. 

The obserued association of impact diamond with silicon carbide. both as 

iniergrowths arid scpanite crystals from the Ries cliiter suevitcs together with their fine- 

grained arid \keletal structures led to the suggestion of a chemical vapour deposition 

(CVD) like ineclinnism (Hough et al.. 1995~).  CVD methods for the si-owth of  synthetic 

diamond involve the niiclcatioii and condeiisation of diamond from iiii ionised gas 

leedstock containing the required elements. Techniques which employ a silica substrate 

produce diamond associated with silicon carbide (Stainmler et al.. 1997). As the carbon 

is clcpositeti i t  reacts with silica atonis evaporated fi-om the substrate ( C I 0 0 0  “C) 

~ ~ 
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forming silicon carbide, as the amount of carbon increases relative to silica, diamond is 

formed. The skeletal, fine-grained structures of the impact diamonds found associated 

with silicon carbide indicated that they may have formed as a result of rapid 

condensation and growth within a vapour phase (Hough et al., 1995~)  or from a limited 

carbon source as observed in natural diamonds (Shafranovsky, 1964). Langenhorst et 

al. (1999) suggest that extensive corrosion and etching might result in the formation of 

skeletal structures in diamond formed by the shock transformation of graphite. 

The mechanisms and conditions of impact diamond formation. whether via direct 

transformation or a CVD-like mechanism, will be closely linked to the physical and 

chemical conditions created by the impact event. Shock ejection and vaporisation of the 

target rocks is expected to produce an upwardly expanding cloud of vaporised rock, 

dust and fragments of shocked rocks and minerals (O'Keefe, 1982). The temperature 

and pressure of this cloud or fireball would be highly heterogeneous and change 

depending on the degree of adiabatic pressure-release, following escape from the 

transient crater and the amount of cold, admixed fragments. The proportions of ionized 

plasma in the vapour cloud may be highly complex due to the interactions of jetting, 

entrained fragments and internal shear-heating of the projectile and target (Schulh and 

Gault, 1979). The fireball could provide the necessary feedstock elements for CVD with 

the combustion of carbon leading to the formation of increasingly reduced chemical 

conditions and possibly an undersaturation in carbon. Localised areas of the plume may 

even be hot enough for the formation of plasma-like hot ionised gas. Laboratory 

experiments generating hypervelocity impact produced plasmas indicated temperatures 

of4500 K and charged particle densities of IO9 to IO'" ions/cm-2with low angle impacts 

producing enhanced vaporisation and self-luminous ionized clouds (Crawford and 

Schultz, 1991). 
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1.11. OBJECTIVES. 

This work initially focused on samples froin the Ries ci-ater. Gc1ina1iy, which 

was clioscii because of good cxposurcs of the different inipact lithologies. The sainples 

werc falloiit suevitcs (polynuct impact breccia with glass), fallback suevite, irnpact mclt 

rock. lithic inipact breccia, shocked granite and bascniciit rocks. Previous work on the 

Rics crater investigated mineralogical. compositional and structural characteristics and 

has been used to delimit the impact processes, dyiianiics and extent of shock (Von 

Englehardt et al.. 1997). Thus, a detailed investigation of the carbon isotopic 

cmipositioii of the target lithologies, inipactites and individual mineral components such 

as diainoiid. graphite and silicon carbide, has been undertaken with the aiin of 

correlating ihe compositions of the source rocks with diamonds found in the fallout 

suevite. 

'The initial stages involved prolonged acid deiiiineralisation of the whole-rock 

~~i i i iplcs  to obtain resistant residues. Morphchgical characterisation of tlie residue 

ininerds \bas tindcrtakcn using iiiicroscope tecliiiiques. such as scanning electron 

iiiici-oscopy (SEM) and transmission electron microscopy (TEM) i n  order to identify 

ihe niiiierals present (zircon. graphite, diamond. silicon carbide etc.). This electron 

iiiicroscopy study also provided textural and btructurai evidence for poshihie sliock 

rc1;itcd delorination 01' the minerais, cor exainpie stacking liults and twinning. Impact 

diaiiioiids were detected in and isolated from ¿icid-deniiiieralise~i residues of several 

s:iiiiplcs. such as f;illback suevite, gnciss and impact melt rock which had not previously 

been studied in this manner. 

The whole-rock saniplcs wcrc analysed for bulk carbon stable isotopic 

coiiipositi«iis using dynaiiiic mass spectrometry in order to characterise the isotopic 

coiiipo\iti«n of tlie Rics inipact rocks from around the craier. This was accompanied by 

a detuiled investigation into the isotopic composition of the resistant residue components 

using stepped CoiTibuStion combined with high resolution static mass spectrometry. 
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A sccond study involved samples from the Cardnos impact crater, Norway. 

Sinall samples of iinpactites and target rocks from the crater were acid ilernineralised 

using a inicrowave assisted reaction system (MARSS'"). The residues were ailalvsed 

usins TEM in order to characterise the composition of the carbon wiihin the rocks. 

Graphite was identified in a number of samples and diamond in sueviie and black inatrix 

lithic iiiipact breccia. h i t h e r  samples were prepared for solvent extraciioli and gas 

chroinatography mass spectrometry. 
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CHAPTER 2: PETROGRAPHIC DESCRIPTIONS AND 

EXPERIMENTAL TECHNIQUES. 

2.1. INTRODUCTION. 

This chapter contains descriptions of the samples which were selected tor 

analysis and their petrography, followed by details of the expcriniental techniques 

employed. These techniques aimed to investigate the minernlogical and isotopic 

coinposition of carbon in the whole-rocks. extracted lithic fragments and individunl 

ininerals. Thc s;iiiiples alid localities tised are desci-¡bed below. 

Whole-rock ~ a i i i p l ~ ' ~ ,  extractcd lithological fragments. glass and samples from 

the N<irdlingen 1973 drill core (N-73) (Stöfller, 1977: Chao, 1977) were analysed for 

their carbon stable isotopic compositions. The samples wcre sLisequently acid 

deiniiicralired to leave ;I resistant residue in order to scparate individunl cxbonnceous 

conipoiicnts. Tliesc deniineralised snmplcs (herein called residues) wei-e aiialysed 101 

their carbon stable isotopic coinpositions as w'ere extracted single grains of diamond 

and graphite. The residues were studied at vai-ious stages throughout the 

demineralisatioti using a petrological microscope, scanning electron microscope (SEM) 

and trnnsini\si«ii clectron microscope (TEM). 

A suite of samples from the Gardnos crater were deniineralised using a 

niicrmvaw accclcrated ienctioii system MxsS'ihf (CEM Corporation ). Followiiig this. 

ainorphow and graphitic carbon was removed iisin,o clirorriic and perchloric acids and 

the sniiiplei aniilysed using TEM and stepped combustion combined with static mass 

spectrometry. .4dditional siiiiiples of graphite from the Lappajiuvi iiiipact crater wcre 

an;ilysed using static mass spectrometry combined with stepped combustion for carboii 

stable isotopes. 

The acid-demiiieralisation procedures have been developed over a number of 

years at the LJniversity of Chicago (Lewis et al., 1975: Lewis et al., 1987: Aniari ei al.. 

1990) and within the Planetaiy Sciences Research Institute (Russell et al.. 1990; 
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Gilnioui- et al.. 1997). The method i s  capable of pi-oducing very clenn residues of highly 

resistant niaterials such as  diamond and silicon carbide. through tlic rem«\al »[ less 

rcsihtant carbonates and silicates. Thc procedure i s  described in detail in section 2.3. 

c 

2.2. RIES CRATER SAMPLE DESCRIPTIONS [48"51'N, 10"29'E]. 

The saiiiples from the Ries crater are representalive of thc different impact 

liiliol«g¡es pi-esent. including highly shocked impact breccias. lithic iinpdct breccias 

(Bunie Breccia) and variably shocked crystalline b;iseriient material. The sample 

localitieh :ire illustrated in section 3. I .  

Eleven individual samples were studied (table 2.1 ) 

Table 2.1 Ries samples and localities. 

The N-73 iiinterial was provided by Professor D. Stöftler, Institui fur 

Minerdo@, Berlin and thc fallout samples provided hy Professor D. Stöffler and Dr. 

R. Hough, PSRI, Milton Keynes. The terms suevile and Bunte Breccia are local Ries 

tcrnis f«r lithologies better described respectively as ii polyiiiict impact hreccia with 

glash and a lithic impact breccia which does not contain nielt particles. Susgested 

Jennifer I Ahbott Chapter 2 36 



teriiiinoiogy to encompass the wide range of local inipactiie terms (Stiiffler kind Grieve. 

1996) \viis discussed iii  section 1.6. 

The samples and localities described below coiiiprisc of a range of impact 

lithologies from iiroiiiid the crater itself. Descriptions of the localities and lithologies are 

clcrivcd froin Chao, ( 1978). Deiailed descriptions of the various impact lithologies niay 

he found in  HOrz. et al. (1983), Von Englehurdt, (1990). Von Englchardt et ai. (1995) 

and Von Englehardt, (1997). 

2.2.1 6tting quarry, fallout suevite (OQS). 

?'he Ötting quarry is a relatively large outcrop (24 in thick) of suevite (impact 

breccia with glass) to the north east of the inner crater rim and is underlain by Malm 

iiinestone and Buiite Breccia. The exposure in the qua i~y  comprises o f  fresh 

uii\\wthered suevite containing vesiculated gla\s hoinbs and bascinent rock îragiiients 

cxliibiting all \rages of shock metanioi-phism. Saiiiples fi-oiii OQS \vere used to tiate rlic 

i i i i p x t  e\.ent. i o  14.8 L 0.7 iiiii using '"Arr"'K (Gentner et a. ,  106.1) and to 15.0 & O. I 

iii;i nsiiig ~"'/\r/"'Ar (Staudacher et al.. 1982). 

111 iiniid speciiiien the saiiiple is a large hiock. iipproxiiiiately 40 hy 2 2  cili i n  size 

\\,it11 a gi-eeiiish greyiwhite gronndiiiass ofaltcred glnss with fragments o1 rock and 

ininerais. Figure 2. i .  is ii plioiogi-aph « f a  cut hiock of suevite i'roin the Otting quart-y 

and h n v s  glass and lithic fragiiieiits within a fine-grained grey iiiatrix. The 

crouiidiiiass is iiiost likely chloritized and composed of clay minerais such as 

iiioiiiiiiorill«iiite replacing altered glass as described hy Von Englehardt ( 1997). 

Thc sample iiicludes iwo large elongated black glass bonihs. the largest of which is 

about IS cni in length and has a highly irregiilar upper margin i n  coiiipsrison to the 

sinootli I«\ver margin (figure 2.2). 
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to pressure release and cooling Won Englehardt et al., 1995). The number of vesicles 

varies from about 5 to 60 vol% i i i  different glass fragments and boinbs and may be 

filled with s e c o n d q  mineralisations such as chalcedony, montmorillonite, calcite 01- 

zeolites (Von Englehardt et al., 1995). Chilling of the glass as it was ejected results in 

the formation of finer grained chilled margins. 

The groundmass contains many smaller glass fragments which are often 

vesicular and ris with the larger bombs these vesicles may be filled with secondary 

mineralisation. Some lithoclast fragments have visible glass rims, this is illustrated in 

figure 2.3. 

Vesiculai- vitreous , 
glass Iragnicnt. 

Sediinentary liagmeni 
with thin glass rini. Crystnlline íragriient 

witli thin glass iriin. . 
Sedimentary fragment 
with fractures. Vcsiculnr glass 

hoinh l i- ,  .I g nicnt. 

* -  " ~.-, 
& 

Figure 2.3. Sketch of a section of Otting glass suevite, showing sinall glass homh 

fragiciits (black). sedimentai-y fi-agments and crystalliiie fragments with thin glnss r i m  

2.2.2. fitting quarry, glass bomb (OQGB). 

The p r i m q  glass sample used was a part of the largest glass bomb yet 

recovered from the Ötting quarry (by D. Stöffler). The original sample was 

approximately 30 cm in length and composed of black, highly vesicular vitreous glass, 

These vesicles were mainly devoid of infilling mineralisation. Examination in thin 

section revealed a streaky layered internal structure with numerous inclusions of 

crystalline fragments and vesicles (figure 2.4). The brown coloration of schlieren 

reflects increased concentrations of iron, magnesium and calcium or water oxidation 
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The Seebronn quarry (also known as Aufhausen) is a smaller suevite qLlarly to 

the south east of the h e i -  crater rim. possibly sampling a different pait of the baselllent 

during formation. 

In hand specimen this sample is approximately 10 x 20 cm in size and 

comprised of two layers. One layer is composed of very fine grained, light grey inaterial 

containing mica, small crystal fragments and small lithoclastic fragments. Whilst the 

other layer is coarser in texture, containing a higher percentage of glass and lithoclastic 

fragmenis. Very little groundmass is discernible. The colour is a dark grey dominated 

by black glass fragments. The suevite contains several rock fragments, approximately 

half of which are crystalline although highly altered and fine grained, the other 

fragments appear to be highly altered sedimentary fragments. The degree of alteration 

and clay mineralisation i n  these samples makes the exact lithological composition of the 

fragments difficult to determine. 

The impact melt glass inclusions are dark and almost black in colour with a 

slightly vitreous lustre although only small fragments are present (0.5 to 2 cm) 

compared to the larger bombs within the OQS sample. 

2.2.4. Auhmiile quarry, Bunte Breccia (BB). 

The Auhinülc quai locality consists of Bunte Bi-cccin Linderlying fallout 

siievite and i s  located at the northei-n crater rim. Bunte breccia is ;I ierin used to describe 

the Bunte Truiiierinasser dcposits which forni a near continuous ejecta sheet around the 

crater (Chao et al., 1978). Thih polyniict lithic impact breccia is coniposed ofpriniarily 

sedimentary derived fragments and unconsolidated Icxal material (Von Englehardt, 

1990). 

The sample is illustrated in figure 2.6 which shows the fine grained layering. In 

hand specimen the sample is a highly îriable black, fine grained rock. The sample has a 

clear foliation or bedding on a very fine scale with a vitreous sheen to the surfaces 

Although the Btinte Breccia is predominantly a massive deposit, localised lineation 

textures may be found along contacts (Hörr. et al., 1983). The fine grained matrix also 

Jennifer 1 Abbott Chapter 2 41 

















A selection of whole-rock samples of impact breccia and suggested shale target 

material from the Gardnos impact structure, Norway were provided by Dr. B. French, 

Cmithsonian Institute (USA). The eight samples provided are detailed in table 2.2. 

Sample 
Lithic breccia 
(subcrater rocks) 

Bnscincnt rocks 
(quartzites. 
shocked, fractured, 
black and 
carbon-bearing) 
Melt bearing 
suevite hrcccias 

Nuinher Locality Characteristics 
I 2 0  Dokkelvi River, Granitic gneiss inclusions up to 

Tunnel Dump. severul cin iii size in black inassive 
matrix. 

darkened quartzite in dense massiw 
black matrix. 

I29  Dokkelvi River, Highly fractured. with clasts of 
Tunnel Dump 

I33 Ihkkelvi River, Typical dark green suevite breccia 
above suevite with black glassy inclusioiis 

I /basement contact I (fladcn). 
Melt bearing 1 I37 I Flatdalselvi River. I Deiise dark gi-een suevite with sonic 
suevite breccia5 

Black shales 

I in above contact 
suevite/basement 

hirhwav. 5 km E 

inafic inclusions. 

164 Fagernes-Bjorgo Alum shale (Camhr-Ordovician). 
Criiinoled black shale below I ofBjo& I overthrust Proterozoic quartzite. 

Black shales I 169 I Road cut 2 km S I Biri shale (Proterozoic) Dark black 

Black matrix 
lithic breccia 

Melt matrix 
inipxt 
inelt hi-sccias 

of Biri, W side 
Lake M,josa. 

f iss i le shale. highly folded and 
contorted. Assoc. Biri limestone 
and limestone breccia 

178 NE Dokkelvi River Non-typical , contains nunierous 
quartz clasts. nire black clasts in 
very deixe black inmix 

with scsttered clasts iip to 2-4 cni. 
in aphanitic matrix with greas) 

I79 Dokkelvi River Typical, m;tssi\’c dense green rock ~ 

2.4.2. Lappa,jiirvi impact crater. 

The lake Lappajiirvi inipact ci;iter. westei-ti Fiiiland is u 23 kni diameter 80 Ma 

cloiignted basin within Proterozoic giicisses and acid-intermediate rocks overlain by 

Quaternary sediments (Langenhorst et al., 1999). The structure of the crater and 

inipnctites hves been extensively investigated using geophysical techniques and a 

number of boreholes (Pipping and Lehtinen, 1992; Elo et al., 1992). The impactites 

present include large volumes of impact melt (Henkel and Pesonen, l992), impact melt 

hrcccias (Kirniiitc) and suevite breccias (Pipping and Lehtinen, 1992). Diamonds from 
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the suevites and impact nielt rocks have a tabular forrii and si~rfiicc striLitioi1s inliei-ired 

lroni precursor graphite (Langenhorst et al., 1998; 1999). 

Saniples of isolated iiiipact diamonds and graphites from the Lappajarvi impact 

crater were provided by Professor S.  Vishnevsky. Russian Academy of Scienceb. The 

saiiiples consisted of alkali fusion extracted dianionds and graphite residues Ci-om which 

individual diamonds and graphite grains were selected and analysed for carbon stable 

isotopes. 

2.5. SAMPLE CRUSHING AND PREPARATION. 

Crushing of the samples prior to acid digestion was required in order to increase 

the surface arca of the samples, and thus facilitate faster dissolution of the minerals. The 

samples were crushed manually, to elininate the possibility of contamination by 

gt-indiii~ powders (carbides) corninon iii the rock crushing Inhs. All the samples for the 

acid digestion \vere crushed iiianually and only samples for whole-rock XRF and bulk 

carbon isotopic aiialysis w:ere crushed inechaiiically and ground to a ver)) fine powtier 

( IO gin). using iiii agate tenia barrel. 

2.6. ACID DI5VIINEKALISATIOI. 

Three different Lieid demineralisation techniques were einployed: 

( I  ) coii\mtional deniineralisation using a series of increasingly corrosive acids. (2 )  ii 

iiiicrowave assisted deiiiincralisation system and (3) high pressure and temperature 

bomhs. Each method has its merits aiid tackles different problems asociated with the 

deiiiincralisation of heterogeneous samples. Conventional deniineralisation is prolonged 

coinpared to iiiicrowavc dissolution hut much larger samples can he processed. The 

microwave process involves considci-;ible cleaning of  the sample vessels as does the 

high pressure bomb technique. 
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2.6.1. Conventional acid deminerdlisation. 

The acid demineralised i-esidiies were prepared fdlowing the schematic 

illustrated in figure 2.13. The procedures for the preparation of solutions are described 

in appendix I .  

Figiii-e 2.13. Suiniiiary of acid derniiieralisatioii stages. Duration of steps depends on the 

nature 0 1  ihe individual sarnplc. 

Dilute HCI n 

The techniqiic sepai-ates resistant phases such as diniiiond and silicon carbide 

froiri other minerds within the sainples although resistant 7.ircoii aiitl inet:il silicates 

require considerable acid treatment for removal. The ticid dissolution involves 

iiicreasiiigly concentrated applications of hydrochloric acid (HCI) to  remove carbonates, 

hydrofluoric / hydrochloric acid I O: I to remove silicates, HCI to reiiio~e newformed 

fluorides, chroinic acid (Cr,O?~) io remove organic carbon aiid fuiniiig perchloric acid 

(HCIO,) to rcmove graphitic carbon. To illustrate the prolonged mture of the digestions 

appendix 2 summarises the procedure for a glass sample 

. ,  
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The initial htage or the acid digestion invdved covering the saiiiples \\,ith dilute 

HCI i n  300 rnl teflon bombs. This often resulted in a strong reactioii producing CO, 

gas. Suevite samples wei-e inore likely to display strong reactiolis than crystalline or 

zlassy iriarcrials because of the higher proportions of carbonate minerdls in the rock. 

The acid i-eacts rapidly. progressing through yellow-orange and finally a dark orarige- 

red colour iiidicating reaction of the acid with minerals within the sample. After the 

saiiiple ceased to react appreciably. increasingly concentrated HCI was used (up to I2 

.MI at I00 "C. When the sample appeared free ofcarbonates. disaggregated and showed 

no reaction to I-ICI the next stage was started. 

(!sing a mixture of 10 M HF and 1 M HCI dissolves silicates within the 

smiples and further disaggregates the residue. The production of iie»-f»rnied fluorides 

(insoluble fluoi-ides formed from thc reaction of HF with carbonates) may be avoidcd 

by extensive HCI application prior to th is stage. yct usually mine lluoi-ide foriiiatioii is 

tinavoidable and these are removed using repented cycles of concentratcd HCI and heat. 

Tlic Ioriiintioii of fluorides was particularly probleinatic in fallout sueviie samples 

conipnred to the glass and core samples, due to differences in their carbonate contents. 

Non-crystalline and organic carbon is removed froin the samples using chromic 

acid iit 70-100 "C. Oxidation of carbon in the sample results i i i  the chromic acid 

changing from orange to a blue or black colour. 

Perchloric acid is used to remove crystalline graphite. by fuining the samples at 

100- I IO "C until the samples are white-grey. Perchloric acid is ii sii-ong oxidising agent 

that require5 a wash down fume cupboard facility. 

The application of concentrated hydrofluoric acid (48 '45) to the samples is a 

final 5tsge to remove resistant zircon crystals. Samples were heated to 120-150 "C o n  a 

hot-plate in I S  nil teflon bombs for several weeks 

Aiielysis of the Seelbronn suevite residues under the SEM indicated the 

persistence of  zircon and some iiietal silicates. representing etched mineral residues. 

Removal of metal silicates was achieved using hot concentrated nitric acid at 70- 100 "C 
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foi- several days. Niti-ic acid reacted strongly with ihe samples, visibly reducing the dark 

coloiii- and amount of meinl silicates. This was confirmed using the SEM 

At several stages tlirough thc digestion techniqiie the residues were weighed in 

order to  attempi to calciilaie the percentage of diamond in the original samples (table 

2 . 3 )  

saiiip1e 

Ottiiig glass hoiiib 1 

Otiiiip glass hoiiib 2 

Seelbroiin suevite I 

Seelbrmii suevite 2 
N¿irdliiigen coi-e 493 

Original weight (g) Kcsidue weight (g) "r of sainple 

i-eiiiainiiig 

139.75 0.0026 0.00389 

59.30 o .o02 7 0.001hl 

100.53 0.0151 0.0152 

93.80 0.01 09 0.0 I o3 

162.08 0.0308 0.0490 

2.6.2. Microwave assisted dissolution. 

Tlic iiiicrowvc accelerated reaction system MARS 5 I h i  (CEM Corporntiori) 

a l l ~ ~ w s  thc trciitiiient of saiiiples at high tcniperliture and pressure. Tlic dissolution 

systciii LISCS iiiicrowave eiiergy to  heat samples because water and acids rapidly absorb 

iiiici-o\\ ;i\'e eiicrzy iiiid the elevaied ieiiiperatures cause rapid dissolution of ilie samples. 

Tlic svstciii cwiipriscs of i i  I 200 W iiiicrowitve. iiiicrowovc transpareni high 

i)i,~~stii.e/teiiiper~iitire acid-resistant teflon bombs with explosion pi-oof kevlar jackets, 

;tiid ;i control vessel wiili ii sapphirc tlierniowell. The system can ;icc«iiiiiioctate I2  

vc~scli aí a time with ;i iimxiiiiuiii of I t o  4 g o f  stliiiiplc per vessel. 

The vessels iiiust be clean. dry and free ofparticulaie matter prior to  use as 

drops of licpid or particles will absorb microwave energy, resulting in localised heating 

and possible damage to ilie vessels. For similar reasons, acids such 3s coiicciitrated 

sulphuric or phosphoric acids cannot be used as they will heat beyond the melting point 

of thc \rcsscls. The saiiiples are covered with approximately I2  nil of HFI HCI ( IO: I ) to 

rciiiow silicates aiid 5 mi of HCI to remove carbonates arid neo-formed fluorides. 
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The microwave is conipiiter controlled with the teniperature and pressure of the 

sniiiples constantly monitored through the control vesscl and displnyed on rhe comp~~tei- .  

Individual cycles are progra,nmed into the c«ntrol panel or il pre-progi-;iiiimeci cycle is 

used. 

The protocol used for the Gardnos samples involved gentle heating for 5 

minutes to I00 Psi and 100 "C to create a good seal on the vessels. Then 5 minutes to 

the iiiaximuni presiire and temperature for digestion (300 Psi and 200 "C) which was 

maintained Tor 10 minutcs before cooling to 4 0  Psi and 4 0  "C. A further 1-2 days in 

HFIHCI renioved all silicates and zircons. 

The main pi-ohleins associated with the micrownvc digestion technique are the 

foriiiation of fluoridcs and cleaning the vessels after use. Fluorides and organic carbon 

inaterial clings to the inside and base of the bombs although the addition of nitric acid to 

thc samples can rcduce this problem. The boiiibs are cleaned by sciubbiiig aiid 

prolonged sonication at SO "C in  ri water bath. The bombs can then be rinsed with 

distilled H,O and dried prioi- io use. 

2.6.3. High pressure bombs. 

Six s;iiiiplcs wcrc treated with il iiiixture of concentrated HF aiid nitric acid 

(HNO;)  i n  high pressure bombs at 180°C for 1-2 weeks. This ieclinique proved highly 

eifective in increasing the rate of removal and digestion of resistant zircon grains 

although sinular results were obtained from nucrowave digestion. The size of the hoiiibs 

iiie;int tliat only small sainples could be accommodated and so would not he suitable for 

processing large amounts of rock. 

2.6.3. Additional sample preparation techniques. 

A iiunibri- of the samples contained a high proportion of zircon grains with two 

iiioi-phologics. highly bircfringant crystals and cloudy polycrystalline grains. As shock 

fornied aiid shock deformed zircons have been reported by Bohr et al. (1993). i t  was 

dccidcd to rcplicatc a zircon etching technique to look for planar deformation features 
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(PDFs). Etching of zircon using a hot concentrated alkali such as sodium hydroxide 

(KaOH) should pi-eferentially attack PDF and cracks within the grains. 

Heated sonication using a water bath was aitcmpted iii oi-der I« speed thc 

dissolutioii of  neo-formed ïluorides. This generally i-csulied iii di-awing out  orgaiiic 

carbon iimtcrial from within the sample and coating the insides of the homhs. which 

proved veiy difficult to remove. It was decided that prolonged exposure to hot HCI was 

the hest solution for neo-formed fluorites. 

2.7. CARBON STABLE ISOTOPIC ANALYSES. 

The samples were analysed for carbon stable isotopes as bulk whole rock 

stiiiiples. cxtrncted lithic fragmenis. acid demineralised samples as well as single 

diuiionds. g q h i t c  and silicon carhide picked from the residues. Mass spectroinetry 

analyses were periornied using two systcrns: a static mass spectrometer for high 

rcsolutioii stepped coinbiistion analyses (Wi-ight and Pillinger, l98Y: Prosser et al. .  

19%))  id a STRA dyiiaiiiic m i i s 5  ipectroiiieier for bulk carbon malyses. 

Bulk cubon stable isotope nieabureiiieiits were made oii whole-rock samples 

md extracted lithic and glass fragineiiis pi-ior to deiiiincrnlisati«ii. Following 

ilciiiiiier~ilisati«ii stepped coiiibustioii analyses were perfornied on the residues iis well 

a s  4 e c w i  diainoiid. graphite aiid silicon carbide grains. 

2.7. I .  Whole-rock carbon stable isotopic analyses. 

The samples were weighed into 2x3 inrn quartz buckets iii ii cleaii room and 

covei-ed with baked copper oxide (CuO) powder to supply oxygen lor the combustion 

of carhon iii the samples. The CuO powder and buckets wei-e pre-baked at 1000 "C 

oLei-iiiglit to reduce the carbon blank. The 2x3 mm buckets and samples are then placcd 

i i i  4x0 iiim quartz buckets aiid sealed using a blow torch whilst at a vacuum pressure of 

ai Iciist 10~' torr. These were then heated at 1000°C foi- 10-12 hours. 

The gases produced by the combustion proccss (iiiainly CO,) were cfiicked into 

an cvactiated glass cctraction line for the ci-yogenic separation and collectioii «f CO,. 
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frozen to approximately -196 "C on to a cold finger using a dewar of liquid nitrogen 

(LNJ with non-condensable gases pumped away. The CO, was released using a dewar 

of pentane slush at - 135 "C and measured on a capacitance manometer baritron and the 

carbon yield calculated. The samples were then transferred to a SIRA dynamic mass 

spectrometry system. (Appendix 4). 

2.7.2. Stepped combustion carbon analyses. 

Stepped combustion analyses were initially performed using the semi-automated 

static mass spectrometer system MS86 which uses a SIRA 24 analyser (Wright and 

Pillinger, 1989; Prosser et al., 1990). Samples of graphite, diamond and bulk samples of 

acid-resistant residues were analysed. Stepped combustion enables detailed analyses, 

contaminant removal and selective combustion of different carbonaceous materials 

(Wright and Pillinger, 1989). Combustion of a sample through a series of increasing 

temperature steps, ranging in increments from 100 or 200 "C down to 10 "C steps, 

depending on the resolution required, enables highly detailed analysis of separate 

components. 

Samples were loaded into platinum buckets pre-baked at 1000 'IC, weighed and 

transferred to the MS86 extraction system for analysis and evacuated (10" to 10.' torr) 

before the analyses start. 

The glass line furnace is cooled to 200 "C and the CuO to 650 "C for 10 

minutes to resorb the released oxygen then to 450 "C to reduce the carbon blank, the 

overnight blank is then pumped away. CuO wire is used to provide oxygen for the 

combustion of carbon in the samples. Reference gas samples are also run to check the 

mass spectrometer precision before the sample is loaded. 

The evolved gases from each temperature step (30 minute duration) are purified 

cryogenically using liquid nitrogen and transferred to the mass spectrometer capacitance 

manometer with the release of CO, monitored by the computer. The system measures 

20 points on the release profile and if they are all within 1 % the gas is isolated from the 

glass line. The gas is then frozen down on a cryotrap at approximately - I96 "C for 10 
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iiiinllleS. before non-  condensable sases are pumped aw¿~y. fJllce the illass 

been cnlculated. the system selects one of 6 sequences for q l i t t i~ ig  the gas io il suitahle 

miss  (3-4 iig) for the mass spcctromeier. Alter the saniplc has been run thc systeiii 

:ititoiiiatically selects a n  appropriate bleed time for the continual bleed reference gas and 

runs this through the inass spectrometer. this is followed by a second aliquot of 

rcfereiice gas to fine tune the mass balance and thc results calculatcd and tabulated. 

has 

There are t\vo rcference gas systems used. the first operates on a continual bleed 

systeni. with low levels of gas bleeding continuously from the rcfcrence bulb with a 

6°C -39 %C.  This enables the g;is io be collected for a calculated period of time to 

~ c u i i i ~ i l a t e  enough io balance the sample mass before release to the m a s s  specironieter. 

The second refei-ence gis operuies on a fixed system and is used to check the isotopic 

coiiiposition of the first reference gas. This has ¿i carbon isotopic composition of  6°C = 

+0.71 Ci<.  

Carbon;ite standards are run  to check ihe precision of the mass spectronieier. 

The \taiidai-d PSU3  LIS^^ a single tiny grain ofthe powdercd carbonate with an expected 

6°C o f  -3.45 % <  and the main p s  release is at 600-700 "C. 

Furnace blanks and overnisht blanks iii-c iakcn from the furnace aftet- coolins «i 

the CLIO. the blank i \  generally around I iiz of cai-boii arid 6°C = -25 ' X , .  The isotopic 

coinpo\iti«n of ihc bluiik is genefiilly not niensured only ihe inass of CO, cvolved to 

ci iwre u low levcl of carbon contamination. Blanks are reduced by cycling the CuO at 

600 I« 950 "C to  combust carbon species (Wright and Pillinger. 1989). prebaking the 

pln t i i i i i i i i  buckets and maintaining the glass line vacuum. (Appendix 5) .  

2.8. OPTICAL AND ELECTRON MICROSCOPY. 

The sariiplcs froin the Rics crater were studied at severul stages ihrough the acid 

deiiiiiicrnlisati»n treatments. using optical and a scanning electron nucroscopy (SEM). 

Tliis eiiahled the progress of the deiniiieralisation to be monitored and changes in thc 

chemistry and iiiincralogy of lhe sample to be noted. Further into the demiiieralisation 
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procedure, the samples hecomc clean eiiougli and disaggt-cgated cnough IO allow 

analysis using transriiission electron niicroscope (TEM) techniques. 

The three inicroscope techniques (optical. SEM and TEM) have their own 

advantages and disadvantages. Each technique provides a different view of the saiiiples. 

for exainple thc SEM provides elemental and inorphological data whilst the TEM 

provides mineralogical and structural information. This is relatively simplified its the two 

kcliniclucs provide ¡mases of the saniplcs in distinctly different ways and different 

scales of iiiagnificatioti revealing further detail. 

2.8.1. Petrological microscope. 

Optical mulysis of the samples enabled tlie selection of small diaiiioiid grains 

atid ;I photographic record of the samples progi-css through the acid clemincralisaiion 

stqcs,  providing a quick. simple way to check the coiiiposiiion of the sniiiplcs a id  the 

structure of ihe grains within ihc residues. In  addition a visual record of thc diainonds 

f i x i n c l  u itliin the samples is important if they arc subsequently combusted for isotopic 

analysis. 

The niici-«scope used was ii Zeiss (D-7081) Universal Microscope with 

i i iugii i l icntioiis troni x 5 to x 40, capable «ftransiiiitced arid reflected light a i d  ii MC 100 

c;itiicrii iittachiiieiit. Photo~r.raplis of the siiiiiples o r  iiidividual grains within thc snniplcs 

u ere t;iki.ii Lisiug tlie &IC IO0 cmicl'ii attachiiicnt loaded \vitli tungsten filaiiiciit Kodak 

:zold slide fiIn1. 

The residues were analysed at several stage5 throughout the acid dissolution 

proce~s in order to note cliangcs in the coniposition aiid iiiorphology 01' the residual 

yains .  The initial analysis 01' the samples followed the silicate digcstion stage 

(I-IF/HCI). this proved difficult as the samples contained contamination from fluoride 

w l i s  and aiiiorplious organic material and were thus difficult to observe. Far better 

i-cï~ilts were foiiiid wjlicn the samples were studied undcr the optical microscope after the 

t ' u i i i i n ~  perchloric (HCIO,), chromic and ndvanccd HF/HCI stages. when o ipn ic  

inaierial aiid fluorides were eliminated. Thus saiiipleh were chcckcd under the 
_____ 
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petrological iiiicroscope following the acid treatment stages for clarity. in that they {vere 

free o f  ;iin«i-ph«us acid salts and for large diamonds (50-100 um). If the saniples 

appc;ired containiriation-li-re they were stored in the gláss petri-dishes ready Ior electron 

inici.o.;cope analysis. The samples were cleaned of acid i-esidues o r  salts by repeated 

washes with distilled H,O. This \vus neccssary as not only is the presence » I  acid salts 

within the sample hazardous to health (moisture h n i  skin contact co~ild produce HF 

acid) but lluoride and chloride salts could become volatilised under the electron bcnni 

and d;iriiagc the cquipmcnt. Analysis of the samples undei- the petrological mici-oscope 

;ilw becomes difficult if the sample is full of  acid salts. 

2.8.2 Scanning Electron Microscope (SEM). 

The SEM was located in the Material Science electron microscopy suite ;it the 

Opcii Lniversity and cciiiiprised a Jcol JSM-820i with a Kevex Delta 3 system inid a 

quiiiituiii detector for energy dispersive x-ray spectroscopy (EDS) and elemental 

: i i i a l y h i h  ofthe samples. Scanninf electron microscopes forni an image of the saiiipic i i i  

t i  c;ithodc ray-tuhc synchronised with an electron probe as i t  scans the surface o f  the 

siiiiplc (Rochow and Rochow. 1978). Interaction of electrons with the sample, produces 

x-fiiyh. characteristic of the displacenient of shell electrons in the sample atoms. ï h u s  

the energy released is unique tor each atomic number and therefore. unique to each 

element ( L a w s ,  1987. This i \  wbstaritiated by ensuring all the characteristic lines of an 

cleiiicnt are inatched with those generated by EDS. EDS can then he tised to detail the 

elcii ieiital coniposition of grdiiis within a sample 01- variations i n  coinposition within 

iiidividu;il grains, aiid based on these a tentative suggestion of the iiiinefiilogical 

coiiiposition of the gi-ain can be presented. 

Samples of the residues were loaded onto cai-boi1 sticky tabs on aluniiniuiii 

Ciiiiibridge-type s l id5  h>/ pressing the stud gently cinto the sample ¡ri ii glass petri disti. 

The carboii tabs arc readily dissolved i n  acetone aiid so :in individual sample can he 

i-ctricved. this is iniponant for smal l  residues ¿irid when iiidividual diniiionds were 

studied. 

Jennifer I Abhott Chapter 2 59 





( 2 )  Charging can also be i.cduced by using a lower accelerating voltage. aIthouFh this 

con decrease resolution and detail of the image. 

(3) lising the back scattered detector but back scatter secondaiy electrons may only 

provide an image if the insulating layer is small enough that electrons can penetrate to an 

underlying conducting layer (Rochow and Rochow, I 978). 

The diamond analysed using SEM (figures 3 . 4  and 3.9a-b) was studied using 

back scatter and cathodoluniinescence. due to charging of the sample. 

Cathodoluminesce is a technique which is commonly employed to study natural 

and synthetic diamonds. An electron beam is used io excite cai-ricrs in the sarnple and 

the subsequent recombination processes give rise to intrinsic and extrinsic luminescence 

effects. Tliese emissions are however. limited to the surface layers ofthe sample due to 

the i-esti-ictcd penetration depth of the electron heam (Clark et al.. 1996). The 

luiiiiiicscence observed has a strong dependence on temperature, diamond growth 

sectors and electron beam density (Clark et al., 1996). The cathodoluminescene 

tcclinic1iie available was performed at room teinperatui-e. producing images i n  black and 

white. The images show features and structures in the diamond sample which are not 

iippareiit under normal SEM imaging or backscatter electron imaging. 

For the purposes of this study there are 3 carbon polymorphs to be 

Jistiii~~iislied: this cannot be accomplished at prcscnt using thc SEM. Structural detail 

o f  the ciystal lattice is required which is obtained u h g  selected iuea electron diffraction 

patterns (SAED) from a transmission electron microscope (TEM). 

Although the SEM is unable to distinguish between the carbon allotropes of 

concern namely diamond, graphite and SIC it  is able to provide detailed iiiiages ofthe 

iiiorphology stiuctures and textures observed in the grains. The SEM howevei- is unable 

to providc crystallogrtiphic evidence such as u diffraction pattern to identify the d 

polyinorphs. The use of electron back scattered diffraction (EBSD) is unfeasible as the 

niinernl p i n s  do not have a flat surface (R. Hough. Pers. Comm.). nor are they suitable 

for producing polished sections 
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2.8.3. Transmission Electron Microscopy (TEM). 

Detailed ohservation of the saiiiples and nuneralogical ideritification of the 

cnïboii phases was achieved using a Jeol 2000FX microscope with 2, Kevex Detector 

Delta 3 y t e m  and Quantum detector for EDS analysis. in the electron microscopy 

suite at the OU. The TEM allowed the analysis of much finei- matei-¡al and resolution at 

u iiitich smaller scale, plus selected area electron diffraction (SAED) tillows the 

iiiineralogical identification of phases. The TEM provides an image from electrons 

which pass through the sample and is projected ont« a florescent screen, thus the 

thickness of the samples is vitally important. 

A sample of the individual residues were loaded onto copper grids coated with a 

holey carbon film as B suspension in water or isopropanol tising a dihpasable glass 

pipette. The grid was loaded into the TEM in a single t i l t  snniple holder. 

Carbon grains or grains with interesting morphologies were analysed using 

EDS ;itid identified li-om their elemental composition and SAED diffraction paitems. 

lilciitified grains were photographed along with stiîficient SAED diffraciion patterns. 

Measurement of the SAED patterns using the negatives provides coiifiniiation 

o1 the miiipositioii of the grains on the basis of the spacing between spots and rings in 

ihe pitei-n. The diífei-erit carbon polymorphs and silicon carbide have different 

.ii~iteristic .. . &spacings (listed in tahlc 2.4). 
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Polymorph 
Graphite 

Diamond 

Londsdaleite 

Carbyne 

a-s ic  
13-sic 

An equation using the camera constant is used to calculate the d-spacing in 

Radius (iiini) d-spacing Angsiroiii (A) 

S.99 3.35 

9.74 2.06 

9.24 2.17 
44.87 0.447 

7.99 2.5 I 
7.96 2.52 

angstroms (Equation 2.1 ). 

Equation 2.1. 

I7 = i-xiius in min. 

( L O O ~ / R ~  = d-spacing (A)  
2.006 = camera constant 

The camei-a constant is obtained for each TEM using standxds. To index ring 

pattcrns the diameter of the rings is iiieasured and converted to the iiiterplnnnr d-spacing 

u h i n g  the camera constant then the values are compared to the standard values of the 

wlistniice concerned (Andi-ews et al., 1971). 

CAED patterns inay he hard to interpretate as it has heen fwnd  that flakes oí 

sheet silicate minerals aiid quartz niay combine with graphite to give carbyiie &spacings 

(Siiiith and Biiwxk, 1981; 1982). Iíowever experiments by Gilkes and Pillingci- (1999) 

iiidicated that distinct carhyntt diffi-actioiis can be obtained. SAED piitterns can be used 

tu coiiîïriii the identification o f a  grain on the basis of sti-uctural information aiid to 

cii;iriicterise further structural features naiiiely twinning, polycrysiallinity. stxckiiig faults 

and layering. 

Images of the samples and pictures of the diffraction patterns are essential 

records of the analysis of the sample. Photomicrographs are obtained under vacuum o n  

preloaded P8005 Agfa 23D56 65x9 cm film. 
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F o r  TEM analysis ~aiiiple grains need to be of a certain thickness. to ciiable the 

clectr«n hcam to peiietrate the sample. Thick samples can be electron thinned to s l o ~ l y  

\trip away layers of the  crystal stnicturc and thin ihc sample. Alternatively the edges oï 

Fraiiis can be analysed althotigli this introduces ihc problem of selcciivity. 

The tisc of the TEM in examining shockcd iiiaterial. reveals iiiany iiiore Ientures 

than previously described at much finer scale. More iiiinieroLis PDF can be detected 

using the TEM rather than conventional optical iiiicroscopy (Coltrant et al., 1992). The 

full list ot'TEM and SAED is contained in appendix 3. 
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CHAPTER 3. IMPACT DIAMONDS IN THE RIES CRATER I: REGIONAL 

AND LITHOLOGICAId DISTRIBUTIONS IN FALLOUT IMPACTZTES. 

3.1. INTRODUCTION. 

One of the main aims of this thesis is to investigate variations in the 

iiiorphology, isotopic composition, type and amount of carbon within the Ries crater 

iinpactites. Each suevite from the Ries crater is characterised by a particular abundance 

pattern of ciystalline rock types and shock metamorphism stages (Graup. 1981). With 

this in mind, samples of the impactites from different sites around the Ries crater were 

selected and demineralised as detailed in section 2.6. This included two fallout suevite 

breccias (lithic impact breccia with glass) from the Seelbronn and Öiting quarries which 

lie on opposite sides of the crater (figure 3.1). This could reveal variations in carbon 

stable isotopic compositions and degree of shock due to sampling of different pats of a 

hcterogencous basement. Further samples of iiiipaci melt glass, impact melt rock. lithic 

impaci breccia (ßunte Breccia), shocked granite and shocked gneiss were also prepared 

and analysed. Samples from the Nördlingen core 1973 íN-77) are referred io where 

~ippi.opriate but are mainly discussed in chapter 4. 

The carbon content of whole-rock samples from around the Ries crater, can be 

used to trace lithologies containing the most carbonaceous material, that in turn may 

have contributed to the («rmation of impact diamonds. This carbon niay be graphite as 

in  Popigai iMasaitis, l995), coal us in K a a  (Ezersky, 1982; 1986), carbynes (El Goresy 

and Donnay, 1968; Whittaker, 1978 and Heimann, 1994), a combination of graphite and 

carbonates (Hough et al., 1 9 9 5 ~ )  or amorphous and organic carbon. Separated fractions 

of glass and lithological fragments were extracted from these impactites wherever 

possible and their carbon contents and stable isotopic compositions determined. Further 

carbon stable isotopic nieasurements were made for acid-demineralised residues of the 

Ries samples as well us extracted graphite and diamond grains. 
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The morphology, inineralogical and carbon isotopic compositions are discussed 

liere with reference to the geographical disti-ibution of the impnctites and individual 

coiiiponenrs of these impactites. These results will be compai-ed with those from the 

N-73 c w e  together with ¿I discussion o1 the possible diaiiiond formation mechanisms in 

chapter 4. 

3.2. REGIONAL AND GENERAL GEOLOGY OF THE RIES CRATER. 

The Ries impact structure is it 25 krn diameter. 15 Ma (Gentner and Wagner, 

1069) cratei- that excavated through sedimentary cover rocks and into the underlying 

crystalline basement: the depth of excavation is estimated to he in  excess of 4 k i n  (Von 

Eiiglehardt. 1984). Figure 3.1 illustrates the basic structure of the crater and shows the 

sample localities used. 

The target rock stratigraphy (figure 3.7). siimmarised in Chao et al. (1978) 

coinpi-ises of a ciystnlline basement of pre-Variscan metainorphic rocks (350 Ma) such 

11s orthogneisses. paragneisïes and intruded Variscan iiiagmatics (330 Mai includin~ 

pphite-bearing gneisses. 

This basement sequence is overlain by Permian (286-745 Ma) sandstones and 

shales deposited in a series « I  sediriientary basins which is in turn overlain hy  terrestrial 

Ti-iassic sediments (245.208 Ma) (sandstones and shales) with u widespread marine 

trniisgrcssion in the iiiid-Triassic (Kruper). A Jui-assic (708-146 Ma)  marine 

transgression deposiiing bedded and reef liinestoiies was followed by continental 

scdiiiicntatioti in  the Cretaceous ( 146-65 Ma) (shaly coals, sandstones) with widespread 

crosion in the Tertiary period (65- I .8) and the impact event occurring in the Higher 

Tortonian, around 15 Ma (Gentiier and Wagner, 1969). The crater was suhseqiiently 

filled with fresh water lacustrine sediments, carbonates and sulphur-rich shales until the 

mid-Miocene. During the Quaternary period, uplift and erosion led to the exposure of 

the iinpact lithologies around the crater rim and formation of the present day 

topography. 
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Figure 3.2.  l're-iiiipiict ïtratigraphq of the Rieï crnler area. Adapted froin V a i  Eiigleliardt 

( I990).  

The impact lithologies are vnried but three iliain divisions i i i q  he identified o n  

the basis of the lithological fragments they contain as wel l  as the degree of shock 

iiietaiiiorphisr. Extensive work has been carried out on the impact dcposits and has 

hceri siiiiiinai-iscd in a review by Von Englehardt. ( 1997). 

3.2. I .  Moldavite tektites. 

Tektites from the Ries ilre preserved as the Central European strewn field and 

Iound up to  350 kni froin the Ries crater. These glassy. lustrous and often hright green 

sniiipies have heeii shaped by their p~issage through the atmosphere and subsequent 

~ i - ~ ~ ~ i i i e t i t ~ i t i ( ~ i i  a s  wcll as ;ilternti«ii withiii the host sedinients (Bouska. 1994). They are 

believed to have formed Ìroiii surficinl Miocene sands transfni-iiicd to giiiss by the fore 

sIiock-w:ive of tlic Ries impact (Voi1 Eiigleliai-dt et al.. 1987: Meisel. 10971. The tektites 

coiiiiiionly have etched and ornanieiited surface structures which have heen attributed to 

intense hot piasriia attack Ìor hetween 1-3 seconds during their formation (David. 1972). 

Siihseqtieiitly. cxperiiiiental and field evidence has shown that pyramidal surface 

sii-uctures may he formed by alkaline conditions in clay-rich scdiiiients and pitting hy 

acid conditions in  sandy gravel deposits (Bou , 1994). A derniiieralised sample ofa  4 
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g piecc of Moldavite glass failed to reveal any acid resistant iiiineral inclusions such as 

zircon. diamond or graphite (R.  M. Hough. Pcrs. Conim.). 

3.2.2. Runte Breccia (Lithic impact breccia). 

The Bunte Breccia (Bunte Trünimcnnassen) is a lithic impact breccia which 

cornprises > 90 vol'? of all the impact deposits ai the Ries crater (Hörz. 1982) and 

forms a near continuous cuitaiii of ejecta underlying the patchy suevite dcpwits (Chao 

ei ;il.. 1978). The breccia is 90-95 vol% sedinientary in composition but includes 

li-agnicnts of all the rock types in the Ries stratigraphic column (Hörz et al.. 1983). The 

sedimentary fragments show no signs of shock. indicating that the sedinientary coluinn 

\viis not affected by shock pressures > I0 Gpa (Voii Englehaidt, 1990). 

3.2.3. Suevite (Polymict impact breccia with glass). 

Approxiiiintely 92 suevite localities have been identified i n  and around the Ries 

c1'3tei. :irea Linci wei-e described in detail by Chao et al. ( 1978). The suevites exhibit all 

c!egi-ces of shock iiietaiiiorphisni; glass drop spherules in the groundninss give 600 ('C 

tIici.iii01-ciiinaiit tempei-atures with an initial freezing iit 2000 "C. T h i  iittesis to high 

iciiipei-;itiirc deposition conditions (Gra~ip,  1981 1. High pressure mineral p h w x  such :is 

coesite and stishovite, along with shock deformation fe:itures such as deformation 

!uiiellae. kinkhaiids and planar deformation features, indicate shock pressures 5 35-45 

Gpn (Gi-aup, 1990). The impact glass in the suevite is attributed to the shock fiision of 

yieisscs ai pressures in excess of60-80 Gpa (Von Englehardt, 1997). The siievite may 

be divided into fallout suevite. deposited in isolated areas tip to IO k i n  heycind the crater 

i-¡in (Von Eiiglehardt et al., 1995) and fallback sue\ite which fill5 the crater cavity. 

Fallback suevite is distinct froiii fallout suevite in that it contains l e s  %lass (under 5 

compared to 15 vol%) and no aerodynamically shaped boiiibs just smaller isometrically 

shaped bodies (Ctöffler c i  al.. 1977). 

~~ ~ 
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3.3. OCCURRENCE AND DISTRIBUTION OF DIAMOND AND GRAPHITE 

IN IMPACT PRODUCED KOCKS OF THE RIES CRATER. 

Diamonds were identified in suevite and gIass samples from the Öitincg and 

Seelhronn quarries (Abbott et al., 1996) as individual grains observed within the 

i-esidues using optical microscopy and on a finer scale using tfiinsmission electi-on 

iiiicroscopy (TEM). Diamonds were also found in shocked gneiss from the Auniiihle 

quarry and in an inipact rrielt rockhevi te  from the Polsingen quarry. Diaiiionds were 

not detected i i i  a i-esidue froin the Buiite Breccia sample. Table 3. I lists the grains 

(p iphi te .  dinrnond. mile and silicates) found in the samples throughout the analyses, 

Snlnp le 

OQGB 

OQS 

SBS 

HMK 

,'\QC; 

im 

SEM TEM 

Cciniposition Composiiioii 

Graphite and diainond Zircon. Al-Fe-Mg-silicates. t u t i l e  

gi-;iphite. diainond. 

Illa Graphite and diamond 
Graphite and diamond Zircon. Al-Fe-Mg-silicates, nitile. Cr- 

Fe-Mg-spinel, graphite. 

da Graphite and diamond 

liia Graphite and diaiiioiid 

iiin Graphite and rutile 

The general structure of the underlying haseinerit rocks was extrapolated by 

Cira~ip ( 19X 1 ) and is shown i i i  figurc 3.3. T h i h  ill~isti-atcs how the basement coinpositioii 

and structure vaiy across the targri area. indicating that there inay be detectable 

differences in the abuiidaiice and forni of diaiiionds within the inipactites depending on 

which lithologies they are pi-iiiiarily derived from. Radial variation in the distribution of 

diniii«nds has been identified at the Popigai crater (Masaitis, 1998) but has yet to be 

identified at the Ries (Schmitt et al., 1999). 
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3.4. MORPHOLOGICAL CHARACTERISTICS OF IMPACT DIAMONDS 

AND GRAPHITE FROM THE RIES CRATER. 

A wide range of \hock-derived stiuctures have been ohserved in minerals such 

as quartz (Horn et al., 198 I ) .  zircon (Kaiiio et al., 1996) and diamond (Koeberl et al.. 

l W 7 ì  in impact lithologies, such as lithic impact breccias with glass and individual 

coniponents of these e.g. gneiss. Similar features were identified in diamonds, zircon 

a i c i  graphite from various sites around the Ries crater. These were observed with the 

iiiiii oldetermining wheiher there are any variations in these structures or the degree to 

which they arc developed within the different sites and how these inight relate to the 

>hock histories of the respective lithologies. 

A number of diamonds were identified in the residues using a petrological 

iiiici-oscope (figure 3.4). These diamonds are distinguishable from the rest of the 

rcsidue by their morphology, col«tir and high,birefringence. The examples shown in 

figure 3.4, taken Il-oni the Ötting quarry glass residue (OQGB! are between 150 atid 

300 pm in size. ycllow-white in colour. pseudohexagonal with surface cro 

distinct striationb and fractures with small black graphite inclusions, strong 

hircfringence and second to third order inierference colours. Figure 3.4;~. shows rotation 

of the stacked layers relative io the basal plane ofthe precursor graphitc structure. ' l he  

l0m o1 these diani«nds mirrors those reported from the Popigai iinpaci crater which 

iilso show hexagonu1 niorphologies, lainellar structures and graphite flake inclusions 

i Koeberl et al,, 1997). Which arc predoiriinantly yellow in coloui-. a feature coiisidered 

to be the result oflonsdaleite within the diamond structure (Valter et al.. 1992) and 

display strong birefringence (up to 0.0251, possibly related to strain wiihin the 

crvstalline structure (Koeberl et al., 1997). Table 1.3. sumtnurised thc characteristics of 

many of the iinpaci diainonds described to date. 
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known as extinction bands (Stöffleï. 1972). Shock nictainorphisni of graphite in the 

elitstic wave niay result in the forrnntion of kink bands. parallel 10 p p l i i t c  LOO()]] 

planar fractures parallel to graphite [ I  1201 prior to the transformatiori to diamoiid 

during shock-front propagation (Valter and Yerjomenko. 1996). This has heen used to 

explain inherited features seen in diamond-lonsdaleite paramorphs from Popigai, 

Zapadnaya, Terny and Ilyinets (Valter, 1986; Valter and Yerjomenko, 1996). 

The images shown in the subsequent sections illustrate the variety of structures 

which may be observed. These include layering, a crystallographic feature of graphite 

which may be preserved in shock derived diamonds, linear features, etching and pitting. 

skeletal grains, polycrystalline grains, twinning and stacking faults. Some of these 

fcatures have been described from other impact craters (Rost et al.. 1978: Hough et al., 

IWSc; Masaitis. 1994: Koeberl et al.. 1997 and Lmgenhorst et al., 1999) and are 

coiiipared with features obxrved in this study. The observed features and their variation 

tliroughout the crater are discussed (sections 3.3) and subsequently coiiipared with the 

i-cs~ilts from the N-73 drill core i n  chapter 4. These obsei-vations combined with 

iiiiiieralogical associations and shock ineiaiiiorphism histories are used io suggest which 

iiicclinnisms of impact diaiuond formation might account for thc known features. 

3.4.1. Layered grains (25 - 300 pm). 

Many of the carbon graiiis observed under the SEM showed cleat- l a p e d  

structures which were observed both parallel and perpendicular to the c-axis of graphitc. 

The side view of ii sample from the Seclbronn qua 

priiiiary layers and within these ;I number of less distinct finer layers. These features 

niay he an artefact of slight compositional changes within certain layers. changes in the 

dcgree of crystallinity or orientation of the platcs. Small-scale chemical and structural 

herrrogeneities such as rotational layer disorder can persist in graphite depending on the 

degree of crystallinity and maturity (Rietineijer, 1991). This is dile to the gradual release 

of oxygen. hydrogen and nitrogen from organic matter during graphitisation (Grew. 

1'974: Itaya, 198 1 ; Buseck and Huang, 1985). 

residue (figure 3.5) shows three 

Jennifer I Abbott Chapter 3 74 







Layei-ed strticttii-es were observed at a much finei. scale tising tlie ‘ïEM. Figure 

3.7. shows ii w i - y  elongate (10-15 p i ) ,  narrow (1-1.5 pm) diarnond frorn the gneiss 

residue from the Atiiiiiihle quari-y with a number of layers which can be seen at the 

iiiargins with ntiinerous short black parallel stacking fault lamellae. Many of the 

tliaiiimds found show a number of different plates on the SAED patterns repi-eseiitirig 

individual over-lying layers with stacking rotation or misoi-icntation. 

The layering in these diamonds is a relict crystallographic structure inherited 

í‘roni the precursor Eraphite. Layering in graphite is an intrinsic crystallographic feature 

of the iiiineröl, this simple horizontal layering may however be distoned by the effects of  

;I I O W  degi-ee of shock mctaiiioiFhism. The obvious preservation of this graphitic 

wucture along with hexagonal and planar structures strongly suggest that ihe diarnond 

resnlts froiii the direct transformation of a graphite precursor. Therefore any  proposed 

iliaiiioiid (oriiiotion niechanisin for crystals with these morphologies must preserve the 

prc-existing crystnl structure yet allow recrystallisation as polycrystalline diamond. This 

excludes riiechuiiisiiis in\dving a liquid 01- gase«us phase with tlie gi-owtli of diamond 

froiii a carbon feedstock or via diffusion. hut requires rearrangement of the carbon 

bonds. 
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Skeletal diamonds form narrow needle like stmctures in co1itrast to platy. 

1, q e i e d  , . structures. Skeletal diamonds do  not show clear layered or apographitic 

\ttuctures rather they are composed of numerous individual crystallites ( 5  I bin) 

foriiiing fine grained needle-like sti-~tct~ires. Many of the hlocky dianioiids dso show 

I;iiiit lineai- structures representing individual crystallites with preferred orientations. 

The features inay represent palinipsest or relict features IValtei- et al.. I 992) 

inhei-ired from the precursor carbon or PDFs akin io those documented i n  shocked 

qtinrtz m d  zircoiis (McIntyre, 1962: Goltrant et al.. 1992: Bohoi- et ;il.. 1993) 01. 

Inherited paliinpsest structures suggest a niechanisin involving direct transformation 

without the destruction of the pre-existins stnictui-e. In contrast linear sti-Lietitres 

representing the preferred orientation of cr)~stallites iriay h a w  been formed as a direct 

restilt of the foiination iiiechanisni. This is discussed in further detail in  section 3.3.4 

with i-efcreiice to skeletal structures which show strong prefei-ired orientatioii. 

3.4.3. Pitting and etching features in layered and skeletal grains (5  5-300 pm). 

A form of etching which wjas observed i n  a carbon gi-ain froin the Oitirig qiiorry 

=Ia\s bomb residue under the SEM. is showii helow in ligiire 3.8h. These structures are 

distinct from any seen i n  the planar graphitic grains in  other samples. The pits ciin he 

\ceti no t  only i n  the surí'iice layer but also in suhsurface Iaycrs and do not show the 

\mie orientation ihr»ughout. Rattier, they Lippeu to fbllow varying orientations which 

iiiay he i.clated t o  the orientation of the paiticular plane o r  variaiions i n  the structuritl o r  

coiiipositional niititre of the sample e.g. the degree »I  crystalliiiity or gi-aphite innturity. 

Cui-face etching of the sainples appears to occ~ir at all scales. from coarse 

wuctiires (5.20 pni) which follow fractures, to iianometre scale structures (10-50 nm). 

Surface etching pits on diamond can be obsei-ved in the examples shown in figtii-es 

3.9it-h. The diaiiiond froni the Ötting quarry glass bomb (OQGB-DI) \vas white-yellow 

in  colo~ir undet- the optical microscope. 300 pin in size a i d  triangular with pitting arid 

ffiictures on two scales. Etched fractures cut across the layered structure oi'ihe sample 

atid at 11 higher magnification siii;ill etching pits were observed which soinetinics foriiied 
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iii liiicar trails across the surface of the grain. The cathod«lunlinesccnce iiriagc (figure 

3.9h) hhowed no mnaticiii .just faint structiiral differences and areas of graphite. The 

etching structures are similar to those seen in a diamond fi-om tlie Seelbronn quarry 

xicvite (figure 3. loa) which shows linear featui-es along the long axis of the grain, 

,, q i i i n g  .>: and a linear trail of ovoid etching pits beneath a remnant of another layer which 

\\ei-e not parallel to the axial foliaii«ri. Suggesting the preferential etching of a stt-iictural 

wnkness  that is not parallel to the preferred orientation of the ctysiallites and is not 

ihihlc uiidcr the SEM. 

A high magnification image of OQGB-DI (figure 3.10b) illustrates not only the 

lint. liiieai- etching stiuctures hut also irregular surface etching pits a few nrn in dinnicter. 

which g i w  the sample a granular texture. Very fine-scaled (5-20 nm) etching on the 

OQGB-DI sample is illustrated below in figure 3.1 Ia. The figure shows an area I'roiii 

the hottom centic of the ianiple which has ii gi-anular texture. wlicrc ctcliiiig may reveal 

I~oI!.ci-ystallinitt in the diamond (removing individual crystallitesi o r  the removal of re- 

:rriipliitisation lcatures. Similar corrosion and etching was i-eported for diamonds froin 

1.nppijarvi which show surface structures attributed to the removal of individual 

crystallites (Langenhorst et al., 1999). However OQGB-D1 was extracted from the 

i.chidue following the HCI/HF stages alone and had not been exposed to chromic or 

Iliiiung percliloi-ic acid which would remove graphite cwtiiigs. Thus the structure\ ai-e 

ii~orc likcly t o  hc the result dctcli ing,  for example by hot alkali gases such as OH-. Na 

a i d  K (Vishiievsky and Raitala. 1999). silicate inelts (Langenhorst et al.. 1999) (ir the 

rciiiovul oí' regraphitisatioii coatings formed during the impact. Therefore it is 

considered that they do not represent features attributable to the acid digestion process 

itsclf. 
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The surface structures shown in figure 3. I lb are similar to thc features seel1 in 

figurcs 3.9,-b. 

Figure 3 . 1 2 ~  shows an etched and coiToded blocky diamond with a strong sub- 

p¿irallel linear trend across ihe p i n .  These linear structures inay repi.csent stzicking 

fiiults 01- i-idges of diamond crystallites in prefei-red orientation. This may represent 

etching of an apographitic diamond (Langenhorsi et al., 1999) or the incomplete 

ti-nnsforiiiation of ii iiiixtui-e of  graphitic and poorly graphitic amorphous carbon to 

=raphi te. 

Piitiiig features may be the i-esult of etching through oxidation ;inci pririial 

coinhiistion o f  cai-hon during o r  after diamond formation by highly charged ionised 

:ases within thc impact fii-cball Wishncvsky and Raitala. 1999). Post-formation 

21-nphitisation. when teniperatures remain high (I 2000 K) following diamond 

íi)rinati«ii. or preferential etching of iiiaterial along stnictural planes or less 

;ire;is during acid treatnients may also cause etching and cori-osion. Chock induced 

tlisriiption of the tal lattice in isolated areas niay restilt in the foriiiation of less 

crystalline :ireas. which would be more su5ceptible to impact associated etchins o r  acid 

attack. Di;iiiioiid is extreiiiely inert and not affected hy any acids o r  chemicals. except 

thwc which act as  nxidising agents at high teiiiperatures. 5 700- I300 K (Field. 1992) 

u hich i \  ucll i n  excess of the tempei-atures used durin: the acid digcstioii process (30- 

I20 "C) .  ,\s iioied prcviously the di;iinoiid t OQGR-DI j showing etching sirtictures 

(fipi'e 3.9-3. I I )  LI'LIS not exptxcd to chi-cmic or perchloric acid or teniperatures > 30-60 

'T. Other samples which sh«w etching were exposed to  perchloric acid ( I  20°C) and 

iiiay show some reaction to ionised acid (H,O') in solution which can remove sinall 

diniiiond particles from diamond filnis by reaction with surl'tice H' (Gi et ¿il., 1995). 

Pcrchloric acid will remove ainorphous carboii and poorly graphitic carbon and reveal 

grqAiiiisatio~i etching structures. 
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3.1.1. Skeletal grains (5 5-15 pm). 

Skeletal dinniond structures were observed in many of the samples in this study. 

The cxm~ple  shown in figures 3 .13-b from the Seelbronn suevite appears to be 

coiiiposcd pi-edo~iiiiinntly of cubic diamond although sii i~ll  areas near the tips of the 

needles aim show graphite diffraction iiiaxiiiia (inset SAED). Sinilar skeletal structures 

wcre ohserved in the OQSR (figure 3.14-b)  and in  diamond and diainondlSiC 

iiiicrgrowtlis (Hough et al.. 19%~) .  

The inset SAED patterns suppori thc interpreetaiioii of tlie features seen in the 

hi-ight-field iinages. The patterns show polycrystalline ring patterns and a linear 

orientation to thc sineni-ed spots. representative of a preferred orientation to the 

ci-ystallites o r  crysinl defects such as stacking faults. This i!, evident in the linear skeletal 

ctructui'c along \lie long axis ofilic grain with the needle like projections following this 

orieiitntioii. 

The needle-like Wuctures are extremely delicate in iippearaiice and niay he as 

fine a\  a few tini in diameter. Figure 3.1Sa illustrrites this with an iiixye o f  a fine pained 

1-5 mi elonpte  iieedlc proti-usion fi-om a lnrgei. (2-5 pili) diumoiid grain froiii thc 

OQGRR. A lui-ther rxainple li-om the Seelhi'oiin suevite (fig~ire .?.Ish) 
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shows a series of 20 nm skeletal needles along the edge o f a  niuch larger (3-6 pm) 

grain. 

Skeletal structures were observed in impact produced diamond and de. 

Hough et al. ( 1995b) from the study of very fine grained Tals under the TEM. These 

grains were found associated with diamond. silicon carbide and diamondsilicon carbide 

intergrowths and used to propose it CVD like mechanism for the fomiation of skeletal 

impact diamond (Hough et al.. 199%). The examples shown in this thesis did not 

appear to contain silicon carbide. The structures were predoininantly polycrystalline 

with a prefened orientation to the individual crystallites. 

The extremely fine grained and delicate stnictures of some of these needle-likc 

projections inay represent remnant diamond following the removal of another 

sui-rounding crystal such as graphite or a noli-carbon substraie. Skeletal mantle-derived 

diamonds are believed to be abnormal crystalline forms produced by insufficient carbon 

for the normal growth of  crystals. characterised by one-direction ordering along [ I  I I], 

iiiiperfect structure and a high percentage of amorphous phases (Shafranovsky, i 964). 

Skeletal structures with a preferred orientation ofthe individual ciytallites or 

liiicnr structures do not appear to have preserved an original graphitic morphology. 

Extensive corrosion and graphitisation seen I n  diamonds froin Lappijiirvi. Finland was 

suggested as an cxplanatioii for skcletal diamond structures (Lengeiihorst et al.. 1999). 

Yet there are distinct structural differences between apogi-aphitic and skeletal diamonds. 

Etched and corroded apographitic diamonds were seen (chapter 4) but still preserve 

i-ciiiiiiint gi-aphitic structures. The skeletal diamonds described in this study and by 

Hough et al. ( 199Sb) display no apographitic structures 

Therefore the mechanism of transforniation appears to involve the destruction of 

the precursor phase structure and the growth of individual crystallites along a dominant 

;ixis which may represent the direction of ininimuni pressure (Kerschhofer et al., 1998) 

with crystal growth being limited in the principal compressive stress direction. The 

traiisforniation of ii mixture of graphitic and poorly graphitic carbon could produce 

skeletal diamond fi-om the transformation of graphitic carbon alone. From the skeletal 
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textures of some veiy h i e  grained diamond crystals observed in the Ries crater sailipies 

(Hough et al.. 199%) i t  has been suggested that this form of irnpact dianiond riiay be 

due io very rapid growth from feedstock ioiis in a plasma or within ihe structui-e of other 

iiiiiiefiils (Dr. R.  Hough. Pers. Comiii.) using pre-existing p i i 1  surfaces as ;I sLibstrate. 

Fine grained Skeletnl crystal strLictLires can be formed by shock. Rapid gro\vtti textures 

with fine grained radiating stiuctures have been observed for vapoui- generated Sic 

f(miied by conically converging shock-wave techniques (Yamada and Tohisawa. 1990). 

The stiucture of these crystals is very similar to that shown in a diamond from the 

OGGBR (figure 3. I S a )  and does not appear to be the result of etching 

Another possibility that should be considered i s  that these skeletal s t i~~ctures  

inxiy have formed as a result o f  the acid digestion process itself either through the 

iriiio\ul « I  a substrate mineral or the clustering together »I nano-crystalline diaiiioiid. 

Although these structures are \e ry  delicate and fine graiiied they appear to be robust and 

iis such it is hard to suggest a nicchanism. such as surface charging by which nano- 

crystallites could adhere to each oiher with sufficient sireiigtli i» retain their s i r~ ic tur~  

during SEM and TEM investigations. This indicates that the primay mechanism 

in \  olved is one of growli fi-oiii a carboii feedstock wi th  iiiultiple iiticleati«n sites 

toriiiiiig diamonds which have not inherited any 01‘ tlic sii-uctural characteristics of the 

prccLirsoi- carbon. .4ltcrnatively, as with the polyciystalline grains described in  section 

3.4.5. these structures inay have formed from the nticlcation of individual diamond 

crystallites within the precursor structure. Experimentally shock synthcsiscd diamonds 

tire predominniitly sinall, polycrystalline and do not preserve the siructui-e of the 

pi-ectirsor carbon phase (De Carl¡. 1 99s). 

3.4.5. Polycrystalline grains (5  5-300 pm). 

The majority of iinpnct diamonds are polycrystalline with individual grains up to 

0.2- I c m  in  sire and composed of individual crystallites 0.1-5 pii in diameter (Masaitis. 

I 99X). Rarely single crystal diamonds are also reported (Gurov et al., 1995). Individual 

nano-diamonds from Chicxulub arc 5 6 nm in diameter (Gilinour et al.. 1992). The 
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diamonds seen in this study i-mged in size froni < 5-300 pn1 and were exclusively 

polycrystalline. tio single crystal diamonds were detected. 

The texture is akin to the granular polycrystalline texture described for shock 

zircotis in section 3.4. The saiiiple illustrated in figures 3. I3a-b is a polycrystalline 

di;ini»iid from the Seelbronn suevite residue, the diatiiond has u cleiii. lineai- orientation 

tilong the long axis with needle like projections ancl ~ t i~c tu i -es .  The SAED pattern 

shows ii polyciyst;illiiie ring structure and sti-caking along the diamond 2.06 Ä spots. 

This streaking may be the result of iiiicrotwins in the structure o r  thc dianiond 

(unresolvahle at these magnifications) or stacking faults. Surfxe textures on a vet-y fine 

\cale (cl pii) observed using the SEM (figure 3. I l )  niay i-epreseiii the surface 

rxpi-cssion of polycrystalline structure. 

Polyciysiallinc diainonds have been described by Langcnhoix et al. ( 1996) as 

;isgregatcs coiiinionly f«iind in taganiites (iiiipnci melt breccias) from Popigai and 

suevites from Ries. formed of 1 pii crystallites containing nilmerow stacking faults 

parullcl to the ( I 10) crystallographic piane. Langenhorsi et al. (1996) suggest that 

diiiiiiond\ with these iiiorphologies iiiay have fornied by a CVD-like process as 

descrihed hy Hough et d .  (1995b). Koeberl et al. (1997) found that all iiiipact diamonds 

troni Popipii are polycrysialline u ith iin annealed thin filii1 surface aitributed to ii period 

01' high iciiipe~nit~irc during forrnation. 'Ihe properties of diamond fioin the Popigai 

iiiipaci crater are dependent on their high density of ci-ystalline defects (Masaitis. 1998 i .  

The properties of nano-diaiiionds have been considered experiiiientally by Saha et al. 

( 1998) who found signilkantly different structural. physical and  cheiiiical properties 

including sirain. distortion. roughness and dislocations. Thus. polycrystalline diamonds 

iiiay hold propul-tionally higher degrees of ciystalline disl»cations and defects in the 

fori11 of stacking faults. These defects can provide contributions to the required 

xtivatioii energy which can enhance the growth kinetics of the new phases such as 

graphite (Green, 1992). 

Polycrystollinity may represent the replacetneiit of precursor graphite by nano- 

diaiiionds crystallising rapidly from numerous nucleation sites, such a s  stacking faults 

Jennifei- I Abhott Chapter 3 93 



within the graphite sii-ucturc during phase transfoiniation. A siiiiilar iiiechanisIi1 is 

proposcd for the IiigIi presswe phase ti-nnsformatioii of olivine (Kersclihofer et al.. 

1998). Aliei-native mecliaiiisiiis inay iiiclude thc rapid crystallisaiioii of diaiiiond niiclei 

fi-oiii feedstock gases via a CVD-like process (Hough et al., 1995~) or the shock 

coiiiininution of prccursw graphite prior to the graphite-diamond transformation 

i-csultiiig in inherited polyciysialline textures (Vishnevsky et al.. 1997). The structure of 

flnttcned volume xenoniorphic impact diamonds from Popigai has been attributed to  

iiiosaic ri-agmeniatioii of graphite during shock wave transformation (Vishnevsky et al., 

I 997 i. Progressivc comminution of pre-graphiiic carbon subjected to experimental 

4iock prcssureh up to 59.6 Gpa, produced characteristic polycrysialline ring patterns 

(Rietnicijer. 199.5 1. Polycrysialline dianionds take three main foriiis: ( I ì apographitic 

platy diamonds presei-ving a gi-aphite morphology, (2) volume xcnoinorphic grains with 

h u ~ z i r y  textures and blocky structures aiid ( 3 )  skeletal diaiiionds with ii preferred 

orientxion and no obvious inherited graphitic sii-uctiires. These structures iiidicate that 

thc tra~isîììriiiaii~n iiiectinnisiii inay involve a vapow or liquid phase atid the destruction 

of the pre-cursor carbon structitre or the direct trUlisrornidtion of conimunited graphite 

to diniiwnd preserving the pre-existing graphite structure as well as a polycrystalline 

\hock induced structure. 

í i i  addiiion the preservation of polyciystallinity and structural defects such as 

.;i;ickiiig fault\ indicates that the diamonds were quenched and did not experience a 

pcriod o f  high teniperxure (2 2000 K )  sufficient io anncal thew defects or inducc 

I rraphitisation. 

3.4.6. 1)iamondgraphite intergrowths. 

S l i i ~ k  produced diaiiionds iiiiiy contain graphite 21s inclusions. flakes or siirlace 

coatings. The black colour of some of the diamonds from the Popigai impact crater has 

bceii aitributcd to an impurity of graphite (Valtei- et al.. 1992). This is an impoitnnt 

feature with reference both to the structures observed i n  shock and impact produced 

dinnionds, the possible forination mechanisins and post formation processes. 
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Many of the SAED patterns for diamonds found in the iiripactitcs show 

cliaracteristic graphite spots (3.35 Ä) and coninionly areas of ihe >aiiiples will show 

pi-cdoiiiinantly cubic diamond SAED patterns with isolaied ~ e a s  of grapliitc (figure 

3.13h). Studies ol'graphiie iiiaturity have shown that SAED pattcr~is cai1 he used to 

disiiiiyu¡sli between poorly crystalline and highly ci-ystallinc graphite (Buseck and 

H ~ t ~ i g ,  1985). The saiiiple shown (figure 3.13b) show strong dianiond dií'hctioris with 

kiiiit i-csiduiil graphite which appears to he ciystalline (i.e spots appear in the SAED 

rattier than faint or diffuse iring patterns). Buseck and Huang. (1985) showed that as 

!gnpliirc iiiaturity increases. electron diffraction patterns show increasing numbers ot 

rings. decreased diffuseness and in well ci-ystallised gi-aphite, discrete spots. The SAED 

piittcini (figure -3. I3b) shoxs  diamond and graphite with sti-eakirig of the diamond spots 

iliroiigh the ( 1 1 1 )  spots indicating a polycrystalline texture with it preferred orieiitation 

io ihc crystallites. Followiiig perchloric acid treatiiient many of the samples revealed 

detailed skeletal structurcs where graphite may havc been reiiiovcd. Skeletal stiiictures 

wi.c not seen in  rhe diiiiiioiid froni the Auniühle gneiss residue which revealed 

pi-cdoiiiiiiantly elonptc layered structures. with thick. short stacking faults and poor 

resol til io11 «t detail (fig Llre 3.7~1-13 I. 

Di~tiiioiidigi-"phite intergrowths iiiay he the result or two pi-occsses. post shock 

,i.ophiiisaii«ti of dieiii»iitl 01- thc iiicoiiipletc transforiiiatioii of grapliiie to diaiiiond. 

Sliock produced diamond froin tlie iiiartciisitic iraiisforniaiioii of grapliite by shock 

coiiipression of the ci-ystal lattice from a sp' to s p  configurntion is only stable at the 

high prcssiires (30 to SO GPa) at which i t  was Ioriiied, rapid pressure loss coriibined 

witli elewted tciiipcrat~ires results in regraphitisation (Donnet et al., 1997). Thus, impact 

dinriioiitls are ineiastablc after the pa 

quenching of impact pr«duced lithologies enables the metastable preservation of 

diaiiiond (Masaitis. 19OXJ. This requires cooliiig to 5 1000 K (De Czirli. 1995) arid will 

he discussed in section 4.6.3. 

ige of the shock front. Rapid cooling or 
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3.4.7. Stacking faults. 

Stacking faults appear il\ distinct dark lamellae under the ~1'EM. Figlire 3. 1ba.b 

sliows examples Of these structiii-es froiii the OQGBR and PIMR. The inset SAED 

partern (figure 3.16aì gives a clear diainoiid reflection. The secoiid example (figure 

3.16bì sliows stackiiig fxilts in u diamond coinposed of numerotis layers froin the 

Polsiiigcn quarry. Ar the margins of the crystals, short, black aiid cross-hatched stacking 

fault laiiiellae 0 1  variable orientation cui1 he seen. Polsingen quarry was origiilaliy seen 

as uii iinpact riiclt rock, which was reinterpreted as an abnormally melt-rich, high 

ieiiipei-ature suevite. which cooled over a longer period and recrystallized at higher 

teiiipcrarures tlian norrrial sueïite (Voii Englehardt and Graup, 1984). Diainonds in this 

locality iirc thereïoi-e likely to be extensively i-e-graphitised or etched. Stacking Faults 

were also obserxd  in diamond from the AtiinLihlc q~iarry gneiss (figurc 3.7a-b). Tlie 

hcsi de~el«ped srackiiig 1"iLilrs were seen in samples lroiii ihe OQGB. ~il tho~igh some 

cx;iiiiples wei-e fouiid in the SBS residue. 

Two tornis o1 stackiiig laults could be distinpiished in  the demineralised 

wiiiples and niay appear in the saine crystal. 

( I J Very tleiisely distributed. narrow black laiiiellae with variable sub-pii-allei 

oriciit;itions and cross-hatching. Predominaiitly observed i n  the Ottiiig quarry glass and 

Scclhroiiii suevitc. 

( 2 )  Spariel- distributed. shori. tliick thick lamellae with near constaiii sub-parallel 

oriciitati«ns and soriie cross-liatching, may be wavy in form and were predoiiiinantly 

obse i -~~cd  in Auiiiülile giiciss. Seelbronri suevite and Polsingen high teniperaiure suevite. 
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Stacking fault Ieatures have been described in a number of cliainonds from other 

impact craters, such as Popigai (Koeberl et al.. 1997) and in experimentally gr«wn 

dianiond thin filins (Nistor ct al., 1997). microwave-assisted CVD (Badzian and 

Badziaii. 1996) and shock transformation diamonds (Yusa et al.. 1998). Koeberl et al 

( 1997) described lamellar stnictures in the Popigai diamonds which could represent 

stacking faults or microtwins within an intergrowth of a cubic phase with a lamellar 

phase or defect. 

Stacking faults may occur in ciystals during growth, deformation or phase 

tiansformations where they form a break in the normal stacking sequence (Sebastian 

and Krishna, 1987). Shock deformation induced stacking faults may occur in graphite 

on the hasal planes due to the weak (Van der Waals-type) interlayer bonding (Kelly and 

GI-oves. 1970). These may be inherited by diamonds foi-med by subsequent shock 

trnnstormation. Growth faults may result from the incorrect addition of a layer during 

layer by layer growth and deformation faults forni when two parts of a crystal slip past 

cach othcr along the basal plane (Sebastian and Krishna, 1987). The merging of grains 

in polycrystalline CVD diamond may introduce a high number of dislocations and 

iiiecii;iiiical sti.ess (Michler et al., 1998) and experiinentally grown diamond on 

substrates have been shown to accommodate interfacial stress between the diamond and 

substrate by twins and stacking faults (Kim, 1997). The strong covalent bonding of 

diamond a t o m  renders dislocations immobile at low temperatures and the faults 

iidvntice along low energy crystallographic planes following thermal activation (Kelly 

and Groves. 1970). Stacking faults in apographitic diamonds (figure 16b) inay represent 

inherited. dcfornxition or growth structures. High resolution transmission electron 

microwope (HRTEM) analysis is required in order to distinguish between these 

different forms of stacking faults. The extent to which these features are developed is 

variable, e.g. figure 16a shows well defined stacking faults whereas figure 3.7a-b from 

the .4iiniühle gneiss shows much simpler structures. This may be ¿I reflection of the 

tciiipcratui-c conditions experienced with the Aurnühle sample experiencing post 

deposition annealing. Alternatively the mechanisni of diamond formation may be 
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i-ellecred in the density of stacking fault structures developed, if the densiiy of defects in 

polycrystalline vapour growth diamond exceeds ihat in  shock transfoniied diamond. 

Stacking faults within a mineral may be a result of shock displacing the noma1 

ciystal lattice in order to accommodate pa. e of the shock front, with large nLii11bers 

of stacking faults forming behind the shock front (Pujols and Boisard, 1970). This is 

aki i i  to a inechanimi described for the formation of amorphous silica layers in  PDF in 

quartz which have been attributed to the crystallographic stnicture of the iiiineral 

xljusiiiig i« accomiiiodatc the passage of the shock front (Goltraiit et al., 1992). Similar 

iiicchanisms inay help explain the foimation of stacking fault structures in impact 

diniiionds. The variation iii the orientation of stacking faults in figure 3. lha suggests 

that if these structLires are shock propagated then the direction of principal stress was 

vnriiiblc. The impact shock wave is highly heterogeneous as it passes through a target 

riiatcrinl which is variable in its properties and composed of inultiple intersecting 

surface\. 'ïliis results in highly variable peak shock conditions from the interaction of 

the shock wave with phase or grain boundaries and free surfaces (St6fIler. 1972). Thus 

iiidividiial crystals have iheir own specific pressure and teinperature histories dependent 

oii their icxiural rclniioiiship to ad,jacent crystals. PDFs have heeii shown to show 21 

strong rclatioii t o  the orientation of the shock propagation relative to the crystal 

orientalion (StGfflci-. 1072) as the Hugoniot elastic limit (HEL) of quartz varies 

dcpciiding «il ttic orientation iDiivall and Graham, 1977). 

Alternatively variations in the orientation of these featui-es may represent either 

diffcrciit diariiond plates or layers. each with a different orientation relative to rotation 

betwceii coniicctcd layers (Koeberl et al.. 1997). 

Stocking faults appear to indicate either the adjustment of the crystal laitice to the 

shock wave during dircct transfomiation to diamond (hence i-epresenting sites of 

iiticleation foi- the dauphtcr polytype), or they inay be growth sti-tictures formed during 

the nucleation and growth of diamond ïroin a gascous or liquid carbon feedstock. Pre 

existing o r  shock-propagated stacking faults and other defects in the precursor carbon 

phase may increase (liainond forination and subsequent growth by contributing to the 
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req~iircti activation energy, thus reducing the transformation terriperature (Saijc. 1985) 01- 

d s o  hy assisting diffusion (Mwris. 1980). Detailed HRTEM studies of  these structui-es 

iiiny he able t o  cvaliiate the type of stacking faults involvcd and ticnce which 

iiiechonisiiis may be ihe most likely. 

3.4.8. Twinning. 

Microtwinning is ii conniion feature in iiiipact diamonds: these inay he inherited 

Ieatuies, for exaiiiple, gruphite twins or formed by shock. Diainonds from Popigai show 

ihiii lairiel1;ie which could represent stacking faults or microtwins (Koebei-1 et al.. 1997). 

Detailed examination of microtwins requires the use of high resolution transmission 

clcctroii microscopy (HRTEM). 

The diffraction patterns of many of the samples show double retlections 

iiidicating inore than oiie diamond plate or twinning. 

Twiiiiiins in diaiiiond inay be either growih twins. for example contiict and 

peiieti-ation twins o r  delorination twiiis. tirowth twins fui-in readily during dinniond 

pmvtl i  ;is a simple i-oiation around the bond direction from the LISUUI staggered diamond 

configuration t o  a loiisdalcitc configuration (Tamor and Everson. 1994). During CVD, 

growth cheiiiisti-y can be fine-tuned in order to minimise twin Ioi-mation (Taiiior and 

Evwson. 1994) siiggesting that natural vapour deposition might be characterised by a 

\vide range of twin iiiorphulogies. Deformation twins on dianioiid [ i  I i J have been 

tlcwi-¡bed followin_o plastic dcforination at room temperature (Mao et al., 1979). During 

pliasi, transloriiiatioris twinning nxiy accoiiiniodate the interfacial siress between the 

parent and daushter phases (Bales and Gooding, 1991 ). Thus, depending o11 the nature 

oí' the twins i a s  deterinined using HRTEM) the inechaiiism or mechanisins of 

ii-;insforiiiation inal) be inore easily indicated. 
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3.4.9. Summary of diamond occurrence, structures and morphology. 

The amounr of diainoiid that was observed in the samples varied (section 3.6.2): 

in general the siievite and glass samples yielded significant amounts when srudicd under 

the TEM. The Polsinpen and Auinühle samples coiirained considerably less diamond 

inid ii liiiiited i -any of niorphological feaiiii-es. Table 3.2. siiiiiniariscs ihe features that 

wci-e ohserved and theii- predominance in ihe samples. An arbitrary scale was used in 

order to assign a weighting to ilie individual features observed in the residues. Features 

wliicli were priniarily obscrved occurred in  up to 80 c/<. of the grains iinalysed. 

c~oriiiiionly observed features in up to 50 %: and occasi«nnlly obsei-ved structures iii up 

to I O (3 of tlie grains. 

Table 3.2 Sunimury of f twures  observed in diaiiioiids froin ejected iiiipactitrs fi-oin the 

R i a  crater. 

~ = Featui-e not detected. 
z = Esiiiiiatcd nninber oldinnioiid s;iniples observed using «ptical and TEM 
inicroscopy. 

The str~ictures which Iiwe been described and discussed provide some evidence 

foi- ihe iieceswry requirements of a diamond formation iiiechanisni. The iiiost obvious 

is inherited layering and hexagonal foi-ms which suggest a direct transformation 

iiicclianisiii rather than a liquid or vapour phase mechanism. Table 3.3 summarises the 

i-cquireiiienis of ti-nnsformational incclianisins on the basis of the observed structures 

and ilicir interpretations 
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This is disciissed in greater detail in section 4.7 where the evidence dcrived from 

thc niorphological and isotopic cliaracteristics of the Fallout and fallback lithologies is 

coinpmxJ with the mincralogical associations and the vnrious transfoimation 

mechanisms which h a w  been proposed. 

Structure Primary 
structure 

Stiic k i i ig X 
faults 

Poly - X 
cry\tall ine 

Layered X 

T\r i n n  i iig X 
Shelct;1l 

t t c l r e d  

Secondary Mechanism requirements 
structure 

X Direct transformation or growth 

X Direct transforination or growth. 

Direct noli-destructive tr:iiisformati«n 

X Direct transforinatioii oi-  growtli 

x Gi-owth striictiit-e oi- partial ti-;insfoi-niiiii«ii 

X Pat-ti;il traiisforin;itioii. rc.-~r;ipIiitisntion o r  
exposure to hot reactive gases 

The only obviously primary structure is graphitic laycring. Stacking faults. 

p«lycr!~stalliiiity and iwiiining inay be inherited primary strucítii-es or secondary 

\trLictiire\. Detailed high resolution transmission clectron microscopy (HRTEM) is 

rrqtiii-ed i n  order to distinguish these structures. Skeletal atid etched structures are both 

secondary l'eattire~ Coriiicd either by thc mechanism of formaiion or corrosion of thc 

diaiiionds. 

3.5. SHOCK FEATURES IN ZIRCONS. 

Shock feattires in Lircoiis have been described by Bohor et a l .  i 1993) arid a 

rough seqiieiice of  ~iitictures was established according to the degree 01' shock (table 

3.1). Shock features in zircons have inany siiiiilarities to  thosc cxhibited by shocked 

quartz such as PDFs and zircon is considcred to be inore suitable for the detcction of 

shock IeatLires in oldcr eroded impact structures due to its resistance 10 weathering 

i Kaiiio et al., 1996). Experiinental shocking of zircons (Reiinold et al., 1998) provides 
~ 
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sonic nuiiierical constraints on the conditions required to produce the obsei-lred series of 

shock l'catui-es itahìe 3.4). The zircon samples analysed were extracted from the PIMR 

\\;ii¡ch lias hcen reinterpreted us an aiioiiialously iiielt-rich high temperature sueviie (Von 

Englehnrdt and Grnup, 1984). 

Shock feature - 
natural zircons [ I  1 
PDF 

PDF/Gi-anuiar texiui-e 

Gran ti I ar 
ipolycrystalliiie 
tc s t Lile ) 

l';ihlt. 3.4. Chock í'ciitures and experiinentally dei-¡ved \hock condirioiis i i i  zil-con. [ I ]  

Bohor ct i l l .  (1903). 121. Reiinold ei al. (1998). 

Shock feature - Experiinental Shock 
experimcntal shock [2] presïure (CPaì[2] 

Peivasive microcleavage and 2 o 

Scheelite structure phase uzith 40 

deiise dislocation patterns 

PDF in relict areas, PDF { 320) 
orientation 

Scheelite structure phase, PDF 60 

formed iii  zircon at shock front 

3.5.1. Sample preparation and results. 

Cloudy and clear zircon ci-ystais wcic collccteù a i d  c~cliíd with a soiuiioii of 

NuOil at ca. 70 "C foi- 1.5-2 Iiours fcillo\r.ing the procedure outlined in B«hoi.ei ill. 

( 1003) theii obsci'vcd under the SEM. The samples were gold coated in order to allow 

obscrvatioii of thc stirfacc features without surface charging prohleius. 

The rircoiis \vere predoniiiiantly euhedral with occasional fractures and areas 

wi ih  a gi-anular material texture. Figure 3.I7a shows an ircegularly formed c 

ticlied aiid brokcii inni-gins: the fractures crossing the p i n  ai-e not linear and appear to 

radiate from the base ot the grain. The second exaiiiple (figure i. 17b) is ii large euhedral 

cryst:iI ;mid much smaller Arcoti ciystals. This also shows non linear Iiactures and 

cracks with ai-cas where the siiiooih surliice of the grain has been removed revealing a 

griinular interior. This granular texture may indicate polyciystallinity and therefore be a 

shock cffeci. which is supported by the milky white texíurcs seen under the petrological 
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iiiicroscope. Two smooth pits iii the ciystal surface rnay represent ci-ystal defects 

( s l i w n  at high inagnification in figure 3 .  i 8). 

These zircon simples do not appear to show the distinctive shock features 

ohscrvetl by Bolior et al. ( 1  993) and Kaino et al. ( 1  996). although fracturing of the 

c rp t a l s  iiiay represent u low degree of shock alteration ( < I O  Gpa). Irregular fractures 

iuc observed over a wide range of shock pressures and at pressures below that of the 

HEI- they niay be the only residual effect apparent (Stöffler, 1972). The zircons do 

shoa granular internal structures indicating shock pressures of40-60 Gpa, although 

this is iit odds with the lack of planar surface features. One possibility is that the crystal 

wrfcices have been aniieded obliterating these fcatures, i-equiring temperatures close to 

tlic iiielting point of zircon i< 7550 "C) which corresponds to shock pressurcs in the 

r~iiige 60-80 Gpa. This teiiiperatuie niay have been less due to the polycrystalline 

structui-e which has a greater sui-face area and inight therefore require lower 

tciiipcratures to inducc surface nieiting The reiriterpretntiim olthe PIMR as ;I high 

tcnipeimm siievite is in agi-cement with the suggestion of annealed surface tïliiis. 

Aiiiicnled surfkc filiiis have also been observed in diaiiionds froin the Popigai impact 

criitcr (Koeherl et al., 1997). 
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The variation in 6°C for the bulk samples (table 3.5) sh«ws that tlie fallout 

suevites 211-e enriched iii "C relative to graphite, indicating the iricolporation of "lore 

oxidised foriiis of carbon such a s  carhoriate. The fallback suevites ;ire less "C-ciii-iclied 

iiidicaiiiig a hizher proportion of basement-derived reduced carh«n, slich as graphite. By 

comparison the Itzingen quarry sample is depleted in "C and has ;i low carlmn content 

possibly iiidiciitiiig the presence of a graphite component. This will be discussed in 

fiirthei- detail in section 3.8.2. The Itzingen quarry represents an ejected mass of variably 

shocked and altered granite derived from the shallow levels cif the Ries basement, which 

Iornis a minor conipoiient in e,jectcd glass and suevite (Stöffler. 1977). The Seelbronii 

siievite soniples yielded "C-enriched isotopic ratios with :I high carbon content possibly 

indicating il greatei- carbonate component. This is in ;igreement with hand specimen 

iiivcsiigations o ï t h c  liihic fragiiient populatioiis within the inipactiles. which show the 

faiio~ii suevites contain iiiore scdiiiieiitary inaterial and the fallback sLievitcs more 

hzisctiicni iii;itcrial i-elative to the proportions of each iii the target (Stiiftler. 1977). 

Tiihlc 3 .5 .  Whole-i-och biilk carhon isoiopc coinlmsiii«ns, Ries cratet.. 
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3.6.1. Otting quarry suevite samples. 

Bulk caihon analyses foi- samples of wholc-rock. glass and litliic fragments 

froiii the ¿ k i n g  quarry suevite at-e shown in table 3.6 and indicate that the rock i s  LI 

inixiure o í  "C-enriched lithic inaierial (possibly sandstone, inarl. chalk or liiiiestone in 

conipositioii) and 'IC-depleted basement material and glass fragments. 

The samples of the large glass bomb (OQGB) from the Ötting quarry (as  

opposed to small glass fragments extracted froin the suevite) are highly '.'C-depleied 

and tiswcintcd with lower carbon contents. This iiiay be due to the non-bomb extracted 

glass fraginenis containing a higher proportion of groundmass contamination or 

alieimati vely more admixed carbonate-derived riiaterial indicating, heierogcneous cai-bon 

\t;ihlc isotopes in iiielt glass. However. cheinical analyses of tektites (iiioldavites) and 

~. d a s s  hombs and frugments froni the Ries crater has shown ihat their compositions are 

homogenous indicating rapid comprehensive iiiixing (Von Eiiglehardt. 1972; See ei al. ,  

1098). Intuitively this would suggest ihat the isotopic compositions might also be 

Iioiiiogcncous and well-mixed. 

Tnhk 3.6. Bulk  cai-hori isotope\. (ittiiis quarry suevite 
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Lithic fragiiicnts extracted froiii the suevite show a i.;iii~e of isotopic 

coiiipcjsitions atid carbon contents. Three of these samples were sedimentary in 

coiiiposition (chalky and fine grained). and the other appeared io be crystalline iii hand 

specirricii and had a rnucli inore "C-depleted isotopic coinposition compiti-ed i« the 

other lithic fragments and was probably a fragmeni of basement rock. 

3.6.2. Seelbronn quarry suevite. 

In compai-ison with the samples from the Ötting quai-i-y suevite, the Seelbronn 

suevite is eiirichcd in "C (table 3.7). 

7';ihlc 3.7. Bulk cai-boi1 ¡\»cope\. Seelbioiiri quarry wev i t c .  

The whole-rock 6°C coiiipositicms are "C:-eiiriched i n  coniparison with tlic the 

Ottin: quarry whole-rock samples. ihis niay be due to the "C-enriched scdiiiieiitary 

i'riigiiiciiis ( -  8.1 to 2.4 % < I  coiiiparetl with the fragnienis Troni the Ötting quari-y (-10.5 

to - 1  I .9 %<) .  This iiiq suggest that lhe rock was derived fro111 a shnllower level i n  the 

t q c t  area introducing ii p a t e r  proportion of scdirrientary a i d  carbonate lithologies and 

;I lo\ \er  proportion of bascnient materiid and associated reduced ciirboii. Graphite is 

I(>riiied l'roiii chcriiically reduced «i-ganic carbon rnaierial. wliich is ~isually depleicd in 

C producing negative 6°C values (6" C = -30 to -70 %o. Whei-exs chciiiically I :  

oxidised carhoiiatc iiiaterial is generally enriched in  "C. This was discussed in section 

I .Y. The carbon stable isotopic coinposition indicates u gi-eater carbonate compoiieni 

enriching the rock in  liC, this correlates with recent observations of primaiy cai-boiiate 
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i i i i pc i  iuelt within suevites located to the south and south-west «f the Ries crater 

iC.Ìratip, 1999). Thc Seeibronn quarry was located to the south-west of the crater 

coiiip;iretl to the Otting quariy whicli lies to the noitli-east (Map 3.1 i and yielded otily a 

siiigic cxaiiiple of carboiiate nielt (Graup, 1999). Post-impact pi-ocesses e., within the 

stihseqiient crater lake may have complicated the 6°C coinpwiiions through the 

foi-iiiatioii of secondary carbonate cements. 

3.7. CARBON STABLE ISOTOPIC COMPOSITIONS OF RESIDUES. 

Stepped combustion analyses have been used exteiisively to provide detailed 

iiilorrnation about the stable carbon isotopes "C/"C of carbonates, demiiieralised 

residues arid individuai diamonds (Wright and Pillinger, 1989; Prosser et al., 1990). The 

L I F ~  of  iiicreiiiental temperature steps enable the d 

and even grain size variations betwecn saniples (,e.g. Ash et al., 1987). The technique 

t i i ed  was describcd in  detail iii section 2.7.2. 

rentkition of the carbon allotropes 

The priiiiar1J rnechanisrii proposed for the formatioii oí' iiiipact diainonds froiii 

the Kies arid Popipi craters is ii direct shock transforiiiatioii from graphite derived from 

Ixiseiiient yieisses (Masaitis. 1995). I n  ordei- to relatc the isotopic compositions 01' 

sniiiples Ti-oni the Rich crater. such as diainonds (Hough et al.. 199.5~: Abbott et al.. 

1996; 1 9 9 8 ~  1098b aiid this study) a i d  silicoii carbide (Hough ct al.. 1 9 9 5 ~ )  to this 

huwiicnt dei-¡ved graphite, s;irriples of graphite were also extracted from the residues. 

isotopic studies o f  graphiie froin Popigai (Masaitis et al.. 1990: Shelkov. 1997). 

L q u j i i r v i  and the Ries (this thesis) indicates that graphite has a highly diverse carbon 

isotopic conipositicin (section 3.7.2). therefore diamonds of wrying carbon isotopic 

coiiipositioii may have formed from ii graphite feedstock. 

3.7.1. Stepped combustion analyses of acid residues. 

Although attempts were nude to cxtract diaiiiond and graphite grains from the 

¿icicl-deiiiineralised residues this often proved difficult and bulk analyses were 

pel-lwrned using ii sinail randoin selection of grains. The saiiiples were coinposed oí' 
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diainoiid wpith iiiinor graphite as deduced by the TEM olxervatioiis. Zircon niny iiiso 

have been present although these were not detected by the TEM ;incl ~ o u l d  reduce the 

overall carimi yield. Zii-eons tend to cluster towards thc edges of tlie TEM grids and 

hecorric chai-gcd by the elcctroii beam. 

Results lrom the stepped combustion of a sample from the OQS residue are 

shown iii figure 3.19. The carbon yield per "C (ppmi"C) is plotted along ilie left hand 

side of the graph as a tiistograni and the 6°C values aloiig the right hand side of the 

graph as  a line with error bars. The OQS i-csidiie shows a single carbon release at 700 

"C with a 6°C of  -27 '3, which most likely represeiits the combustion of diamond. The 

to ta l  ciirhoii yield was 27.6 wt '7r with the peak i-eleasc repi-eseiitiiig 85.3 L7c of this. This 

siriiple \viis not Iound to coiirain Sic .  It lias heeii shown (Asli el al.. 1990) that the 

coiiibustion teriiperattires of  diamond are dependent on the p i n  size due to  variations 

iii tlir sui-lace area, with l i m i  diameter diamonds combusting ai around 800-850 "C arid 

1 - 1 O ni i i  diainond at 500 "C. hi samples coniposed of B distribution o f  diffei-cnt grain 

sizcs the exothermic combustion of diainond iiiay result in the coiiihustioii of largei- 

ciystallites at Ioucr teiiiperatures. Russell í lY92) showed ihat foi- mixed grain size 

fr riitioiis . . 

combustion of the coarser grained fractinn. As these residues iriay coniaiii a iriixtui-e of 

diniiiond grain sizes the maxiiiiurii teinperature ut which they coiiibust iiiay noi be ;I 

wholly reliable iiidicntor o1 the iixixinitiiii grain size due to co-combustion processes. 

the cornbustion of smaller crystallites prornoied the lower ieriipei-ature 
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Tciiipciaiuir ("Cl 

Figurr 3.19. Stepped combustion ana1ysi.s of an acid-demineralised residue OQS (sample 

weiphi = 24.2 pg). x 6°C = -22.5 % and x carbon yield = 27.6 wt%. 

The residue from SBS (figure 3.20) shows a gradual increase in carbon yield 

iroiii 600 "C io a peak at 800 "C and subsequent sharp decease in yield. The total 

carbon yield was 96.9 wt % with the peak yields (750 - 900°C) representing 92.8 % of 

ihis. C:arboii yields below 450 -500 "C have a 6°C from -25 to -26 % representative of 

organic contamination mosi probably froin sample handling. The carbon stable isotopic 

is relatively stable (-16.8 to -17.2 %) across the peak yield temperatures, representing a 

plateau. The experiment reveals the combustion of either variably sized diamond 

crystallites or the gradual combustion of a relatively large diamond. 

- 
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Figui-e 3.70. Stepped combustion analysis of an acid-deinineralised SBS (sample weight = 

Zpg). Z 6°C = - 1 7 . 0 % ~ .  X carbon yield = 96.9 wt 5%. 

3.7.2. Graphite carbon stable isotopic compositions. 

The carbon isotopic compositions of a number of graphite grains were measured 

using static mass spectrometry combined with stepped combustion. This dlows a 

comparison of these cornpositions with those of the impact diamonds, silicon carbide 

(Hougli et al., 1 9 9 5 ~ )  and whole rock samples. The two examples in figures 3.2 la-b 

were black grains with a graphite (hexagonal, platy) morphology extracted from acid- 

deiuineralised residues prior to the perchloric acid stage. These two stepped combustion 

profiles for graphite (figures 3.21a-b) show yields at temperatures expected for 

graphitic carbon. 

Figure 3.21 shows a graphite analysis îrom the Seelbronn quarry suevite 

residues (SBS). The peak combustion yield occurs at 500-600 "C with a 6I3C of-19.9 

Tc, The SBS graphite (figure 3.21 j has a total carbon yield of 68.4 wt o/o with the peak 

rclease representing 82.4 70 of this. The FIC of the low-temperature and high- 
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tciiiperature carbon releases range from -3 1.7 to -24.1 %O whilst the peak release at 550- 

600 "C has i\ 6°C of -19.0 &c. 

-20 

e 
n 

-25 Î 
m - - - 

-30 

-35 
O 200 400 h0O X(10 I000 I200 

Tcmperaiurc ("C) 

Figure 3.21. Stepped combustion analyses of graphite extracted from the acid- 

deniinei-aliscd residue of the SBS (sample weight = 2 pg). X 6°C = -19.9 % C  and 2 

c;ii-hon yield = 68.4 wt%. 

The following example (figure 3.22) shows a stepped combustion plot for a 

í'ragnient of crystalline graphite from the OQGB residue. This sample was extracted 

from tbc residue following sample disagregatioii by concentrated HC1 but prior to the 

HFIHCl. chromic or perchloric acid stages. The main carbon yield is at 700°C aid 

represents 88 ?'c of the total carbon yield (50.4 wtoi,). The carbon stable isotopic 

composition is as expected for graphite (6°C -29 to -19 7&) and the high temperature of 

combustion may relate to the size of the graphite fragment ( weight) or degree of 

crystallinity. 
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Figui-e 3.22. Stepped combustion analysis of graphite extracted froni the acid- 

demiiicralised residue 01' OQGB (sainple weight = 18.4 pg). X 6°C = -25.2 %, and carbon 

yield 50.4 wt%. 

The release of carhon at a single 50 "C temperature step indicates that the 

comhustion of the sainple was rapid and complete once activated. This suggests that the 

graphite inay haw been shielded by a heat annealed surface layer allowing rapid 

combustion when temperatures sufficient to remove this film were obtained. An 

annealed suiface would probably represent a lower surface area therefore, requiring 

higher temperatures in order to combust coinpared to a polycrystalline sample 

composed of 2 Ipm crystallites. Annealed surfaces have generally been described in 

diamond samples rather than graphite. It  is debateable whether graphite grains could 

form annealed surfaces. 

The 6°C coinposition ofthe two samples range from -19.9 %C in the SBS to 

-25.2 5 % ~  in the OQCB. This may reflect the heterogeneous nature ofthe basement 

graphite composition, alternatively some graphitic carhon within the samples inay 

represent re-graphitised impact produced diamonds. If impact diamonds are not rapidly 
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quenched to C1OOO"C they are rapidly regraphitised (De Cadi, 1995) this is also 

observed in vapour deposited diamond. This would incorporate any carbon stable 

isotopic components derived from the mixing of graphite and carbonate sources as 

suggested by Hough et al. (199%) producing graphite enriched in "C. 

The stable carbon isotopic composition of graphite depends on the isotopic 

composition of the precursor organic matter and the extent of fractionation during 

metamorphism. Several mechanisms may fractionate graphite during metamorphism 

including approximately 3 %C due to the removal of "C from the dehydrogenation loss 

of CH., (Peters et al., 198 Ia; 198 Ib). Also high temperature exchange between organic 

niattcr and sedimentary carbonates associated with the release of "C-rich CO, during 

dccarbonatioii (Valley and O'Neil, 1981) with a A(cc-gr) of up to 3.3 and 7.1 %C 

(Aineth et al., 1985). Calcite-graphite exchange fractionation may account for an 

isotopic shift from - -23 to -28 5 7 , ~  in unmetamorphosed to greenschist facies rocks to 

approximately -2 to - 12 rCc in amphibolite facies rocks and -2 to -5 % in granulite facies 

rocks (Arneth et al.. 1985). 

The graphite analyses (figure 3.23) from both Shelkov, (1997) and Masaitis et 

al. ( 1990) are for samples froin the Popigai crater, Russia, indicating that in comparison 

the graphite froin the Ries crater basement rocks is depleted in "C. The analysis of 

" Efiiphitc from the Lappajiirvi impact crater is also enriched in "C compared to the 

giaphite from the Rics. These variations may reflect different organic matter sources, 

irieioniorphic basement assemblages and differeni metamorphic histories bctween the 

two target areas. This will have an affect on the isotopic composition of any diamonds 

derived from these graphite sources. 

The results (figure 3.23) indicate that the stable carbon isotopic composition of 

graphite is heterogeneous, this variation is likely to be much wider with a larger scale of 

analyses. Thc compositional range of graphite in nature ranges from -30 to -20 %C when 

derived from organic material, to -1 to -3 when equilibrated with carbonate-bearing 

(Scheele and Hoefs, 1992; Arneth et al., 198S), this indicates that a vapourised 

carbonate component may not be required to produce the "C-enriched isotopic 
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compositions suggested for vapour growth impact diamonds (Hough et al., 1995~).  

Alttioiish. this depends on the isotopic coinposition of the graphite in the basement and 

the range seen here is predominantly "C-depleted. 

I , , , I . , . I , , , I , , , I , , , I , , , I , , , 

o Lappajiirvi 

Popigai [ i  1 
0 

I 

l Ries 

-2X I -26 -24 -22 -70 - 1  x -16 -14 

S"C,,,,,o/,,' 

Figure 3.23. Coinparison of graphite stable carbon isotopic compositions from 

I+pa,jlirvi and Ries (tl i ic study), with Popigai [ i ] .  Masaitis et al. (1990): [ 2 ] .  Shelkob 

(1997). 

3.7.3. Diamond carbon stable isotopic compositions. 

A polycrystalline diamond picked from the acid-deinineralised residue of the 

OQGB (figure 3.4b) was step combusted to establish its carbon release profile and 

carbon stable isotopic coinposition (figure 3.24). The peak carbon yields represent 

86. I c/c of the total carbon yield. The plot shows a clear carbon release from 700-900 "C 

with a peak at 800 to 850 'IC, representing the combustion of the main body of the 

diamond with little to no carbon release after 900 "C. The carbon stable isotopic 
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composition was stable across the main carbon yield, varying from 6°C of -26.4 to - 

26.7 T L ,  The size of the crystal ( S O  pni) results in a relatively high temperature release. 

I I . .  I I I I 

I: 6°C = -26.6% 

r 

- -24 

- -26 

- -28 

- -30 

- -12 

Figure 3.24. Stepped conibustion analysis of diamond from the OQGBR (sample weight 

= I pig). 1 6 ° C  = -26.6 %. Z: carbon yield = 87.1 wt%. 

3.7.4. Silicon carbide. 

Although silicon carbide was observed in one of the demineralised residues, 

isolation of individual crystals or a concentrate proved impossible. A sample of OQS 

containing blue and green silicon carbide from previous Ries crater studies (Hough et 

al., 199Sc) were provided by Dr. R. Hough. The stepped combustion plot for the sainple 

is shown in figure 3.25. The sample appears to be a mixture of diamond, silicon carbide 

and a low temperature amorphous yield. The silicon carbide crystal itself begins to 

cornbust at the 1300 "C temperature step and is probably only pai-tially combusted. The 

liinited teniperature range of the furnace limits the duration at which the sainple can be 

held at 1300°C. Individual teniperature steps are normally 30 minutes in  duration but 

the 1300 "C step was extended to 60 minutes. The average carbon isotopic composition 



of the sample was -24.2 “rr and the silicon carbide had a 6IiC of -27.) %,. The low 

temperature steps probably represent graphite and diamond. 

70000 

20000 

I0000 

(1 100 400 hOO K O 0  I no0 I200 

Temperaiurc ( “C)  

Figure 3.25. Stepped combustion analysis for an acid-demineralised residue OQS 

containing 4 0  vm silicon carbide crystals (sample weight = 2 pg). E 6°C = -74.2 % C .  

carbon yield = 70.8 wt%. 

I 1 . . . 1 .  I 

The coiiiposition of the residue and Sic release is in keeping with the overall 

coiiipositioii of the Otting quarry residue and graphite within the Ries crater impactites 

Indicaiing that the carbon source for S i c  forniation inay also be graphite as suggested 

for the impact diamonds. The inechanisnis for Sic formation are discussed in detail in 

chapter 4. 
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3.8. SUMMARY AND CONCLUSIONS. 

The evidence presented here from the study of the morphological structure and 

carbon stable isotopic composition of the Ries crater fallout iiiipactites is discussed 

below. This information is discussed in greater dctail in chapter 4 whei-e coinparison 

will be made with the fallback iinpactites and shock inetamorphisin data in order to 

combine this with the carbon phase diagram, known carbon polymorphs and suggcsted 

diamond formation mechanisms. 

3.8.1. Morphology and structures. 

The morphological structures described in this chapter may be seen in shock- 

pi-oduced diamonds (Vishnevsky et al., 1997; Koeberl et al., 1997) and to some extent 

other minerals, such as zircon (Bohor et al., 1993) ana quartz (Stöffler, 1977). 

Under the TEM the samples displayed many of the characteristic features of 

impact diaiiioiids such as dense distributions of stacking faults in multiple orientations, 

twinning, polycrystallinity. layering, etching and linear surface ornamentations. The 

combination of the various formation mechanisms for stacking faults. twinning and 

-tallinity inay allow some interpretation of the conditions rcquired in terms of 

shock piessurees and temperatures during and post impact and also the precursor carbon 

inaterial itself. 

Many of ihe impact diamonds show etched features which may lie along 

fractures, planar dislocations or areas of other intergrown minerals removed by acid 

ti-eatnients. Holes of variable size and density were observed on some diamonds from 

the Ries crater described by Rost et al. (1978) and attributed to solution. other diamonds 

in their study did not show these featui-es. The removal of graphite intergrown within 

diamond by fuming perchloric acid oxidation may result in the formation of skeletal 

stiiictures, fissures and fractures. Finely detailed surface structures such a s  pitting, 

observed at high magnification on the surface of diamond under the SEM may be the 

result of etching ofthe diamond by silicate melts (Langenhorst et al.. 1999) or reactive 

gases (Vishnevsky and Raitala, 1998) or the reinoval of secondary gi-aphitisation coats. 
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The environment of formation and the presence of a highly ionised vap«ur of silicate 

rock, combined with highly reducing conditions could result in hot gas phase reactions 

dissolving and etching the diamond surfaces. 

The majority of impact diamonds are considered to be formed from the direct 

transformation of graphite (Masaitis, 1972; Langenhorst et al., 1999). This is based on 

their inherited textures, isotopic compositions and the prevalence of graphite in the target 

rocks. The preservation of inherited features can include crystal form, twins, growth and 

aggregates of the primary graphite (Valter and Yerjomenko, 1996). Some impact 

diamonds, termed Togorites are considered to have formed from the direct 

transformation of coal, most notably from the Kara impact crater. Russia (Ezersky, 

1982: 1986). The resulting diamonds are porous, black-brown in colour and show 

palimpsest biogenic textures (Grieve and Masaitis, 1994). The mechanism for this direct 

transformation is debated and several potential formation paths have been proposed, 

these are discussed in chapter 4. 

The majority of impact diamonds are polycrystalline (Koeberl et al., 1997), 

althouzh two single crystal diamonds were described from Czechoslovakian impact 

deposits by Gurov et al. ( I  995). Polycrystalline grains are formed from numerous 

individual < 1 pm crystallites, which gives a granular texture when observed under high 

magiiificatioii using the TEM. These crystallites are described as being irregular to 

roundcd in form, although they may be elongated (Langenhorst and Masaitis, 1996) 

which may give rise to the repoized preferred orientation of many polycrystalline 

diainond aggregates (Vishnevsky et al.. 1995). Nano-diamonds < 6 nm were found in 

KIT hoiindary layers (Gilniour et al., 1992) and could represent individual crystallites 

found i n  polyciystalline diamonds. The origin of the polycrysialline texture may be a 

result of the shock transformation. with the nucleation of numerous individual 

crystallites (Kerschhofer et al., 1998) or an inherited pre-shock structure. Experimental 

shock studies in natural graphitic carbon revealed progressive comminution in response 

to shock pressure up to 59.6 Gpa (Rietmeijer, 1995). Similar results were reported by 

Zhuck et al. ( I  997) with crystallite sizes of the order O. 1 to I pm. Therefore' 
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polycrystallinity froin the comminution of samples may be an inherited pre- 

ii-ansformation shock effect sirililar to shock-produccd kink bands observed in diamond 

tornied From graphite (Valter and Yeijonienko, 1996). 

Comparison of polycrystalline structures associated with preferred orientation of 

ct-y\tallites and high stacking fault and dislocation densities in diamonds may be made 

during experimental shock-induced polymorphic transformations in olivine 

(Kerschhofer et al., 1998). The results suggest that in larger crystals (60 pm) the 

polymorphic transformation may occur by intracrystalline nucleation of the high 

pressure phase at the intersection of stacking faults and dislocations. Smaller grains 

(<10-20 pn) appear to form by nucleation on the grain boundaries (Rubie and 

Chanipiiess. 1987; Boland and Lieberman, 1983). Interaction of these two mechanisms 

iiiuy result in the formation of polycrystalline aggregates of the high pressure 

polymorph with a possible preferred orientation of the ciystallites as a result of the 

principal compressive stress direction (Kerschhofer et al., 1998). Strong preferred 

orientations are seen in diamond, lonsdaleite and graphite in the ALHA77283 and 

Canon Diablo meteorites (Clarke et al.. 198 I ) .  This olivine phasc transformation 

mechanism is not martensitic but suggests ways in which structural characteristics such 

as preferred orientations and high stacking fault densities may be explained. The shock 

transfomiation of poorly crystalline and amorphous carbon material within an orientated 

s t res  field could result in the formation of loosely aggregated diamonds and skeletal 

structures where only the graphitic carbon is transformed. 

The effect of stacking faults on the selected area electron diffraction pattern 

(SAED) of diamond obtained by TEM has been used as one possible explanation for 

i l ie  commonly reponed presence of lonsdaleite, with stacking faults considered as 

internal surface interfaces, related to the energy difference between hexagonal and cubic 

diamond stiwtures (Stonehain, 1992). The existence of lonsdaleite is controversial, 

although many authors state that the presence of hexagonal (lonsdaleite) and cubic 

diamond is a necessary feature to prove a shock origin for diamonds found in  shock 

produced lithologies (e.g. Valter, 1996). Lonsdaleite is determined by single grain x-ray 
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analyses which measure the bulk strain and are low resolution (nmi to pnij  in 

comparison to TEM and SAED studies (nm to pm). High resolution transmission 

electron microscopy (HRTEM) is required in order to distinguish the nature of the 

stacking faults. A correlation inay be seen belween the presence of extensive stacking 

fault features in individual nanoinetre sized diamond crystallites and the occurrence of 

lonsdalcite. Diamonds transformed from graphite by laser-heated diamond anvil cell 

techniques contain numerous stacking faults and the lack of lonsdaleite in the SAED 

patterns was used to suggest that the stacking faults were not present due to lonsdaleite 

(Yusa ct al., 1998). The percentage of lonsdaleite with the cubic phase of diamond has 

bccii observed to decrease with increasing crystallite size (Valter and Yerjomenko, 

1996). this is interpreted as the result of increased duration of the quasistatic phase of 

pressure behind the shock wave which is greater for larger impact craters. Thus, a higher 

percentage of lonsdaleite may be observed in diamonds from smaller impact craters. 

Loiisdaleite can only he made from highly ordered crystalline graphite (De Carli, 1995) 

suggesting that the degree of graphite maturity in the target rocks may also be 

important. 

Solid state structural phase transformations involve a chaiige in the stacking 

sequence o1 layers without altering the structure of the layers. S i c  phase 

transformations inay coinrnence with the random insertion of stacking faults (Sebastian 

and Krishna. 1984). The irregular insertion of stacking faults may occur 2-3 layers apart 

atid nuclcate randomly (Fujita and Ueda, 1972). as the transformation progresses the 

rctlcctions of the secoiid phase predominate and the Iïrst phase fades out. The end 

product is disordered, containing numerous faults because as the second phase grows 

the various nucleation sites meet at faulted interfaces (Sebastian and Krishna, 1984). 

This might be expected to produce a mixture of different polytypes within single grains. 

SIC polyiypes of several types were observed in fine grained skeletal aggregates 

(Hough et al., 199%) and this is also indicated by recent Raman studies (Dr. R. Hough, 

Pcrs. Coinni.). Thus a correlation may be seen between the predominance of stacking 

faults in  impact diamonds and the f»rmation of the high pressure polymorph. These 
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stacking faults and/or defects may be heat annealed or graphitised (1000-2000 K) 

during posi formalion processes depending on the conditions experienced. The 

presence of different diamond polytypes other than 3C (cubic diamond) and 2 H 

(lonsdnleite) within defect-rich inipact diamonds has not been confimicd. 

To conclude. the features observed in impact diamonds arc intrinsic structural 

and ci-ystallographic defects. These may be inherited from a precursor material such as 

graphite or formed as a direct result of shock wave interaction with the new diamond 

ciystal lattice. Shock deformation of graphite prior to the formation of diamond has 

been detected as a relict feature in impact diamond itself (Valter and Yerjomcnko, 1996). 

In combination these structures can pinpoint some of the features of the shock 

trrinsloi-ination of carbon inaterial such as graphite, coal or amorphous carbon to 

diamond. The controversy between a primarily shock transformation of carbon material 

t o  diamond or a contribution from vapour condensation and growth of diamond is hard 

to resolve. The evidence suggests that larger diamond grains found within impact 

lithologies are formed by the trailsfonnation of carbon to diamond in the solid state, 

whilst skeletal. polyciystalline diamonds may have formed via another process such as 

CVD. Severol mechanisms have been suggested for this and are discussed in chapter 4. 

3.8.2. Carbon stable isotopes. 

The bulk carbon isotopic analyses of the OQS and SBS and individual 

components within these impactites support geocheniical evidence previously used to 

suggest the f«rmatioii of glass in suevites from the vapourisation of a mixed gneiss 

complex up to I kiii below the Ries crater target area (Von Englehardt, 1995). 

Thus, ihe carbon isotopic composition of the suevites represent a mixture of 

prcdoininanily basement-derived graphite and shallow level sedimentary rock-derived 

carbonate. Carbonate-rich rocks occur within the sedimentary cover sequences (figure 

3.2) which overlie the target area, including over 350 m of liniestones and mark of the 

Jurassic L'pper Malm (Chao et al., 1978). The variation in the whole-rock carbon stable 

isotopic composition ofthe various Ries crater localities sampled is shown in figure 
_____ ~~ 
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3.26. The 6°C composition ofthe glass bomb from the Ötting quarry suevite ( - 28.1 

to -27.9 % c )  indicates a predominantly and possibly exclusively, derivation from 

basement material containing graphite with little or no admixture of scdiiiientav carbon. 

Figure 3.26 illustrates how the Seelbronn suevite and its individual components 

are enriched in "C compared to the Ötting quarry suevite and its components. The 

correlation between carbon contents and 6°C is illustrated in figure 3.27 

e B u n i e  Breccia 
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. 
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Figure 3.20. whole-rock carbon stable isotopic composition of Ries craier samples 

including extracted glass and lithic fragments. 
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Figure 3.27. Plot of 6°C versus carbon content (log wt% C )  for the whole-rock samples 

(OQS. SBS. ITZ~ PIMK. BB and extracted glass and lithic fragments). 
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The correlation between increasing carbon content and ”C-enrichment in these 

samples can be accounted for by increased carbonate contents. The “C-depleted low 

cai-bon content samples are the glass bomb samples, and the 6°C compositions 

correlate well with the 6°C composition of graphite from the Ries samples (-27 to -20 

? d C )  suggesting that thc carbon content of these samples is of graphitic origin. 

The 6°C vai-iations between suevite Iocalitics may he indicative ofa  different 

lithol«,aical sample suite for the sedimentary and ciystalline fragments within the suevite 

representing either a different part of the basement (figure 3.3) or a diffcrent 

stratigraphical level. This enrichment in “C relative to the basement component may 

indicate an enrichment in  carbonate. The chemical compositions of various suevites 

supports this as the reported CaO wt Oic of the Seelbronn suevite is 4.09 compxed to 

2.97 wt % in the Otting suevite (Von Englehardt and Graup, 1984). Petrographic 

examination of suevites from around the Ries crater has indicated an increased 

proportion of primary carbonate melt within the suevites concentrated to the southwest 

and east of the crater (Graup, 1999). The source of this c;lrbondte is believed to be the 

~~ ~ 
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Malni linicstone present only in the south and east of the target area at the time of 

impact, with the exception of isolated outliers to the north (Graup, 1999). The 

disti-ibution of this carbonate melt component within the suevites corroborates the 

cvidence which cali be drawn from the carbon stable isotopic compositions. This is 

complicated by the prescnce of up to 4 - 5 0  % ofcrystalline calcite (Graup, 1999) within 

the suevite groundmass formed by post-impact hydrothermal deposition or cementing 

(Van Englchardt et al., 1995). This would introduce a "C enrichment depending on the 

proportions of calcite cement within the whole rocks analysed and lithic fragments. 

Analyses of acid-deniincralised residues (e.g. Seelbronn) where calcite has been 

i-cnioved by HCI indicate that a "C- enrichment persists which cannot be accounted for 

by post-impact calcite cements. 

Although the 6°C of the Ötting quarry glass is depleted in "C compared to the 

p p h i t e  and basement maierial analysed, it is possible that incomplete combustion of 

graphite and carbon during the impact explosion and crater plume formation. muy have 

caused furthcr enrichment of "C in any residual carbon. The glass is formed from the 

conclensation of vapourised or melted basement rocks shocked to 60-80 Gpa. These 

inay have experienced some degree of evaporation and condensation related to kinetic 

isotopic fractionation with "C being concentrated in the vapour phase following 

e\.aporatiori/vapourisntion and thus in the glass condensate. During CVD-like 

deposition of diamond, graphite and diamond may preferentially incorporate "C and 

"C rcspectively due to the formation of "C-graphite from "CH, icaving a '"CH, 

residue to forni H-CH, and I3C-diamond (Ash, 1990). 

The isotopic composition of gruphite within the suevites and the target area 

basement rocks supports the idea that large (30-2300 pm) impact diamonds formed 

through the shock transformation of graphite to diamond. 

3.8.3. Mechanisms for transformation. 

Compai-ison between the n~orphological, structural and stable carbon isotopic 

coinpositions of'the diamond and graphite from the Ries crater impactites will be made 
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in chapter 4. A consideration of the potential transformation mechanisms suggested by 

expeïiniental diamond production, stiucturai characteristics and carbon phase 

;issociation> will also be presented. 
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CHAPTER 4. IMPACT DIAMONDS IN THE RIES CRATER 11. AN 

INVESTIGATION OF THE NÖRDLINGEN 1973 CORE: WITH 

COMPARISON TO FALLOUT IMPACTITES AND A DISCUSSION OF THE 

MECHANISMS OF DIAMOND FORMATION. 

4.1. INTRODUCTION. 

A number of impact craters have been investigated using drill cores, e.g. 

Chicxulub (Hildebrand et al., 1991), Lappajiirvi (Kukkonen et al., 1992), Ilyinets (Gurov 

et al., 1998), Gardnos (Naterstad and Dons, 1994) and Ries (Stöffler et al., 1977; Chao. 

I 977ì. Three cores have been drilled in the Ries crater area: Deiningen drill hole. an 

industrial hole 1001 and Nördlingen 1973 (N-73). This study used samples from the 

Nördlingen 1973 (N-73) core. 

The N-73 core was located approximately 4 km NE of the town of Nördlingen 

(section 3.11, the site was selected io lie halfway between the inner crater ring and outer 

crater rings on the basis of geophysical evidence (Chao, 1977). The drill core reached a 

depth of I206 in, penetrating through shallow level crater lake sediments, layered 

suevites and crystalline material before reaching the basement gneiss from 602 m to 

I206 m. For a detailed description of the drill core see Burberger. ( 1974): Jankowski. 

(1977); Stöffler et al. (1977) and Siahle and Ottemann, (1977). The drill core not only 

provided samples of the impactites and basement rocks but also a considerable amount 

of geophysical data which has been used to intei-pret the dcep structure of the crater 

(Polil. I 977). These measurements included electrical resistivity, neutron porosity index, 

bulk density and gamma radiation (Pohl et al., 1977). 

The results from analyses of the core samples are discussed separately from the 

other Ries samples because the study is the first of its kind to undertake detailed carbon 

isotopic iinalyses of these samples. The structure and lithologies of the N-73 drill core 

are discussed first in order to place the samples in context (section 4. i .  I ) ,  this is 

followed by a detailed discussion of the morphology and structure of the diamond 

found iii some samples (Abbott et al., 1998b). The distribution of these sti-uctures (e.g. 
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stacking faults, polyciystallinity, etching and layering) within the Ries crater samples 

will also be discussed. The isotopic composition of Lhe corc samples is then discussed 

with a comparison of' these samples with those described in chapter 3. This is followed 

with an evaluation of possible formation mechanisms proposed, with reference to the 

observed structures, carbon stable isotopic compositions, carbon polymorphs and 

diamond concentrations. 

4.1.1. Lithology of Nördlingen 1973 core. 

The core, illustrated in figure 4.1 can be separated into three basic units 

comprising post-impact Miocene lacustrine sediments (263-3 14 m), fallback suevite 

(polymict implict breccia with glass) (331 -602 m) and fractured, brecciated basement 

rocks (602- I206 in). The fallback suevites (table 4. I .) may be further subdivided into a 

oraded unit (3 14-33 I m), high temperature suevite (331- 525 ni) and low temperature 

suevite (525-602 m) (Chao, 1977). Remnant magnetisation carried by magnetite in the 

high temperature suevite indicates cooling from >600 "C, whereas in the low temperature 

suevite. temperatures below 250 "C are indicated by maghemite (Pohl, 1977). Melted 

rutile and magnetite indicate that formation temperatures were in the rmge of 1100- 

1800 "C (Stahle and Ottemann, 1977) with glass from within the suevites indicating 

pcak shock pressures of 60-80 Gpa and temperatures > 2000 "C. 

The proportions of the different rock fragments within the suevites varies with 

dcpth. The core suevites contain mainly lithic fragments derived from the basement 

I eneiss complex and very fcw sedimentary rock fragments from the upper 700 rn of the 

pre-impact target stratigraphy (Stöffler, 1977). Suevite and dike breccias in the core are 

wongly deficient in limestone from the upper pait of the pre-impact stratigraphy, 

whei-eas the fallout suevite and especially the Bunte breccia has an excess of limestone 

(StOffler, 1977). This is supported by the carbon stable isotope data presented in this 

thesis (see 354 .5 ) .  
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FiguI-e 4. I .  Schematic illustration of drill core Nördlingen 1973. After Chao, (1977). 

Unit 
I 
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(m) 
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Sorted suevite 

High tcmperature suevite. 
435 

SOS 
525 

602 
Low tempcrat ure sucv i te. 
Crater caviiy, hdse o1 Iallhack hrcccin. 
Compressed zone. 

7w 

Depth (m) Chaacteristics 

314-331 Graded unit fine grained, near glass free upper layer ( 3  14-323 
ni) with mica flakes in horizontal orientation and a lower glass 

rich coarse grained layer (323-331in) (Jankowski, 1977). 

Suevite with strong magnetisation (Pohl, 1974) containing 
some large blocks of basement rocks. High temperature 
suevite (Chao, 1977). 

Suevite with very low magnetisation and u low glass content. 
Low temperature suevite (Chao. 1977). 

33 1-525 

525-602 

4.1.2. Shock metamorphism in N-73. 

The N-73 core provides a near continuous proîile through the fallback suevites 

and crystalline rocks to a depth of 1206 m. The degree of shock metamorphism 

throughout the core was found to vary with depth as well as within individual 

subdivisions of the crater suevite and basement (Stöffler et al., 1977: Von Englehardt 

and Graup, 1977). Each suevite from the Ries crater was found to be characterised by u 

pxticular abundance pattern of crystalline rock types and shock metamorphism stages 

(Graup, 198 I ) .  The fallback suevites contained much less material of ihe high shock 
~ ~~~ 
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stagcs with the ciystalline rock fragments showing lower degrees of shock (5-15 Gpa) 

compared to the fallout suevites (30-60 Gpa) (Stahle and Ottemann, 1977). 

Diagnostic shock features in the core samples include intergranular 

inici'ofi'actiires in quartz and hornblende' kink bands in chlorite and biotite, twin lamellae 

in calcite and mechanical twins in plagioclase (Chao and El Gorcsy, 1977), shatter 

concs. shocked quartz (Stöffler et al., 1977) and high pressure mineral polymorphs such 

as diamond (Abbott et al., 1998b and Schmitt et al., 1999). 

The occurrence of sonle of the reported shock structures were found to decrease 

with depth. The proportion of the total quartz which is shocked decreases with depth in 

the suevite helow 380 m (Stöffler, 1977). The intensity of shatter cone fractures also 

dccreases with depth and these are associated with small striated shear joints from 

oiitward movement due to the passage of shock waves in  thc upper part aiid by dykes 

which niay show schlieren indicating latcral movement (Von Huttner, 1977). There is 

also a decrease in the intensity of deformation from 506-667 m and from 667-1206 in 

where all rocks show level O metamorphism, indicating shock pressures < 10 Gpa, 

decreasing to I Gpa at 1206 m (Von Englehardt and Graup, 1977). Variations in the 

occurrence of these features have been used to determine the structure of the buried 

iiiipactites (Stöffler, 1977). 

The amount and form of melt glass within the fallback suevite differs quite 

significantly froin that in  the fallout suevites. Faiiback suevites lacks aerodynamically 

rhaped bombs and the glass is comprised of small irregular fragments (Von Englehardt 

aiid Graup. 1984). Within the fallback suevites the percentage of glass decreases from 

15-67 vol'% in the upper sections to 0-40 vol%) from 380-525 m. with no glass apparent 

helow 525 m (Stöffler, 1977). There is no direct decrease with depth as the graded unit 

(unit I)  comprises a near glass-free upper layer, with a glass-rich lower layer (Von 

Engichardt and Graup, 1984). The overall glass content is estimated to be 28 vol% in 

fallout suevites and 2-16 vol% in fallback suevites (Von Englehardt and Graup, 1977). 

The lower glass content may be due to the formation of zeolites, analcite and 

inoniinorillonite at the expense of glass (Stahle and Ottemann, 1977). 
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4.1.3. Structure and geophysical properties of N-73. 

Measurements of the geophysical properties of the N-73 profile revealed a low 

variation in seismic velocity, absorption, electrical resistivity, density and porosity within 

the suevites but a high degree of variation within the crystalline basement (Pohl, 1977). 

The results indicated that brecciation extends to a depth of 5-6 km and 20 km in 

diameter, although the degree of fracturing may also decrease with depth (Pohl, 1977). 

The suevite within the crater (figure 4.2) is not believed to have been emplaced 

as a single unit, rather that emplacement occurred in several stages (Stöffler, 1977). The 

unit i suevite (314-331 m) coarsens with depth indicating that the material settled back 

into the crater cavity from the impact ejecta cloud (Jankowski, 1977). The underlying 

wevite, unit 11 (331-525 m), has been interpreted as a fallback formation and partially 

slumped from the crater rim. Unit 111 (525-602 m) is intercalated with basement rocks 

and is interpreted as a ground surge into a frdctured and disrupted basement. The floor 

of the transient crater at 505-602 m is disrupted by intercalations of suevite and the 

lower basement and cut by dike breccias (Stöffler, 1977). The present crater form 

results from the collapse of a transient crater of 2-2.5 km depth followed by uplift of  the 

basenient due to rebound and rim faulting after thc excavation stage (Stöfflei-, 1977). 

The crystalline basement (table 4.2) revealed a number of features which can be 

used i« interpret the core samples and crater structure. The basement from 602 to 1206 

ni is a complex structure containing dyke breccias of shocked material, suevite and 

allochothonous basement layers. The crystalline sequence in the core profile is not 

autochthonous but is composed of a series of disconnected slices where the rocks now 

located below 670 ni slid down from near the original crater rim underneath more highly 

shocked rocks (Von Englehardt and Graup, 1977). 
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4.2. HAND SPECIMEN DESCRIPTIONS. 

The samples of core were provided by Professor D. Stöftler and comprise three 

suevites from the 343 m (slumped material), 384 in (fallback), 494 m (Iallback) sections 

and a basement rock from the 1059 ni section. These suevites all fall within the second 

uni t  o f  the core from 331 to 525 m depth, which makes them “high temperature suevite 

with strong magnetisation and including some large blocks of basement material” 

(Stöffler et al., 1977). 

The four core samples each 10 cm diameter and 10 to 15 cm in length having 

been cut in half parallel to the core axis to form semi-circular cross sections (i.e. 400 to 

700 g in weight). A high degree of alteration such as clay mineralisation and oxidation 

in the samples made the identification of small fragments within the groundmass 

cult. often only the freshest fragments could be identified. This was previously 

observed by Stahle and Otteinann, (1977) who reported that the glasses in crater suevite 

wcre almost completely decomposed or transformed into secondary minerals. The 

samples were all highly resistant to fracturing and Tar less friable than the quarry 

suevites, indicating that they were fresher and less weathered compared to the fallout 

suevite smiples. The samples were de. 

in table 4.3. 

bed in detail in chapter 2 and are summarised 
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Table 4.3. Summary of characteristics of the N-73 core samples for this study. 

temperature1" 
(Slumped'") 

temperature1' I 
(Slumped'") 

t eniperature" ' 
í Fiillbac k"' ) 

Basement rock 

[ I ]  Chao, (197: 

Depth 

(MI 
343,20 

384,07-I4 

494,64-86 

1059, 10-25 

[2] Stöffler, , 

Sample 

no 

NC.143 

NC384 

NC494 

NC 1059 

277). 

Sample characteristics 

groundmass, possible granite fragment. 

Red-brown colour, high percentage of 

altered fragments, fresh crystalline 

fragments < O 5 1  cm. 

Brown colour, single elongated vesicular 

glass fragment, 1-2 cm lithic fragments, 

red alteration. 

Medium-fine grained, pink-red crystalline 
rock. Fine grained brecciated areas. 

4.3. OCCURRENCE AND DISTRIBUTION OF IMPACT DIAMONDS AND 

GKAPHITE IN IMPACT PRODUCED ROCKS AND SHOCKED BASEMENT 

MATERIAL. 

Acid dcniinci-aliscd residues of the samples were produced following the 

procedures described section 7.6. The chemical and mineralogical compositions of the 

residues were comparable to those of the fallout suevite samples analysed (table 4.4). 

Scanning electron microscope analyses of the residues revealed that the core suevites 

contain zircon (ZrSiO,), rutile (Tio,) and graphitic carbon. Transmission electron 

microscope analysis of the residues identified graphite and diamond (Abbott et al., 

1998b) siiiiilar to that previously found in fallout suevites (Rost et al., 1978; Hough et 

al., 1995~)  and glass (Abbott et al., 1996; Siebenschock et al., 1998). Diamonds were 

not dctccted in the basement sample NC1059. As mentioned, these suevite samples are 

from within the high temperamre suevite formation, the implications of this for the 

preservation of shock formed diamonds is discussed in section 4.6.1. Differences in the 
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isotopic composition and the morphological structure of the diamonds found within 

these samples are the subject of the discussions to follow. 

Sample 

NC343 

NC384 

NC4Y4 

NC I OS9 

Composition 

SEM TEM 

Zircon, rutile. graphitic carbon 

Zircon, rutile, Al-silicates, diamond, graphite. 

graphitic carbon 

Zircon, rutile, Al-silicates, diamond, graphite. 

graphitic carbon. 

Zircon, rutile, Al-silicates. 

diamond, graphite, zircon 

Under the optical microscope the residues were composed of visible zircon 

crystals together with black carbon clusters or flakes and in samples 343 and 384 in 

particular several small diamonds (50-100 pm). The NC494 sample contained a higher 

proportion of dark coloured material in comparison to the other two core suevite 

saniplcs with a higher proportion of rutile (Tio,) and aluminium silicates. This is 

coniparable to the composition of the Seelbronn quarry fall out suevite residue. 

4.4. MORPHOLOGICAL CHARACTERISTICS OF DIAMONDS AND 

GRAPHITE IN IMPACT PRODUCED ROCKS AND SHOCKED 

BASEMENT. 

The core samples contained two allotropes of carbon, namely graphite and 

diamond. The features exhibited by these minerals were similar to those observed in 

grains from the fallout suevite residues. These features included stacking faults, 

layering, skeletal needle-like features, twinning and etching. In addition, blocky grains 

were also apparent and even best observed in the core sample residues. Layering is most 

likely an inherited feature from the precursor carbon material (Masaitis, 1972, 1994 and 

section 3.4. I ) ,  whereas skeletal, blocky and etched features may be related to the 
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precursor material, conditions of formation or post impact effects. Stacking faults may 

be inherited structures or a result of the conditions of formation, variations in the degree 

or shock, variations in the degree of stmctural ordering or formed at polytype or 

compositional boundaries. 

4.4.1. Layering. 

The carbon observed in the samples under the scanning electron microscope 

(SEM) was generally of two forms. platy layered crystals and twisted fractured crystals 

with surface lineations. These are illustrated in figures 4.2a-b. The example shown in 

fignre 4.2a is an irregular rounded grain from NC384 which was approximately 150 pm 

in diameter, platy in pian view and ornamented with linear surface features. These are 

picked out by the high relief of smaller crystals sticking to the surface (most likely 

zircons). Figure 4.2a illustrates a carbon grain amid smaller zircon crystals from 

NC494. The grain appears to be twisted and fractured and shows distinct linear 

structures along the long axis, which are ropy and irregular in texture. Figures 4 3 - 1 7  

show two examples of layered crystals from NC343, with at least 1 1  clear layers along 

thc Icngth of the crystal. Each layer shows stacking faults in varying orientations. The 

layers also vaiy in thickness although they average about 1 pm thick, and some appear to 

grade into others. Figure 4.3b shows a close-up of this layering. Figure 4.4b shows a 

laycrcd grain from NC343, the layers are similar to those shown in figure 4 . 3 - b  but 

show variable thickness and orientations indicating offset of the original graphitic 

layering. 
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Layering appears to be most well developed within the diamond samples froin 

NC384. This layering probably represents a remnant grdphite feature although, the 

samples which are cut across the layers are unusual (figure 4.4a) in that the primary 

plane of weakness would be expected to follow the crystallographic layering. The 

existence of these layers indicates that the original crystal structure of the precursor 

graphite has been preserved and that the mechanism for diamond formation must take 

this into account. 

The most likely mechanism is one that does not involve the destruction of the 

crystal lattice hut rather the direct transformation of the graphite structure to that of 

diamond whilst preserving palimpsest graphite structures. 

4.4.2. Stacking faults. 

As the examples shown in figures 4.3a-b illustrated, stacking faults are a 

common feature of the diamonds found in these suevite residues. Figures 4 5 - b  show 

ihese Ieatures at u higher magnification revealing greater detail of the structures. The 

samples are both finely layered diamonds from NC384. 

The example in figure 4.4b from NC384 shows several thin diamond plates or 

layers with several overlapping sets of stacking faults. These sub-parallel dark lamellae 

can be seen to vary in orientation between the individual layers of the diamond. The 

stocking faults intersect at an angle of about 6 0  and 9 0  and fractures in the sample 

intersect at 60". Changes in the orientation of the stacking faults form a roughly 

triangular structure. Alternatively at the base of the image vertical sheking faults can be 

heen to Iade into a visually amorphous region and reappear with a diagonal orientation. 

This amorphous region is not composed of amorphous carbon and may represent a 

rcgioii where structural features such as stacking faults have been annealed. This 

structure is bound on one side by an apparent fracture, possibly due io the removal of 

associated graphite indicating that there had been graphitisation along structural defects. 

The inset selected area electron diffraction (SAED) pattern shows a cubic diamond 

structure with diffuse rings indicating polycrystallinity. 
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Again the stacking faults appear to be most well developed in samples from 

NC384. The NC384 sample was the best in terms of the amount of diamond present 

and the clarity of the structure of the diamonds, the other samples contained less 

obvious features. Thc blocky diamond illustrated in figures 4.6a-b from NC494 does 

show faint stacking faults at high magnification. 

The formation of stacking faults was discussed in detail in chapter 3 and as in 

the fallout inipactites the stacking faults show two morphologies: 

( I  ) very densely distributed, narrow black lamellae with variable sub-parallel orientations 

and cross-hatching; seen in “384.  

(2) sparsely distributed, short, thick black lamellae which may be wavy in form. Seen in 

NC384 (commonly cross-hatched), NC494 (poorly developed) and NC343. 

Stacking faults may be an inherited feature developed on the basal graphite plane 

or representativc of the particular transformation rncchanism. Stacking faults are 

priinarily observed in diamonds which preserve relict graphite niorphologies such as 

layering. which indicates a direct transformation mechanism. The stacking faults may be 

developed during the transformation. Skeletal diamonds are predominantly 

polycrystalline and do not show well-developed stacking fault features indicating a 

difference in their forniational mechanism and conditions of formation. 

4.4.3. Etching. 

Blocky crystals which were identified as diamond and graphite intergrowths 

using the thinner margins of the grains (in order to obtain SAED patterns) were found 

predominantly in NC494. These are distinct from the skeletal diamonds seen in the fall- 

out suevites (OQS and SBS) in that their morphology suggests remnant graphitic 

structure. The example shown in figure 4% is representative of several grains which 

were seen in this sample. These are blocky grains with areas of etching, this blocky 

form was only observed in the fallback suevite samples( NC343, NC384 and NC494). 

The sample shown in figure 4.5a is a euhedral grain from NC494 with areas of etching 

and stacking faults visible at the top of the image. The image shows an irregular surface 
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structure with a distinct h e a r  ornamentation running i~cross the image paallel to the 

main trend seen in the lower magnification image. These may represent ridges of 

crystalliles with preferred orientations similar t o  thosc seen in skelctal diarriond (figures 

3.1%-h and 3.14a-b). The small grain size of the crystallites tilakes this difficult t o  

determine. Further treatment of the saniples using fuming perchloric acid revealed the 

skcletal fine grained structures shown in figure 4.5b. The sample (NC384) has a sub- 

parallel linear trend to the etching or skeletal structure, possibly highlighting areas where 

iiitergrown graphite has been removed by the oxidation with fuming perchloric acid. 

L 

The diamonds in the fall-back suevite samples were found to be larger and 

thicker than the examples extracted from the other Ries residues. The approximate 

thickness of the grains can be determined from optical microscope observations and the 

appearance of the diamond plates under TEM. Thick grains (figure 4.5a) are distinct 

from thinner samples (figure 4.4b) although this is generally in the order of a few pin. 

This may be an artefact of the extent of the acid digestion process, in that intergrown 

graphite or poorly crystalline diamond aggregates are still in coherent structures within 

the fall-back suevites. Alternatively diamonds formed from the shock transformation of 

coal are described as porous and blocky in structure, (Ezersky. 1982: 1986) indicating 

that the nature of the precursor carbon material can have a strong influence on the 

diamond form. Thus, it is possible that these blocky diamonds may have formed from 

Icss crystalline graphite or have been etched by the action of hot alkali gases 

(Viahnevsky and Raitala, 1998). This indicates that the blocky stiucture could be a true 

feature of the diamond formation process and a residual feature of the precursor 

niaterial. 

4.4.4. Skeletal form. 

Skeletal needle-like structures were observed in diamonds from NC384 (figure 

4.6). Previous analyses during this study had shown blocky morphologies with 

associated graphite and cubic diamond on the SAED patterns. Following further 

perchloric acid treatment the graphite was completely removed leaving the structures 
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shown in figure 4 3 .  The elongate skeletal diamonds which were found ii i  the fallout 

suevite samples from the Ötting and Seelbronn quarries were not observed in the NC.73 

fallback suevite samples. This is unlikely to represent a feature of the acid digestion 

process as all the samples were treated in the same way. This is therefore. as discussed 

in chapter 3 more likely to represent an etching feature during diamond formation or 

growth of the diamond crystallites within a directional pressure field and in conditions 

of limited carbon saturation. The skeletal stmcture shown in figure 4% contrasts 

strongly with the skeletal structures described in section 3.4.4. The grain in figure 4% 

appears to be etched and corroded along remnant graphitic layering. The skeletal 

polycrystalline diamonds (figures 3.13-3.14a-b) do not show remnant apogrdphitic 

structures suggesting that they were not formed by extensive corrosion and etching of 

shock transîornied diamond as suggested by Langenhorst ct al. ( I  999). 

4.4.5. Twinning. 

Strcaking of the spots on SAED patterns, which is thought to be characteristic of 

twinning, was not frequently seen in the diamonds from the core samples. Samples 

NC343 and NC384 did show some double reflection SAED patterns indicating 

reflections from twinned crystals. Figures 4 3 - b  shows SAED patterns for an elongate 

layered diamond crystal; the diffraction spots indicate that the sample was 

polycrystLilline, with double reflections (streaking through the spots indicates the 

possibility of twinning). These may be inherited features - for example diamonds from 

Popigai show graphitic twins (Koeberl et al., 1997) - or they may be growth or 

deformation structures. 

The twinning in these dianionds (NC343 and NC384) niay be either growth 

twins, such as contact and penetration twins or deformation twins. As mentioned in 

chapter 3 growth twins form readily during diamond growth and natural vapour 

deposition might be characterised by a wide range of twin morphologies. Deformation 

twins on diamond ( I  1 I )  have been described following plastic defoimatiori at room 

temperature (Mao et al., 1979). During phase transformations twinning may 

Jennifer 1 Abbott Chapter 4 I46 



accorrimodate the interfacial stress between the parent and daughter phases @des and 

Cooding, 1991). In the case of the diamonds from the Ries the transformation would be 

from graphite to cubic diamond. 

Detailed examination of microtwins requires the use of high resolution 

ti-ansniission electron microscopy (HRTEM) which indicate whether the structures arc a 

vxuI1  of  shock transfomiation or growth from a vapour phase. Daulion ei al. ( 1996) 

compared structures in nano-diamond from meteorites, CVD and detonation products, 

determining that the ratio of different twin structures, dislocations and the presence of 

londsdaleite could indicate the transformation mechanism to be either martensitic or 

homoepitaxial growth. Table 4.5. Summarises the criteria they used and their 

conclusions. 

Table 4.5. Nano-diamond microstructures [from Daulton et al., 19961. 

Structure 

Dominant MT 
Liiiear MThon-linear MT 

Star-twins/twins 
l i i / ~ ~ i - i ~ r ~ t ~ i f i ( ~ i i  

Twiiis/single crystal 
Iiiterpretation 
Dislocations 

Interpretation 

Polyniorphs 
approximate size 

MT = Multiple twiii. 

Detonation 

linear 
2.72 
0.04 

Aiiisoti-opic 

growth 

2.48 
Fast growth rate 

Present 
Marten sit ic 

process 

Lonsdaleite 
<78 A 

CVD ~ 

non-linear 
0.36 
0.23 

l.so,rropi(. growrli 

I .28 

Not obyerved 
lornoepitaxial growth 

Possibly Lonsdaleite 
< I 2  A 

Meteoritic 

’lightly non linear 
0.87 
0.09 

Isorïopic  growth 

I .25 

Not observed 
Homoepitaxial 

growth 
Lonsdaleite 

< I 7  A 

Detailed high resolution transmission electron microscope (HRTEM) studies of 

nan«-diamonds from the Allende and Murchison meteorites (Daulton et al.. 1996) 

indicated that there are significant differences between the structures formed by shock 

synthesis compared to vapour deposition (Table 4.5). Shock-produced diamonds were 

Jennifer I Abbott Chapter 4 I47 



dominated by anisotropic, rapid growth rate features produced by solidification or 

transformation behind a planar shock front (Daulton et al., 1996). CVD-produced 

diamonds on the other hand showed structures characteristic of isotropic growth 

conditions. Linear multiple twins and dislocations indicate fast martensitic anisotropic 

growth whereas CVD growth structures are predominantly isotopic and non-linear with 

a higher ratio of single crystal structures and fewer dislocations. 

In the case of meteorite impact this situation is further coniplicated by the fact 

that CVD processes will be dominated by shock-induced vapourisation producing a 

coiiihiiiation of shock and vapour phase structures. The pressure and temperature 

conditions as well as the degrce of carbon saturation will be highly variable suggesting 

the formation of many different stiwtures in vapour deposited diamond, e.g. Tanior and 

Everson, (1994) suggest that natural vapour deposition might be characterised by a wide 

range of twin morphologies. 

4.4.6. Summary of diamond occurrence, structures and morphology. 

The diamond concentration observed in the suevite samples from the NC-73 

drill core was approxiiiiately the same as that seen in the Seelbronn and Ötting suevites. 

The concentrations were calculated using stepped combustion carbon yields and are 

discussed in section 4.6.2. Previous iiivestigations of 25 NC-73 saiiiples (shown in 

figure 4.2) has suggested that there is significantly less diamond within the fallback 

suevites compared io the fallout samples (Schmitt et al., 1999) although the fallback 

wevite units investigated here were not included within that study. 

The development of structural features within the diamonds studied was variáble 

(table 4.6). The weightings foi- the individual features were allocated as described in 

chapter 3. Diamonds from NC494 were coarse, blocky and graphitic 3nd did not show 

well developed stacking faults, layering or skeletal features suggesting thermal 

annealing. Diamonds from NC343 and NC384 clearly displayed multiple layering, 

stacking faults and polycrystallinity. Skeletal elongate structures as seen in the fallout 

suevites were only observed in diamonds from NC384. 
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Table 4.6. Suininai-\. of fcaturci observed in diainoiids from N-7.3, Ries crater. 

- = Feature not detected. 
z = Estimated number of diamonds observed. 

Samples Stacking Poly- Layered Twinning Skeletal Etched z 

faults crystalline 

NC343 vvv  vv  v v  23 

NC384 v w  vv  v v  v v v  

NC494 v v v v  15 

d = Occasionally observed. L d - commonly observed, d7171 - Primarily observed. 
- = Feature not detected. 
z = Estimated number of diamonds observed. 

These structures (e.g. stacking faults and twinnning) may indicate the 

requircments for the diamond formation mechanisms. It has been suggested that impact 

diamonds ai-e mainly formed Troni the martcnsitic transformation of precursor carbon 

such as  graphite (Masaitis, 1994) or coal (Ezersky, 1992; 1986) or through a CVD 

mechanism froin a carbon feedstock possibly derived froni graphite and carbonates 

(Hough et al.. 199%). Studies of the structural characteristics of CVD and detonation 

produced diamonds with meteoritic diamonds indicated that the nature of structures 

such as twinning and defects could indicate which mechanism of formation was the 

nimt likely (Daulton et al., 1996). Similarly the structures described in chapters 3 and 4 

niay indicate which mechanism or combination of mechanisins is required. This will be 

discussed in section 4.7 with reference to the shock pressures and temperatures 

expericnced and the other carbon polymorplis present at the Ries crater. 

4.4.7. COMPARISON OF THE DISTRIBUTION AND FREQUENCY OF 

STRUCTURAL AND MORPHOLOGICAL FEATURES FROM A VARIETY 

OF RIES CRATER IMPACTITES. 

A wide variety of stiuctural and morphological features can be identificd in 

impact diamonds including siacking faults, twinning, polycrystallinity, layering. skeletal 

stiuctui'es and etching. The possible causes and occurrences of these structures were 

~~ 
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discussed in sections 3.3 for the fallout impactites and 4.3 for the fallback inipactitcs. 

Froin the relative frequency in which these features were observed and the extent to 

which they are developed in the various samples an xhitrary weighting may be applied 

(tables 3.2 and 4.6). To illustrate this diamond grais from the OQS exhibited a wide 

range of features which varied in their predominance, e.g. there were inore stacking 

faults than layering. In comparison diamonds from the NC494 suevite showed few 

fcatures such as stacking faults and had mainly etched and blocky features. The 

distributions and frequency of features being observed is also dependent on the amount 

of diamond available for observation. The suevite samples provided the niost diamond 

grains per TEM grid, averaging 15 to 40 grains and the Polsingen and Auiiiühle 

saiiiplcs yielded fai- less, averaging only I -5 grains. 

The relative distributions of these features (stacking faults, twinning, 

polyci-ystallinity, layering. skeletal and etching) between the samples is illustrated in 

figure 4.6 by showing barcharts of the features for each locality and the location of the 

localities around the Ries crater. The two suevite samples, Ötting and Seelbronn inay be 

coinpared quite closely 21s they comprise similar lithologies. The PIMR represents a 

m i s s  of anomalously high-temperature suevite which cooled and recrystallised over a 

longcr period of time (Von Englehardt and Graup, 1984) and it is perhaps to be 

expected that relatively few impact diamonds were detected in the residues and that these 

samples showed relatively few structural features. This may represent high teniperature 

annealing or graphitisation. Similarly the AQG represents a variable shocked ejected 

inass of basement material in which diamond has been tentatively identified. further 

analysis of this sample is required to confirm this as only a single grain was detected. 

The fallout and fallback suevites may be compared with more confidence as a 

large selection of grains were available for analysis under the TEM in each of these 

samples following perchloric acid treatments. Diamond samples with clear layering were 

detected in the NC384 and were comparable to those observed in the fallout suevites. 

There does not appear to a be a variation with depth in the features seen in the fallback 

sucvites. As described in section 4.2. the structure of the suevite deposits within the 
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crater is not straight-forward, but complicated by the intermiilgling of fallback units and 

slumped units (table 4.3). NC494 represents fallback material whilst NC384 and 

NC343 probably represent slumped material from the inner crater ring (Stöffler, 1977). 

Thus the two slumped suevites may have more in common with fallout suevite than the 

Callhack section. This is not directly apparent from the distribution of structural features 

(figure 4.6) although NC494 appears to show a limited range of features which may 

indicate thermal annealing of structures such as stacking faults and twinning. 

Sample 
NC343 

NC384 

NC494 

NC I OS9 

4.5. CARBON ISOTOPIC COMPOSITION OF DIAMONDS AND GRAPHITE 

FROM THE NÖRDLINGEN 1973 CORE. 

The samples were analysed for hulk carbon stable isotopic values and for 

detailed isotopic profiles using stepped combustion combined with static mass 

spectrometry. These analyses were all performed as described in chapter 2. 

TY Pe b C,,,,”, %s % Carbon 
Suevite -15.4 0.020 0.41 

Suevite -13.9 0.02 I 0.43 

suevite - 18.3 0.013 0.13 

Basement -13.9 0.01 8 0.12 

4.5.1. Bulk carbon isotopic analyses. 

Bulk carbon analyses of the four core samples, were performed using hulk 

combustion and a static mass spectrometry system. The results are summarised below 

in table 4.7. aiid appear to show i10 discernible trend with depth. e.g. as a result of 

different carbon soul-ces from different depths in the pre-impact target stratigraphy. 

The fall-out impactites show a reversed stratigraphy with material derived from 

depth (suevites) overlying material derived from shallow levels (Bunte Breccia). The 

lack of a trend with depth is hardly surprising considering the limited number of 
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samples available, the complexity of shock metamorphism and the st~xctnre of the 

briserncnt itself. The isotopic values encompass a i.elatively narrow range from 

6°C = - 13.9 to -18.2 %'c and are all from whole-rock samples of core suevites and 

basement rock. 

Interestingly the basement rock sample from NC105Y had a light carbon stable 

isoropic composition compaed to NC494 and NC343, similar to that of the core suevite 

384 in and a low carbon content that is similar to that of thc 494 in section. Separate 

analyses of lithic fragments and glass fragments from these samples was not possible 

due to the highly competent nature of the samples. 

4.5.2. Stepped combustion carbon isotopic analyses. 

Acid demineralised residues of the core samples were analysed as bulk samples 

( a  small randoin selection of grains) and as individual grains ofdia~nond and graphite 

picked from the residues (prior to the perchloric acid stage). Whei-ever possible 

diaiiiond grains identified in the residues were extracted and stored in clean diy glass 

pii-¡-dishes for subsequent stable isotopic analysis. 

The selection of p i n s  was necessarily random due i« the small size of the 

c. -rains within the residues even undei- the optical microscope (50-300 Fim). The 

c«rnposition of the residue at this stage had been confirmed as diamond using the TEM 

with minor zircon and highly crystalline graphite. Diamond, silicon carbide and highly 

crystalline graphite are the only carbonaceous phases likely to survive the acid digestion 

procedures. Figure 4.7 illustrates the stepped combustion profile of a selection of 

random grains from NC384R. 
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Figtii-e 4.7. Stepped combustion analysis of acid deinineralised residue from NC343 

ísainple weight = 20 pg). Z 6°C = -26.6 %C and X carbon yield = 88.3 wt 96. 

Carbon contamination from handling of the sample or platinum bucket is 

removed by a 200 "C cleaning step prior to the stepped combustion. The total carbon 

yield \vas 88.3 wt % and the peak yield corresponds to 70.6 96 of this. The sample 

shows a tiiiiiii  cxhoii release at 600 "C Ivith only carbon blank releases above 700 "C. 

The average carbon isotopic composition for the sample is -26,55 %. 

The carbon stable isotopic composition of the other two crntei- suevite samples 

from thc N-73, are shown in figures 4.8 and'4.9. 
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Figure 4.8. Stepped combustion analysis of acid &mineralised residue NC384 (samplz 

weishi fx4 pg), Z 6°C = -25.4 7TC and 1 carbon yield = 45.5 wi %,. 

Figure 4.8. shows a single carbon release ut 600 "C and 700°C that probably 

represenis fine grained diamond in the NC343 In residue. The total carbon yield was 

45.5 wt % with the peak yield representing 77.6 % of this. The total carbon isotopic 

composition 6°C = -26.6 %C. which does not vary across most of the stepped 

conihustion. although the 700°C yield is slightly enriched in "C. This value closely 

matches the other isotopic analyses for the core samples, with the exception of the 

sample from the 494 m section which is discussed below. 

The second example (figure 4.9) is from the NC494 and has a more compiicated 

stepped combustion profile. The profile shows two separate carbon releases with the 

firsi i-elease ai 600 "C probably representing the combustion of graphite or fine grained 

diamond and comprises 16.2 % of the total yield of 50.3 wt 9:. A further release at 800 

io 1000 "C represen( coarser grained diamond or silicon carbide, comprising of 8 I 96 of 
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the yield. The isotopic composition of the sample varies quite markedly with 

temperature ranging from 6°C = -19.2 550 at 600"C, -22 '30 at 800 "C. -12 ' /cc at 900 "C 

and -17.9 %O at IO00 "C, with an average carbon isotopic composition of-17.9 %. The 

M-shaped isotopic profile is characteristic of many other diamond bearing residues e.g. 

Ötting quarry suevite residue (Hough et al., 199%) and residues from the Brownie 

Butte fireball layer. Berwind canyon ejecta layer and Mimbral Ir-rich layer (Hough, 

1996). 

n 

.rc~~~peratue ('CI 

Figure 4.9. Stepped coinbustion analysis of acid demineralised residue from NC494 

(saiiiple weight = 4.6 gg). Z 6°C = -17.9 750 and Z carbon yield = 50.3 wt % 

The 6°C (-17.9 %c) of the NC494 residue contrasts with the other analyses and 

coinpares most closely with the SBS samples and iniplies that different carbon sources 

ai- u single carbon source with heterogeneous stab:e carbon isotopes may have 

contributed to the sample compositions. Fall-back suevites contain less sedimentary 

material than the fall-out suevites (Stöffler, 1977), but the "C-enriched carbon stable 

isotopic compositions of the SBS and NC494 residues suggest the admixture of 

carbonates 

Jennifer I Abbott Chapter 4 156 



The variation in carhon yields and 6'% of NC 494R (figure 4.9) indicates either 

:I multiple phase combustion within a single release 01- thc combustion o r a  single phase 

(diamond) with varying grain sizes. The low temperature yield (600°C) may represent 

graphite as it  combusts more readily than diamond although the isotopic composition 

6°C of - 1  9.2 % is relatively enriched in "C compared to the average composition of 

graphite. The high temperature yields may represent the combustion of diamond with 

silicon carbide with the exothermic combustion of diamond allowing the S ic  to combust 

at lower temperatures than expected. Sic may he expected to combust at temperatures 

outside the range of the furnaces at approximately 13SO"C, although this is again 

dependent on grain size (e.g. Russell, 1992). Co-combustion with diamond may allow 

lower temperature combustion. 

4.5.3. Graphite. 

Samples of graphite were extracted from the residues wherever possible prior to 

the chromic and fuming perchloric acid treatment skges. These samples may in fact he 

graphite and diamond mixtures as examination under the TEM indicated that many of 

the graphite grains were in actual fuct intergrowths of diamond and graphite. The grains 

were black under the optical microscope and were chosen with the least number of 

additional grains attached. for example many of the black grains appeared to be coated 

hy clusters of zircons and or diamond. 

These two stepped combustion profiles are both samples of 100-200 pm 

graphite extracted from the NC494 in section residues. Figure 4.10 has a total carhon 

yield of 18 wt 5% with the peak yield representing 91.4 % of this. This low carbon yield 

indicatcs that the sample was not very pure and may have contained zircon or other non- 

carhonacrous components. The second example (figure 4. I I )  has a peak yield of 

70.7 %. wiih high carbon yield below 400 "C representing organic contamination or 

;imorphous carbon. Both profiles show clear carbon releases at 500-600 "C, and 

comparable total isotopic compositions of - 26.2 to -25.4 %C representing the 6°C of 

graphite in this residue. The isotopic composition of graphite from the core samples 
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also coinpares well with the composition fi-oin sindar samples extracted from the fallout 

suevite samples. These features and those of the other core samples will be discussed in 

section 4.6. I .  

o 200 400 600 goo I 000 I200 

Tcmpcraiure ("Ci 

i Fipiirr 4. I O. Stepped comhustion airalysis of a graphite grain from NC494 (sample 

ueiglit = 68 pg).  1 6 ° C  = -26.2 % C  and 2 carbon yield = 18 wt %? 
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Figure 4.1 i .  Stepped conibustion analysis of a graphite p i n  from NC494 (sample 

weight = 21 ptg). Z: 6°C = -26.6 'Z6 and 2 carbon yield = 49.4 wt % 

The sainples (figures 4. I O and 4. I I )  combusted within the teniperature range at 

which graphite is typically combusted (from 4oc)-SOO "C). The low carbon yields 

suggest that the grains identifed as graphite (using optical microscopy) from the NC494 

residue were not pure. The carbon yields from 500-800 "C may represent the 

combustion of diamond-graphite intergrowths. The grain size of these intergrowths 

wiihiii the sample would control the temperature of combustion. Thus the grain size of 

the saiiiple is obviously important and the sepuation of nano-diamond scale grains from 

graphite becomes problematic as these fine-grained diamonds will combust at much 

lower temperatures, approximately SOO to 600 "C. 

4.5.4. Diamond. 

Although, all of the crater suevites were found to contain diamond when 

obsei-ved under the optical and transmission electron microscope\, these diamonds were 
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vciy sinall (Sû-i50 p j .  Attempts wcre made to pick out diamond grains from the 

residues for isotopic analysis. Several diamonds were transferred from the residues Lo 

clean diy glass petri-dishes but from here it proved difficult to transler a samplc to a 

platinum bucket for isotopic analysis. However, a single small diamond (ca. 125 Fin ) 

- rrrain from NC384 was succcssfully extracted and loaded for stepped combustion 

(íigure 4.12). This diamond had the form of a half-crystal with a pseudo-hexagonal 

platy structure. 

The isotopic composition of the sample as given by the values from the main 

carhon peaks is very even and the avei-age 6°C = -26.9 %,C. The high temperature release 

(700-000 "Cj comprises 92 % of the total yield, and the low temperature release (625- 

675 "C) only 3 %. The carbon appears to be released in two stages. the smallcr earlier 

release at 675 "C could he attributed to the coinbustion of a thin skin layer on the 

diamond. with total diamond combustion by 800 "C. Thin amorphous film coatings on 

polycrystalline diamonds were described on impact diamonds from the Popigai impact 

crater (Koeherl et al., 1997), these were attributed to a brief exposure to a high 

ieinperature environment. Similar structures were observed in ;hocked zircons from 

high teniperaiure suevites (section 3.5). This could also be attributed to the change in 

step size from SO i o  100 "C above 700 "C. 

Jennifer 1 Abbott Chapter 4 160 



Tcniprraiurc ?C) 

Figure 4.12. Stepped combustion plot for a diamond from NC.384 residue (sample 

weizht = 4 pg). 2 6"C = -26.9 'Z< and C carbon yield = IO0 wt u/c 

The carbon isotopic composition (26.9 %O of the diamond from NC384 

compares well with the diamond from the OQGB residue (-26.6 %) (figure 3.24). The 

values also closely match those obtained for samples of graphite from the Ries samples 

( -  25.2 to -26.6 %) with the exception of graphite from the Seelbronn suevite (-19.9 %) 

and contras1 with previously published values for acid-deiniiieralised Ries crater 

samples which had a reported 6°C of -16 to -17 %C and were mixtures of diamond and 

dicon carbide (Hough et al., 199%). 

_ .  

4.6. COMPARISON OF CORE SUEVITE (FALLBACK SUEVITE) WITH 

FALLOUT SUEVITE SAMPLES. 

\,' 'ui'itions :. in lithology and shock stages between Fallout and Jallback suevites 

have been dewibed in detail within the lilerature (Chao et al., 1977: Stöffler, 1977; 

Stahle and Ottemann, 1977). From the studies described above and in previous chapters 

there ai-e a number of features that contrast the two types of suevite with each other. This 

i s  additionally complicated by the fact that the fallback suevite is partially composed of 
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material which slumped in from the inner crater ring (Stöffler, i 977). Nevertheless the 

fallout suevite appears to have been formed from material excavated from shallower 

levels of the target area and contains a higher percentage of sedimentary material and 

granite from the shallower stratigraphic levels. 

4.6.1. Stable isotopic composition of fallout and fallback suevites. 

The variation in the stuble carbon isotopic composition of the NCsamples is 

illustrated in figure 4.13. This shows the structure of the core, based on data from 

Stöffler et al. (1977), bulk whole-rock 6°C isotopic compositions and the carbon 

contents. The saniples show no clear trend with depth, which is to be expected given the 

limited sample size. There is a reverse coi-relation of the 6I3C with the carbon contents. 

Thc higher carbon content is associated with "C-depleted isotopic values. The basement 

sample (NC 10.59) has aless "C-depleted carbon isotopic signature than might be 

expected (- 13.9 %), this is likely to be the result of heterogeneity within the structure of 

ihe basement. The lower parts of the core and basement of the crater is known to be 

composed of allochthonous layers which sluniped inwards filling the original transitory 

witet- cavity (Von Englehardt and Graup. 1977). This transient crater is calculated to 

have beeri 12-13 kni wide and up to 2, 800 m deep (Von Englehardt et al., 199.5). 

Detailed analyses of the structure of the N-73 drill core and the Ries crater impact 

lithologies indicates that the fallout lithologies formed from specific levels of the 

shocked basement, forming a reverse stratigraphy (Stöffler, 1973). 
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Figure 4.13. Carbon contents (%) and stable carbon isotopic values with depth for N-73 

whole-rocks. residues and extracted diamond and graphite samples. 

The range of 6°C in diamond from the Ries crater impactites is from 

-16 to -27 %C (Hough et al., 1995c and this study) indicating either hetedgeneity in the 

coinposition of the source carbon, or isotopic fractionation during diamond formation. 

Direct transformation from graphite to diamond should not result in isotopic 

fractionation unless the transformation is <lo0 % and diffusion can occur. 

Investigations of the isotopic fractionation between hydrocarbon gas and CVD 

generated diamonds has shown an isotopic fractionation of 2-3 %C (Derjaguin and 

Fedosecv, 1994) which is insufficient to produce the observed range in compositions. 

Isotopic exchange between graphite and carbonate minerals during the metamorphic 

evolution of the basement target rocks could generate the observed heterogeneity in the 

isotopic composition of the parent graphite (-13 to -26) (figure 3.23) and therefore, in 

any diamonds derived from this source. The carbon isotopic composition oi  graphite 

froin the Ries crater reporied in this thesis ranged from -26 to -19 % , suggesting thaî 
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differences in thc composition of the graphite and graphite precursor carbonaceous 

material is the main factor involved. 

Sample 

4.6.2. Diamond abundances within Ries crater impactites. 

Fallback sueuitc appears to contain as much diamond as the fallout suevite 

niatcrial, the estimated amount of diamond within these impactites is shown in table 4.8. 

These estimated concentrations are subject to errors due to sample losses during the 

acid deinineralisation process as well as weighing errors, hence values should be taken 

as general limits. The concentrations were calculated from the carbon yield from acid 

demineralised residues and the known weight of the residues. 

Diamond yield Reference 

Table 1.8. Estiniated diamond concentrations in Ries crater inipactites 

OQS 

SBS 

NC494 

NC384 

Otting quarry suevite 

Fallout suevites 

íppm) 

. 0.59 This thesis 

0.85 This thesis 

1.14 This thesis 

I .52 This thesis 

1-2 Hough et al. (1995~) 

0.06-0.7 Schmitt et al. (1999) 

The diamond concentrations determined herein range from 0.6 to I .S ppm which 

coi-relaes with the concenirations determined by Hough et al. (1995~).  Diamond 

abundances between 0.06 and 0.7 ppm were found by Schmitt et al. (1999) for fallout 

suevites from the Ries crater with concentrations in the fallback suevite estimated to be 

much lower. They analysed 25 samples from the N-73 drill core and only detected 

diamond in a glass poor sample from 568,30-60 m depth (R. Schmitt, Pers. Comm.). 

This suggests that there may be considerable heterogeneity in the abundance of 
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diaiiiond within the core suevites due to differences in source carbon concentrations, 

shock histories and most importantly thernial histories. The diamonds from the NC494 

and PIMR residues show evidence of thermal annealing implying longer periods at 

highci- temperatures than the other suevite samples. This inay also reduce the abundance 

of dianioiid in the residues by allowing greater graphitisation and so destruction of 

diamond. 

The impact diainonds are predominantly found in suevites and the individual 

components ofsuevite such as glass (Rost et al., 1978; Abboit et al., 1996; 

Sicbcnschock et al., 1998) and ciystalline fragments (El Goresy et al., 1999; Schmitt et 

al., 1999). Impact melt glasses may contain variable proportions of ciystalline rock 

í'ragnients (Stöffler and Grieve, 1996). Thus the diamonds within Polsingen may have 

origiiiatcd from within crystalline fragments embedded in a fine-grained ciystalline 

matrix (Von Englchardt and Graup, 1984). Impact diamonds have been found in-situ 

witliiii shocked gneiss fragments from both the Popigai and Ries impact craters 

(Masaitis, 1994: El Goresy et al., 1999). Schmitt et al. (1999) suggest thatthc main 

carrier of diamond in the Ries crater are glass bombs with the source for the diamonds 

being graphite bearing gneisses. The higher concentration of crystalline material within 

the fall-back suevites suggests that these lithologies should contain equivalent or greater 

aniounis of diamond. Tlic lower concentrations of glass within the fall-back suevites has 

been attributcd to replacement by zeolites, analcite and montmorillònite (Stahle and 

Ottcniann, 1977) and the original abundance of glass within the fall-out suevites is 

difficult to calculate. The seconday minerals are all relatively low temperature (<SOO"C) 

and formed under conditions in which diamond should survive (section 4.6.3). 

Aside from the different populations of impact diaiiiond within the Ries crater, 

the data dcscribed in the previous sections indicates several points. Firstly that the 

di;inionds in the fallback suevites (NC343, 384 and 494) are similar in structure and 

moi-phology to thosc detected in fallout suevite samples. Secondly, that the stable carbon 

isotopic coinposition of diamond from the core samples is comparable to those from the 

fallout suevites. 
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Using ttic diaiiioiid conceiitratiotis calculated ahovc (tahle 4.8) :itid an cstiiiiated 

~riipllitc coiicciili.utioil i t  is possible to calc11latc ratios of grophite t o  di;iiiioiid 

I ~ - ~ I I I S ~ O I - I ~ ~ ~ I ~ ~ O I ~  i-iiti«s. Tlic lower li i i i i t  011 tlic ~oiiceiitl.i~tioii of gfiipiiiic with i t i  the 

iiiipiictitcs inay be takeii lroiii figlire 4. 14 ~isiiip the average 8 'C  of the "C-deplcted 

S'l.opliiic saiiiples ;iiialysed (-26 %) aiid the iiitersectioii with the carbon coticentratims. 

1\11 altcrnativc value cali be taken using ilic 6°C coiiipositioii of graphic li-»in the 

,< 

~ x c l l m ~ l ~ l l  q l l~ i r ry  (- 19.9 %c).  

I 

. 

Bunte Breccia - 

- 

- 

b: 

OQGR graphite - +. 

0.0l I). I I I O  , 
Log '7 c:irboii 

I-iyi-e 4.14. Cai-boi1 coiiceiiti-ations (log %) for whole-rock Kies ci-atei- iinpactites atid 

iiidividual cuii ipoiieiits (appeiidix 4) vcrsiis carboii stable isotopic conipositioii ( % O ) .  

'The OQS gfiipliitc coiiipositioii yiclds an appïoxiniatc value o1 200-830 ppni 

Using the Iieavier coinposition given for the SBS grapliiie (8°C -19.9 %,cl a graphite 

coiiccnirat~oii oí' approxiiiiatcly SOO- 1667 ppm is esliiiiated. Using tlic cstiinated 
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diamond concentrations of 0.6-2 ppm (table 4.6), the ratio of graphite to diamond can be 

calculated as between 500: I for 500 ppm of graphite and 1ûûO: 1 for IO00 ppm of 

graphite. 

Therc are obvious unceiiainties in the concentration of diamond and graphite 

within these impactites due to weighing errors as well as heterogeneity within the 

impactites. The values do indicate that the degree of transformation from graphite to 

diamond may be highly variable and that the majority of graphite does not transform to 

diamond. This suggests that the average temperatures and pressures experienced are 

insufficient for complete transformation and thaí localised conditions may be important. 

The distribution of shock indicator stiuctures and ininerals which have been used to 

characterise the shock history of the Ries crater inipactites also highlights this 

heterogeneity (Stöfflcr, 1972; Stöffler et al., 1977). This is discussed in further detail in 

section 4.6.3 

.d 

It is interesting to note that the initial calculations of a graphite diamond ratio 

(SOO: I ) coincides with the ratio calculated for the transformation of carbyne to diamond 

duc to slow reaction rates (Whittaker, 1978). The cxbyne chaoite was identified within 

shocked graphite in the basement gneisses at the Ries crater (El Goresby and Donnay. 

1968). Thc possible relationship between graphite, diamond and carbyne is discussed in 

gi-cntcr detail in section 4.8.2. 

The ficlds delimited for individual components (suevite, glass, basement material, 

sedimentary fragments and Bunte Breccia) on figure 4.14 show mixing from "C- 

enriched sedimentary material with high carbon contents and "C-depleted glass and 

haseiiient saniplcs with low carbon contents. This supports the hypothesis that the 

isotopic coiiipositions of the suevites and diamonds might be derived from a vapourised 

graphite hearing basement with variable amounts of "C-enriched sedimentary 

cai-bonatc. The BB, which is known to he composed of primarily sedimentaiy derived 

fragments (Von Englehardt, 1990) lies within the sedimentary fragment field. 
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4.6.3. Heterogeneity of shock stage distribution, diamond morphologies and 

associated P/T conditions within Kies crater impactites. 

It has been determined that each suevite is characterised by a particular 

abundance pattern of crystalline rock types and a distinct frequency distribution of 

shock metamorphic stages (Von Englehardt and Graup, 1984). The variation in the 

distribution of crystalline and sedimcntaiy rock fragments between the different 

impactites and the variation in the shock stages experienced by these different target 

lithologies can be seen in table 4.9. This illustrates the heterogeneity present in the 

impactites and in the distribution of shock metamorphic conditions experienced. This 

heterogeneity may explain the high ratio observed between relict graphite and impact 

diamonds (presumed here to be derived from this graphite) present at the Ries crater. 

The high pressure/temperature polyinorphs and shock structures within the Ries 

cratcr impactites that have been used to determine the shock stages and conditions 

experienced are shown in table 4.10. This illustrates how the structures and minerals 

within thc lithologies preserve different shock histories. The rocks form combinations 

of different shock stages in different proportions. The volumes of cryst:.illine and 

sedimentary material affectcd by different shock stages is shown in table 4. I I .  

The distribution i n  shock stages shows that sedimentary material was not 

shocked above 45-60 Cpa and the majority was shocked at < 10 Gpa. Ciystalline 

iiiaterial experienced all stages of shock up to > 100 Gpa although again the majority 

was shocked to < IO Gpa. This low shock material is predominantly located within the 

Bunte Breccia and lithic impact breCckdS. The amount of graphite-bearing crystalline 

rock shocked to conditions sufficient to produce diamond is limited. Only small 

volumes of carbonate rock would havc been vapourisëd and available for incorporation 

into diamond feedstocks as suggested by Hough et al. (1995~) .  The presence of 

catalysts, e.g. carbonates, may reduce the pressures and tcmperatures at which diamond 

can rorin (Burns and Davies, 1992). 

The observed heterogeneity in the ratio of graphite to diamond transfoinmtion as 

well as the distribution of shock indicator phases and structures suggests that the target 
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Table 4. I O. Characteristic shock features and shock produced minerals within Ries crater 

impactites. 

Minerallstructure 

Shatter cones 

Kink bands 

PDF 

Coesite 

Siishoviie 

Diaplectic glass 

Jadeite 

(plagioclase) 

Silicate melt 

CaCO, meli 

(1961); Chao (1967) 

(1961); Chao (1967) 

Tnhle 5. I I .  Estiinaied volunics of crystalline and scdimeiitary rock clastr exhibiting each 

shock stage. 

Fi-oin Voli Englehardt and Graup. (1984). 
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rocks were themselves shocked heterogeneously. There are distinct gradations to the 

degree of shock experienced by the target rocks according to their proximity to the point 

of impact (Von Englehardt and Graup, 1984). This is illustrated by figure 4.15 which 

shows isobars for the shock front and the zones of decreasing shock effects. 

In addition it has been suggested that highly variable peak shock pressures and 

temperatures may be generated by pre-existing heterogeneity and variable structure 

within the target rocks (Stöffler, 1977). The interaction of shock waves with grain 

boundaries, pore spaces, fractures and faults may cause localised hot-spots and areas of 

elevated pressure and/or temperature. It has been suggested by De Cadi, (1967; 1979; 

1995) that diamond may be formed in hot spots; observations of diamond found in-situ 

within shocked graphites at the Ries crater have been attributed to this mechanism (El 

Goi-esy et al., 1999). This is discussed in greater detail in section 4.8. 

ICCC - *, 
+ c i  +,*/. 1 + + + + + 

- +/*--* + + + + + + 
i . * * * + - + + +  

Figure 4.15. Deep burst inodel of the formation of the Ries crater. OR2 is the crater 

radius at surface, BRI the radius at basementkediment boundary, OJ the penetration depth 

of the prqjectile and OP the maximum depth of the crater. Dashed lines represent isobars 

(Gpa) with zones of decreasing shock effects (V-O). [From Von Englehardt and Graup, 

1984). 
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4.6.4. Preservation of diamond in fallout and fallback suevites. 

Impact diamonds are primarily believed to be present predominantly within 

basement gneiss and derived from graphite (Masaitis, 1994 and El Goresy, 1999). 

Diamonds have also been found within impact glass (Rost et al., 1978; Abbott et al., 

1996: Siebenschock et al., 1998; Schmitt et al., 1999). This glass is primarily derived 

from vapourised and melted basement gneiss (Von Englehardt and Graup, 1984) at 

ternpcratures between 1300 to >3ûûû°C (Von Englehardt , 1997). It should be noted 

that the glass may contain small fragments of highly shocked but un-melted crystalline 

rock which may in turn contain diamond. The low concentration of gneiss fragments 

within the glass (< O. 1 wt%) suggests that the concentration of diamond in these 

fragments would be anomalously high in order to account for the observed abundance 

cfdiainoiid in the glass (- < I  ppm). The amount of crystalline fragments within the 

glass is difficult to determine due to post deposition secondary mineralisation. This 

suggests that the impact diamonds are located within the glass itself and not exclusively 

within crystalline fragments. 

Glass fragments and bombs found within the fallout suevite were brittle at the 

time of their deposition indicating a rapid decrease in temperature due to pressure 

release from 80 Gpa (Von Englehardt and Graup, 19x4). This may have aiped in the 

preservation of the diamonds due to quench cooling. Apatite and sphene fission track 

annealing indicate minimum temperatures in excess of 500°C in the Ötting quarry 

sucvite and 250 "C for the core suevites (Pohl, 1977). The diamonds found in the N-73 

core during this study were obtained from samples of high temperature suevite, so called 

because of >600 "C thermoremenant magnetisation temperatures (Pohl, 1977). 

The concentration of impact diamonds in tagamites hnd suevite from the 

Popigai crater, Russia have been found to vary radially from the centre of the crater 

depending on the original concentration of precursor graphite, superimposed shock 

zonation and the character of ejection (Masaitis, 1998). Further heterogeneities in the 

concentration of diamond were linked to the extent of melt contamination by cooler 

clasts and fragments resulting in localised quench cooling (Masaits, 1998). The mixing 
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of cold unshocked fragments into melt can rapidly decrease the temperature and cause 

local to total quenching which may occur in less than 100 seconds (Kieffer and 

Simonds, 1980). No distribution trends have yet been identified in the Ries iinpactites 

íSchmitt et al., 1999 and this study). 

Many of the impact diainonds found during this study and those described in 

the literature show evidence of corrosion and etching (Rost et al., 1978; Masaitis, 1998) 

and diamonds from the Popigai impact crater show etched honeycombed textures, 

graphite coatings and dissolution and corrosion patterns (Masaitis, 1998). The 

extraction technique used to obtain the Popigai diamonds is an exothermic alkali fusion 

technique involving temperatures A 3 3  K. This is significantly greater than the 

temperatures employed to dcmineralised the samples described in this study (section 

2.6) and may result in etching and corrosion of the diamonds. In addition post 

lormation graphitisation or hot alkali gases such as OH-, Na and Kin  high temperature 

(5  2000°C) impact melt (Vishnevsky and Raitala, 1998) may produce etched features. 

The impact diamonds from the Ries were frequently found to have graphite coatings. 

Experimental calculations of the graphitisation of diamond indicate that the 

coiiipleLe conversion to graphite requires 1 Ma at 12, 273 K or I Ga at 1273 K (Pearson 

et al.. 1995). Although extremely rapid graphitisation can also occur. Within an impact 

event the graphitisation of diamond may be expected to follow that observed in 

experimental shock transformation experiments which require the immediate quenching 

of products in order to obtain diamond (Bogdanov et al., 1995: Epanchintsev, 1995; 

Hirai et al., 1995). Similarly in CVD diamond synthesis quenching may be required to 

prevent reverse graphitisation (Rao et al., 1995). Explosion synthesised nano-diamonds 

comprise a diamond core within a graphite shell, the result of regraphitisation when 

pressure drops sharply but temperatures remain high (Donnet et al., 1997). Diamond is 

rapidly transfoimed to graphite at temperatures 2 1000 K in the presence of free oxygen 

(Vishnevsky and Raitala, 1998). The spontaneous graphitisation of diamond occurs at > 

2000 K forming a stable diamond-graphite interface at 1000 K (De Vita et al., 1996). 

Thcreforc cooling of high-temperature diamond-bearing iinpactites to below 1000 K 
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would inhibit further graphitisation and preserve diamonds within a graphite core. 

Spontaneous graphitisation and explosive disintegration of diamond at > 2000 K 

foiining diamond fragments with graphite coatings was observed by Andreev (1999) 

where the temperature of reaction was dependent on the density of defect structures. A 

similar process may explain the fragmented diamond structures often seen in the suevite 

samples, where a hexagonal structure is only party preserved (e.g. figure 3.4). 

Removal of the graphite coatings revealed diamond within previously black, 

s«oiy grains and clusters of grains. This may also expose the detailed structure of a 

diamond surface with etched pits and margins where preferential graphitisation may 

have occurred in areas with high concentrations of defect structures. Ma et al. (199 1 ) 

Iound that during polytype transformations the nucleation of the second phase tended to 

occur along defect structures. 

As mentioned in the introduction to this chapter the samples from the core 

sections provided all fell within the second unit of the core as classified by Von 

Englehardt and Graup, (1984). Comparison ofthe results obtained for these samples 

with samples from the 0the.r units of fall-back suevite would be an interesting study. 

Schmitt et al. ( 1  999) found diamond in a single section of core from a suite of 25 core 

snmples. The evidence suggests that diamonds are preserved in this unit of high 

temperature suevitc and it would be interesting to compare this with samples from the 

low temperature material. together with detailed information concerning the cooling 

histories. 

4.7. IMPACT DIAMOND FORMATION. 

The range of mechanisms used experimentally to produce diamonds from a 

variety of different types of carbon has greatly expanded the field of knowledge 

concerning diamond formation. Correspondingly the mechanisms proposed to produce 

diamonds during meteorite impacts has increased (table 4.12). These mechanisms 

operate in a variety of ways and at variable pressures and temperaturcs. The aim of this 

section is to consider whether differences in these formational conditions, the observed 
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st r i~ct~~res  found within natural impact diamonds and the types of associated carbon 

polymorphs can be used to indicate which mechanisms are the tmst likely to have 

occurred. The predominant carbon source which has been considered is graphite, 

whether through direct transformation or via a vapour growth model. In addition. some 

of the proposed mechanisms and natural observations are suggestive that other carbon 

forms may he important for example, coal (Ezersky, 1982; 1986) and carbynes 

(Whittaker, 1978; Heiniann, 1994). 

Each of the proposed mechanisms may be expected to produce diamonds with, 

to some extent, characteristic structural features andor mineralogical associations. For 

example, inherited structures or diamond associated with S i c  or carbynes. The pressure 

and temperature requirements for these mechanisms are varied hut in addition some of 

tlic mechanisms require specific carbon precursor structures, e.g. porosity. crystaiíinity 

and orientation. or the addilion of other elements such as silicon. 

Mechanism 

Llltrafas[ annealing of glassy carbon. 

Martensitic shear transformation of 3-R 

Ref Pressure and temperature 

[ I l  

121 

>35 Gpa, > 2000 K 

>35 Gpa, > 2000 K 

graphite I 
carbon, 

Shock-transformation of well-crystallised 

l l  

[41 - 5 Gpa, - 1000 K 

Hot spot transformation of disordered I [31 I > 35 Gpa, > 3000 K 

graphite (quasi-martensitic). 

'Carbon self diffusion. [SI Anomalous diffusion rates 

Synthesis froin carbyne intermediates. í61 < 5 Gpa, > 2600 K 

Chemical vapour deposition on 4H-a-Sic. [ 7 ]  Ambient, - 1200 K 

Homogenous nucleation CVD. [ X I  Ambient, 2000 K 
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The pressure and temperature phase diagram for the carbon polymorphs 

diamond, graphite and carbyne is shown in figure 4.17 alongside the line for the onset 

of irreversible shock metamorphic effects in granitic rocks (Grieve et al., 1996) and the 

line for the shock synthesis of cubic diamond. 

The stability fields for the various polymorphs do not exclude the persistence of 

different polymorphs outside their fields of stability due to the kinetic inhibition 

imposed by the high activation energies required for reactions (Bundy et al., 1996). 

Thus, diamond can persist metastably outside its stability field and similarly graphite 

and carbyne could exist outside their stability fields. 

Stacking faults 

Polycrystalline 

Layered 

Twinniii~ 

Skeletal 

Etched 

4.7.1. Morphological requirements of diamond formation mechanism. 

The structures which have been observed in the diamonds from the f i e s  crater 

during this study are detailed in table 4.13. together with an interpretation of the 

structures with regards io possible formational mechanisms. 

Table 4.13. Transformation mechanism requirements for observed structures 

Structure I Primary I Secondar I Mechanism requirements 

X X Direct transforiiiation or growth inechanism 

X X Direct transformation or growth mechanism 

X Direct non-destructive transformation 

X Direct transformation or growth mechanism 
Growth structure or partial transformation/ 
growth mechanism 

X 

X Partial transformation, re-graphitisation or 
exposure to hot reactive gases 

Ir I 
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Laycrcd structures in these diamonds are most likely to be inherited features 

from the precursor graphite. whilst skeletal and etching structures arc secondary 

structures not inherited from the precursor. The remaining structures are less conclusive 

without detailed HRTEM. 

Stacking faults are generally considered to be a secondary feature formed either 

during direct polytype transformations (Sebastian and Krishna, 1984), behind a shock 

front (Pu,jols and Boi 

Thus these features may be detected in diamonds which preserve the precursor carbon 

polyinoiph morphology and within phases where the precursor and precursor structure 

have been destroyed either by vapourisation or diffusion. Polycrystalline structures may 

form from the direct transformation of a polycrystalline precursor whether through pre- 

impact processes or shock comminution of a single crystal (Rietmeijer, 1995) or from 

the nucleation of numerous individual crystallites within a precursor grain or 

independent substrate (Hough et al., 1995~).  Twinning may be an inherited feature 

prcserved by dircct transformation or foimed during the formation of a new crystal 

structure during a reconstructive mechanism as growth or deformation twins (Tamor 

and Evcrson, 1994; Mao et al.: 1979). 

, 1970) or during rapid crystal growth (Saha et al., 1998). 

Skeletal structures with a preferred orientation to the individual crystallites 

appear to be the result of the removal of graphite or other substrate material, crystal 

growth from a limitcd carbon feedstock (Shrafranovsky, 1964) or within a orientated 

stress field. Etching appears to be a predominantly secondary structure although 

graphite grains with etched structures were observed using the SEM. The etching of 

diamond grains appears to show two forms, the removal of graphite or poorly crystalline 

material from the diamond structure forming needle-like structures and surface etching 

forming pits and vugs. The formation of graphitic carbon appears to be pervasive 

throughout the grains whereas the surface features inay represent corrosion of diamond 

by reactive gases (Vishnevsky and Raitala, 1998), or hot silicate melts (Langenhorst et 

al., 1999). 
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4.7.2. Polytype and mineralogical associations. 

The type of diamonds found in the Ries crater inipactites together with other 

carbon polymorphs and carbide minerals (Sic) must be taken into account when 

considering the possible formational mechanisms and conditions which may have 

occurred during the impact. Table 4.14 summarises the forms of carbon that have been 

detected at the Ries crater and in some instances at other impact craters. 

The various polytypes and mineral associations such as diani«nù/SiC 

intergrowths are formed at different pressure and temperature conditions and require 

certain conditions for their formation. Large diamond plates found within the impactites 

are genei-ally platy and apographitic preserving graphite morphologies. The conditions 

experienced by the Ries crater impactites lie within the field of diamond foimation at the 

expense of graphite whilst still preserving graphite structures (De Carl¡, 1998). Single 

crystals of the 4 H a -S ic  polytype indicate that pressures and temperatures must have 

been in the range of2000-2500 K (Jepps and Page, 1983) with a mechanism for 

foi-ination that musi have involved either a liquid or vapour phase, or the rapid diffusion 

of carbon and silicon, This may have occurred during the impact event using carbon 

derived from graphite or possibly as a back reaction between diamond and/or graphite 

and silicate vapour. Silicate glass and chaoite within the iinpactites indicates that 

iemperatures 2500-3000 K occurred which is sufficient to produce a liquid or vapour 

phasc. The aggregates of a-Sic and ß-Sic indicate thai the conditions must lie or have 

passed through those suitable for the formation of both polytypes. Alternatively, 

conditions may have been such that one formed at the expense of the other and 

preserved a remnant of the parent polytype. 

. 

Jennifer I Abbott Chapter 4 179 



Table 4.14. Carbon in the Ries impact rocks. 

like pseudomorphs 

[ i ] .  Hough et al. (1995~).  (21. El Goresy and Donnay, (1968). 

like pseudomorphs 

[ i ] .  Hough et al. (1995~).  (21. El Goresy and Donnay, (1968). 

Skclctal diamonds do not preserve graphitic morphologies and appear to have 

foi-med (a) within an orientated pressure field produced hy the pa. 

froiit. (b) from a vapoui- as a condensate or (c) within a substrate material. It is possible 

that the skeletal dinmonds rcprcsent remnant diamond-graphite intergrowths where the 

graphite has been etched away. However, as discussed in sections 3.4.2 ihese grains do 

noi appear to preserve graphitc morphologies and are distinct from etched grains which 

do. Intcrgrowths of diamond with silicon carbide support the idea of a vapour phase in 

order io incorporate Si into the diamond structure. Alternatively, the diffusion of Si into 

carbon may occur at high temperatures and this may be enhanced by defect structures 

(Morris, 1980). The existence of graphite indicates that the distribution of shock 

conditions was insufficient to result in wholesale diamond fornution and the majority of  

graphite (section 4.6.2) was preserved. However, graphite in the Ries crater impactites 

(which has not been transforined to diamond) could represent re-graphitisation of 

iiiipact diamonds or  the shock-graphitisation of poorly crystalline prc-graphitic carbon. 
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[-lira¡ et al. (1995) simultaneously foiiiied diamond and crystalline graphite from poorly 

crystalline graphite. 

The evidence for carbynes at the Ries crater is limited to one documented 

occurrence (El Goresy and Donnay, 1967). The formation conditions for carbyne 

involve temperatures > 2600 K and, depending on the polytype, relatively low pressures. 

Tlic existence of this white coloured mineral within shocked graphite indicates that 

localised temperatures were sufficient to produce carbynes yet pressui-es were 

insufficient to produce diamond. The distribution of' shock pressures and temperatures 

has been shown to be heterogeneous within the irnpactites (section 4.6.3). The carbynes 

niay actually predate the impact event since they have been found in graphite from 

around the world (Whittaker, 1979; Whittaker and Kintner. 1985), Alternatively they 

may be formed during the impact by thc vapourisation (Whittaker and Kintner, 1985) or 

high pressure transfornmtion of graphite (Kleimann et al., 1984). The existence of 

carbyne at the Ries has been questioned due to the ready transformation ofcarbyne to 

diamond at high pressure (Whittaker, 1978; 1979). It has already heen determined that 

the distribution of shock pressures and temperatures was highly heterogeneous and the 

imjority of material experienced only low grade shock metamorphism, suggesting that 

pre-cxishng carhynes may not have experienced conditions sufficient to produce 

dinniond. The slow kinetics of the carbyne-diamond transformation also produce a 

transformation ratio of 500: I (Whittaker, 1978; 1979), further evidence that not all 

carbyne would form diamond. 

1.8. MECHANISMS OF IMPACT DIAMOND FORMATION. 

The association of impact diamonds with various proportions of lonsdaleite, (the 

high pressure hexagonal polymorph of diamond) led to the suggestion that these 

diamonds could be produced by impact shock waves (Masaitis et al., 1972). These 

sliock waves would transform pre-existing graphite in the target rocks into diamond. 

Diamond found in-situ in graphite bearing gneissose basement rocks has been used to 

support this theory (Masaitis, 1994; El Goresy et al., 1999). There are several potential 
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inechanisnis for this transformation, derived from experinlenta] diaiiiond synthesis 

through shock loading experiments (De Carl¡, 1967; Dc Carli alid Jalnieson, 1961 : D~ 

Carli, 1998; Chomenko et al., 1975). 

An alternative theoiy for the formation of these iinpdci dei-ivcd diamonds is via a 

mechanism of chemical vapour deposition (CVD). This proccss inay involve the 

condensation of S i c  in a reducing environment which is followed by the formation of 

intergrown diamond and silicon carbide and, finally, diamond (Hough et al.. 1995c) as 

observed in CVD deposition of diamond on silicate substrates (Zang et al., 1991; Stoner 

et al., 1992). 

The experimental investigation of the shock, explosion and vapour synthesis of 

diamond from a variety of precursor inaterials has indicated that the possible 

forinational incchanisiiis for impact diamonds may be significantly more complex and 

iiivolvc intermediate phases such as carhyne (Whittaker, 1979: Hciniann, 1998) or S i c  

(Zang et al., 1991; Stoner et al., 1992; Lannon et al., 1995). 

4.8.1. Direct transformation. 

The direct transformation of diamond by fast diffusionless kinetics is supported 

hy the observations of inherited morphological features from the precursor carbon, such 

as kink bands and twinning (Masaitis, 1974) and hexagonal morphologies from 

- craphire. During a dissolution and nucleation phase transformation or formation 

niechanisin these inherited structural characteristics would be lost, whereas solid state 

transforinations maintain the size and shape of the parent phase (Baronnet, 1992). 

Martensitic transformations are correctly applied to the formation of a martensite froin 

the quench cooling of metals, which form the polymorph phase as a result of cooling. A 

less rigorous dcfinitioii niay he applied to direct-transformation polyrnorphistn as a 

rcsult of shock loading if this mechanisin is fast, irreversible and noli-diffusive. If 

sufficient activation energy is provided by high pressures and temperatures associated 

with an impact shock wave or shear stress from an impact shock wave then the phase 

transforination can occur. Contributions to produce the required activation energy niay 
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he provided by high defect densities allowing the transformation to occur outside the 

required stability field and therefore enhance the growth kinetics of the new phase 

(GI-een. 1992). 

One of the first reported diamond syntheses by dynamic shock pressure was by 

Dc Carli and Jamieson (1961) producing small (<I0 pm), black diamonds from simple 

lattice compression of 3R (rhombohedral) graphite along the c-axis. Pure hexagonal 

graphitc did not yield diamonds (De Carli and Jamieson, 1961). However no correlation 

was seen between the amount of 3R graphite used and diamond yields (Morris, 1980). 

As natural graphite is composed of only 5-15 % rhombohedral graphite (Fahy et al., 

1986) this would also limit the amount of diamond that could bc formed in a natural 

impact event. Fast martensitic graphite to diamond transformations were observed by 

Erskine and Nellis (1991) who rcported transformation times of I ns at 30 Gpa when 

shocked along the c-axis. Their results suggested that the orientation of pyrolytic 

- graphite greatly affected the phase change behaviour and ease of transformation. This 

has heen shown to forni lonsdaleite if shocked along the c-axis (Tielens, 1990), 

suggesting that only correctly orientated graphite would transforni to diamond and 

should generally he associated with londsdaleite. The lack of correlation between 

gi-aphite orientation and diamond yields togethcr with the observation that yields were 

strongly dependent on temperature led to the devclopment of other theories for the 

niechanisin of transformation 

4.8.2. Ultrafast annealing. 

Firstly ultrafast annealing of glassy carbon by high shock temperatures was 

suggested by De Carli (1967) following an initial collapse of the graphite lattice at high 

pressures. This forms a glass like structure with short range order of the carbon atoms 

in thc diamond configuration. This is similar to the mechanism proposed by Pujols and 

Boihard (1970) where stacking faults are formed behind a shock front producing a 

defect saturated solid with the structural characteristics of a glassy phase. Such a 

mechanism, which involves the total destruction of the graphitc lattice and formation of U 
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- glassy intermediate phase, would result in the total destruction of any pre-existing 

sti-uctui-al characteristics and result in no inherited features. The majority of shock 

synthesised diamonds are cubic, polycrystalline and display no inherited structural or 

morphological features (De Carli, 1995). Hirai and Kondo (1991) produced cubic 

diamond from shock quenched 3R graphite shocked along the c-axis that occasionally 

displayed hexagonal morphologies. 

4.8.3. Hot spot formation. 

A correlation was noted between the degree of crystallinity of precursor graphite 

and diamond yield prompting the suggestion of a hot spot mechanism (De Carli, 1967; 

199X).When porous material is shock compressed the material immediately around the 

collapsed pores is shock-heated to much higher temperatures than material further from 

poreh (Williamson, 1990). Diamonds <5 prn in size have been found in-situ associated 

with biotite and graphite in shocked gneisses from the Ries crater (De Carli et al.. 1999). 

As less than 5% of the available graphite contained diamond the transformation was not 

complete and transient hot spots at >lo, o00 k and 5 30 Cpa were proposed to explain 

thc ohserved distribution. Vapourised carbon gas can also be formed inside 

heterogeneously heated porous material, these pore spaces are collapsed by high 

pressure increasing the vapour pressure and resulting in nucleation of diamonds 

associated with carbynes indicating that the temperatures reached within the hotspots 

IIILIS~ tiave exceeded 3200 K (Kleiman et al., 1984; Kleiman 1990). This inechanisni 

provides thermodynamic self-cooling due to adiabatic expansion and the admixture of 

cooler surrounding material (De Carli, 1995). 

Compression of porous material could result in the orientation of pore spaces 

pcrpendicular LO the direction of principal compression. This orientation of pore spaces 

combined with hot spots associated with pore collapse may result in the n~icleation of 

diamond crystallites parallel to the compressed pores producing a crystallites with a 

preferred orientation. 
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4.8.4. Carbon self-diffusion. 

m contrast to hot spot formation a mechanism involving carbon self-diffusion 

was proposed whereby anomalously high diffusion rates can be achieved by the 

îormntion of' extremely high dcnsities of defect structures following the passage of the 

shock front (Choinenko et al., 1970). As pressure is increascd the graphite becomes 

increasingly unstable forming transitional states, vacancies and allowing increased 

atomic migration. Diffusion assisted diamond nucleation and growth was also 

suggested by Morris, (1980) after consideration of the shock hugoniots of diamond and 

graphite. No correlation is seen between shock pressures and diamond yield which 

appears to be controlled by temperature, suggesting a thermal diffusional reconstructive 

mechanism (Morris, 1980). There is a correlation between high defect structure 

dciisities in nano-crystalline and shock produced diamonds which indicate that density 

defects may contribute to the energy required to overcome the activation energy barrier 

of diamond formation and so reduce the temperatures and pressures required. 

Recent data indicates that two processes occur at pressures greater than 20 Gpd: 

( I )  a relatively slow gruphite to diamond transformation which is localised in defect 

structure zones and (2) highly orientated graphite transforination to a diamond-like 

phase with Past (ps) maitcnsitic kinetics and is reversible (Zhuk et al.. 1997). Thus 

different pressure and temperature regimes can be identified. high pressure/low 

temperature (HP/LT) conditions without quenching forming diamond flakes and 

HP/HT hot-spot conditions with quenching by surrounding material (De Carli, 1979; 

1998). 

The main problem appears to be the lack of experimentally shocked diamonds 

displaying morphologies and structures inherited from the precursor carbon material. 

This may be because greater diamond yields are achieved using poorly crystallised 

graphite and carbonaceous material or because natural conditions have nut been 

successfully reproduced. Highly ordered graphite shocked to 2 15 Gpa, 2 1300 K 

forms polycrystalline. apographitic diamond (De Carli, 1998) whereas porous 

disordered carbon formed 2 3000 K in hotspot conditions (De Carl¡, 1979; 1998) do 
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not preservc precursor stmctures. Indicating that the c1e;irly apographitic coarse grained 

diamonds found in impact craters formed from highly ordered graphite at or around 15 

GPa. 

4.8.5. Carhynes. 

The field of material sciences has given rise to a further model for the 

transformation of graphite to diamond. Unlike the direct transformation model it is 

suggested that linear carbon allotropes, carbynes, could fom intermediary stages in the 

transformation (Whittaker, 1978: Heimann, 1994). 

Carbyne (chaoite) was identified within shocked graphite in the basement 

Cneisses at the Ries crater (El Goresby and Donnay, 1968). Carbynes are the 

tliermodyiiamically stable allotropes of carbon at very high temperatures and can be 

fornied by bond splitting within the planar graphite layers (Heimann. 1994). This 

suggests that carbynes or carhyne-like carbons may form precursor phases during the 

trunsformation of graphite to diamond, with the collapse of the carbyne structure to 

diamond after the shock front passes (Whittaker, 1978; Heimann, 1994). The 

persistence of carbynes within shocked graphite which has not been transformed to 

diamond may be explained by the fact that the conversion rate ofcarbyne to diamond is 

appi-oxiiiiately 500: 1 (Whittaker, 1978). This would mean that only a single carbyne 

grain out of 500 would be converted to diamond. Alternatively the persistence of 

carbynes may be a result of localised hot-spot conditions due to the heterogeneity of 

\hock and only a proportion of the grains experiencing the required conditions for 

transformation. The transformation of graphite to carbynes requires high temperatures 2 

2600 K due to a shift to triple bonding and graphite dissociation into chains (Whittaker, 

1978). If this is followed by a high pressure pulse, carbynes may be transformed to 

diamond (Kleirnan et al., 1984; Heimann et al., 1994). 

This mechanism requires approximately a 100 ps period of high temperature, 

followed by a 10 ns period of high pressure. In a natural meteorite impact event the 

shock-induced pressure increase is associated with, and followed by, a temperature 
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pulse which is in contrast to the conditions required for carbyne formation. High fore- 

wave shock temperatures from the approaching bolide may result in the vapourisation of 

surficial sediments and ground cover (depending on the age ofthe impact) which could 

potentially provide carbon for carbyne condensation. This would again have to be 

complete and available for shock compression in a very shoit time. 

In contrast Borodina et al. (1996) found that the carbyne to diamond 

transformation involves two stages: fast martensitic compression and cross-linking at 

the shock front to produce carbyne crystals followed by a longer period at high 

temperatures to forni diamond. With low diamond yields due to the low rate of 

transformation (Whittaker, 1978) and/or subsequent graphitisation. Such a mechanism 

is more readily envisaged within a natural impact event where the high pressure pulse of 

the shock front is followed by a period of relatively high temperatures. Rapid quenching 

to < 1000 "C is required if the diamonds are to survive the pressure pulse. Rapid 

quenching is required for all the mechanisms of impact diamond formation. Masaitis, 

( 1998) suggests the admixture of relatively cool unshocked target material during 

ii'ansportation leading to the preservation of diamond in the central pa ts  of large melt 

sheets. Carbynes produced by pressure synthesis (5  56 Gpa) forni platy single crystals 

which are commonly apographitic (Kleimann et al., 1984; Kleimann, 1999). Whether or 

not the transformation of graphite to diamond proceeds via high temperatures and then 

shock compression or shock compression, or vice versa will affect the potential for the 

preservation of relict precursor morphologies. A mechanism involving the vapourisation 

of graphite forming carbynes between 2700-3000 "C (Whittaker, 1 978) is unlikely to 

preserve relict textures. This suggests that apographitic diamonds may be formed from 

graphite via an interinediaiy carbyne phase. 

4.8.6. Fullerenes. 

Although attempts to detect fullerenes within Ries crater impactites have yet to 

be s~iccessful they have been found associated with the K-T boundary layers (Heymann 

et al.. 1994), the Sudbuiy impact crater (Becker et al., 1994), Permo-Triassic boundary 
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sections (Chijiwa et al., 1999) and meteorites (Becker et al., 1994; Becker and Bunch, 

1997). Fullcrenes may be transformed to diamond under experimental conditions by 

shock compression and rapid quenching (Sekine, 1992; Hirai et al., 1995). Although it 

is unlikely that fullerenes could be generated by vapour combustion processes and 

subsequently converted to diamond by high pressure during a single impact event. The 

association of diamond with S ic  (Hough et al., 199%) indicates that gas-phase 

reactions may he important in the formation of diamond (the discovery of fuilerenes 

may substantiate this). 

4.8.7. Catalysts. 

Impact experiments using carbonates (Rietmeijer, 1999) have produced graphite 

from high temperature reducing vapours, and chaoitehexagonal diamond (londsdaleite) 

h-om oxidising vapours, indicating a complex interrelationship between the spatial, 

temporal and compositional stmcture of the vapour plume. The carbonates may also act 

as catalysts for diamond formation. However this mechanism can be discounted for 

some of the Ries diamonds where the carbon isotopic composition indicated that the 

carbon source was primarily graphite. 

Diamonds can be spontaneously crystallised from carbon solutions in alkaline 

carbonate melts i.e. (Na,Mg(COJ-graphite and NaKMg(CO,),-graphite at 8- IO Gpa 

and 1700-1800 "C (Litvin et al., 1999). Wang et al. (1996) found that the addition of 

particles of ß-Sic, crystalline graphite and C,, to carbonísolvcnt alloys resulted in the 

heterogeneous nucleation of diamond on the surfaccs of the particles. Similar processes 

could occur during an impact event where all the necessary elements are available 

iricludin:: carbonate melts. Carbonate melt glasses have recently been found alongside 

silicate melt glass in suevites to the south and west side of the Ries crater, formed from 

the shock vapourisation and melting of carbonate rocks (Graup, 1999). This indicates 

that there was more shock melting of the sedimentary cover sequence than previously 

reported. However, impact diamonds are found in  suevites that do not contain a lot of 

Jennifer I Abbott Chapter 4 188 



carbonate melt. e.g. OQS. This suggests a carbonate catalysis mechanism is noi the sole 

mechanism rcsponsible for the formation of impaci diamonds. 

Molten transition metals (group VIII) are used commercially as solvents and 

catalysts for diamond growth (Burns and Davies, 1992). This suggests that the 

pressures and temperatures required for impact diamond forinaiion niay vary depending 

on the chcniical composition of the trace elements within the carbon feedstock. 

4.8.8. Vapour deposition related mechanism. 

Natural associations of diamond and silicon carbide have been noted for the 

Rics crater suevite (Hough ct al., 1995.c) and it was proposed that a mechanism similar 

10 CVD operated in the impact-generated fireball and led to the condensation of nni to 

pi11 di;iiiioiid crystallites. A similar mcchanism has also been proposed for the formation 

of some interstellar diamonds, formed by stellar condensation as ii metastable phase 

where thc first solid phase to condense would be carbon and although graphite is stable 

and diamond metlistable the energy differences are very iiiinor (Lewis et al., 1987). 

Fullerenes in the Sudbury impact crater and WT boundaiy layers indicate that vapour 

phase reactions may be important (Becker et al. 1994: Heyinann et al. 1994). 

The Sic found in the Ries crater impactites occurred as hexagonal a -S ic  4H 

aggregates with ß-Sic and intergrown diamond and S ic  (Hough et al., 1995c) 

indicating an intimate CO-relationship. Diamond can be produced by CVD using a 

silicon substrate and this also results in the formation of Sic as an intermediary layer 

which is gradually replaced by diamond (Zang et al., 1991: Stoner et al.. 1992; Lannon 

et al.. 1993). P-SiC has a lattice constant between those of Si and diaiiiond which may 

promote the crystallisation of diamond by fornung a buffer layer between the two lattice 

structures (Von Munch and Wiebach, 1994). 

The two different S i c  polytypes have different stability fields which indicate 

different formational conditions (figure 4.18). This is additionally coiriplicated by the 

effect of impurities which may stabilise cei-tain polytypes (Jepps and Page, 1983). Cubic 

ß-Sic and 2H-SiC arc formed between I ,  500-2,OOO"C whereas hcxagonal a S i C  (4H, 
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6H and XH) are higher temperature polytypes (Yainanda and Tobisawa, 1990). This 

suggests that a range of temperatures must have operated during diamond and S ic  

condensation which would be expected from a hetei-ogeneous ionised ~ a s  plume that 

has insufficient time to homogenise by mixing. Alternatively cubic S ic  shows a marked 

prcference for metastable formution and will be the first polytype to condense from a 

vapour or melt; this may subsequently convert to hexagonal 4H or 6H by phase 

transfoimations (Heine et al., 1991). The phase transformations are observed to be 

xcoinpanied by increased densities of stacking faults and twinning (Jepps and Page, 

1983). 

1 O00 1500 2000 2500 3 0 0 0  3500  

Temperature (T) 

Figure J.17. Stahility diagram for the Sic polytypes showing ß-Sic (3C and 2H) and a- 

SIC (1H. 6H, XH and 1SR) with temperature [adapted from Jepps and Page, í1983)I. 

Diamonds associated with silicon carbide imply that diamond and S i c  formed 

either from a vapour phase onto a silicon-rich substrate, or diamond was deposited onto 

Sic which formed due to the reaction of vapourised silicon with carbon in an ionised 
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vapoiir. During CVD the gas phase is commonly 2000°C with a coolcr substrate i000 

"C to encourage condensation (Klages, 1995). S i c  and Si metal can also he formed 

directly from shock vapourised SiH,-CH, through homogenous nucleation, foiming Si 

at 1100-1600 "C and ß-Sic at 1600 "C (Canner and Frenklach, 1989). 

Langenhorst et al. (1999) suggest that extensive corrosion and graphitisation 

seen in diamonds from Lappijärvi (Finland) could produce skeletal diamond structures. 

They also suggest that S i c  could be formed by the carbothemiic reduction of S i c  at 

>1550-1750 "C or through the reaction of silica rich impact melts with apographitic 

dinmonds. The temperature range suggested falls within the field for the 3C and 2H ß- 

S i c  polymorphs and towards the field of 4H and 6H a-Sic  (figure 4.17). At the 

suggested temperatures or the temperatures at which silicates exist as a melt (2 2000 

"C). apographitic diamonds would be subjected to rapid graphitisaiion. In addition the 

discussion of the structure of skeletal diamonds (sections 3.4.4. and 4.4.4) emphasised 

the distinct structural differences between apographitic and skeletal diamonds. Etched 

and corroded apographitic diamonds were seen but still preserve remnant graphitic 

structures. The skeletal diamonds described in this study and by Hough et al. ( i  995c) 

display no apographitic structures. 

Small grain-sized, defect-rich S ic  can also be made by annealing C,,, fullerene 

films on Si for 25 minutes at 900 "C and 100 minutes at 800°C (Moro et al.. 1997). In 

addition diamonds can be made from C,, at 12.5 Gpa and 900 "C (Brazhkin et al., 

1997). This indicates that whilst SIC could be produced from fullerenes (formed by the 

vapoiir combustion of carbonaceous material) by post deposition annealing during the 

cooling of impactites whereas the formation of diamond requires high pressures. 

Diamonds can also form via suhstrale-free homogenous nucleation in the vapour 

phase (Frencklach et al., 1989: Buerki and Leutwyler, 1991a: l991b; Howard et al., 

1990). Conditions must be such that the formation of graphite at the expense of 

diamond is inhibited; in experimental conditions this is generally achieved by the 

gasification of graphite by hydrogen (Derjaguin et al., 1994). 
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4.9. CONCLUDING DISCUSSION. 

4.9.1. Diamonds in fallout and fallback suevite. 

Suevite inipactites from the Ries crater arc found to contain diamonds in the 

rnngeof 0.5-300 wm. These were found in the OQS and SBS and 3 sections of ïdllback 

suevite from the N-73 core (Abbott et al., 1998b). Diamonds were also found in glass 

separates from the OQS (Abbott et al., 1996; 199th) as well as in the PIMR (high 

temperature suevite) and AQG. These additional discoveries substantiate the previous 

identification of diamond in fallout suevite from the Ötting quarry (Rost ct al., 1978; 

Ho~igli et al., 1995c) and glass separates (Rost et al., 1978; Siebenschock et al., 1998: 

Schinitt et al., 1999) 

These diamonds showed morphologies and stiuctures common to impact 

dianionds from the Ries crater (Rost et al., 1978) and other impact craters (Ezersky, 

1982; 1986: Masaitis and Shafranovsky, 1994; Gurov et al., 1995). These structures and 

niincralogical associations may indicate whether or not they are formed by direct shock 

traiisforniations or a mechanism similar to CVD. 

Variations in the distribution of the diamonds within the N-73 core relative to the 

variations between the different suevite units in the core, cannot be determined from this 

liiiiitcd set of samples. Investigations by Schmitt et al. (1999) using a much larger 

\ample suite detected diamonds in only one section of the N-73 core and suggest that 

thc core suevites contain a lower concentration of diamond than the fallout suevites. 

However it was not made clear how many of the 25 samples selected for analysis had 

been investigated. The three fall-back suevite samples investigated in this study 

contained diamond. 

4.9.2. Morphological structures of Ries crater diamonds from fallout and 

fallback impactites. 

The features observed indicate that there are a possible three distinct formational 

niechaiiisms: ( I  ) a dircct transformation preserving palimpsest structures, (7) vapour 

phase mechanism resulting in  skeletal structures with strong preferred orientations and 
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( 3 )  the incomplete transformation of a mixture of amorphous and graphitic carbon. 

Evidence for each of these transformation mechanisms can he observed in the 

diamonds. The large (5  300 km) diamonds detected using optical microscopy 

observations of samples generally show stmctural characteristics suggestive of direct 

transformation of graphite, whereas the diainonds observed using TEM show structural 

features suggesiive of direct transformation, vapour phase growth and incomplete 

transformation. 

4.9.3. Mineralogical associations and heterogeneity. 

The carbon polyinorphs graphite, carbyne, diamond and the mineral S i c  are all 

l iund in the Ries crater impactites, the varied formation and stability conditions for 

these phases could be seen as contradictory. The inherent heterogeneity of impactites 

due to the interaction of shock waves with structural boundaries and porosity (Stöffler, 

1977) together with the variation in shock conditions away from the point of impact may 

be used to explain these apparently contradictory formational conditions. 

Impact experinicnts can yield several carbon polymorphs such as carbyne 

(chaoite), graphite, diamonds (Derjaguin et al., 1994). disordered carbon and soot. 

Carbonates and a variety of different elements may have a catalytic effect on the growth 

of diamond 

4.9.4. Carbon stable isotopic compositions. 

The carbon stable isotopic compositions of the fallback suevite residues and 

extracted diamonds and graphite lie within the fields found for fallout samples. 

The fallback suevite residues, graphitcs and diamond show a distinct cluster of 

values around 6°C -25 to -26.5 %O. The main exception being the residue from the 494 

ni sainple with a 6°C of -17.8 %G. This value is more comparable to those from the 

Seelbronn quarry suevite samples (discussed in chapter 3) and the results by Hough et 

al. ( 1995~).  The graphite samples from the N-73 core have similar isotopic values to the 

ri-aphite samDles taken from the fallout suevites, indicatinr a derree of homogeneity in 
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the carbon isotopic compositions of basement graphite. The graphite from the 494 m 

section is also comparable to those from the fallout suevites (6°C = -26 566)  suggesting 

that the residue contains a "C-enriched component probably representing diamond. 

Thk indicates the possible admixture of carbonate-derived material as suggested by 

Hough et al. (1995~) .  

The 6°C of the graphite and residues is also compwable to that of the diamond 

saiiiple analysed as well as the diamonds from fAii-Out suevites. Indicating that it is not 

inconsistent that the carbon source for these diamonds was graphite in composition. 

1.9.5. Carbon sources, mechanisms and processes. 

The primary carbon source identified during detailed investigation of the 

individual components within the Ries crater impactites (principally suevites) is graphite. 

A '.'C-enriched component derived from the admixture of vapourised of molten 

carbonates is also suggested by the 6°C composition of samples from the SBS and 

NC494. 

The morphology of the diamonds identified using optical microscopy suggest 

inherited apographitic features. The martensitic rransforrnation of graphite to diamond at 

high pressures (I 60 Gpa) has been suggested to account for inherited graphite 

iiioq>hologies (Masaitis et al., 1972). However, there are additional mechanisms which 

can produce apographitic features which cannot be discounted, e.g. intermediary 

carbynes (Kleimiiiin et al., 1984; Kleimann, 1999). 

The grains investigated using TEM include apographitic and skeletal orientated 

morphologies together with etching and corrosion. This indicates that vapour phase 

riicchanisnis and the partial transformation of carbonaceous material possibly within 

shock induced hot spots in a porous medium may have occurred. 

The etching features indicate that diamond grains were exposed to corrosion by 

hot reactive gases or melts. The formation of amoiFhous carbon and graphite coatings 

prior to quenching could also produce these etched features. Incomplete transforination 
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of paphitic carbon to diamond could produce the skeletal grains which preserve 

graphitic morphologies. 

Thc heterogeneous distribution of shock metamorphism and iiripactites found 

associated with impact cratcrs highlights the heterogeneous distribution of pressures 

and temperatures which must exist during an impact event. The shock pressui-es 

cxperienced may vary on the inm to cm scale (Melosh, 1984). Providing the necessaiy 

pressure and temperature conditions for a range of diamond formation mechanisms. 

The main conclusion from the investigation of the morphology and features of 

the impact diamonds found during this study together with an appraisal of the potential 

mechanisms for transfornation indicate that there is evidence for a range of possible 

iiiechanisms that could have a role in the nucleation and growth of impact diamonds 

forming from intermediary allotropes. Restricting the formation of impact diamonds in 

terrestrial impact craters to a single mechanism of transformation ignores the complexity 

of the phase transformations and reactivity of the different allotropes of carbon. A 

particular example might be the experimental conversion of organic compounds and 

carbon-hydrocarbon mixtures which may be converted to fine grained (51 pm) diamond 

at high pressures (9.5 to 15 Gpa) and temperatures [ 1300-3000 "C). Including peanut 

butter which was converted to diamond at 15 Gpa and 2000 "C (Wentorf, 1965). 

Highlighting the fact that diamond can be formed from almost any carbonaceous 

prccursor and at widely varying pressures and temperatures. 
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CHAPTER 5. GARDNOS IMPACT CRATER: A PRELIMINARY 

INVESTIGATION OF ITS CARBON CHEMISTRY. 

5.1. INTRODUCTION. 

The Gardnos impact stmcture (900-400 Ma) is located in Norway 125 km 

Northwest of Oslo and 9 km north of Nesbyen, Buskerud (Dons and Naterstad, 1992: 

Naterstad and Dons, 1994). The structure is 5 km in diameter, roughly circular in 

outline, exposes the original crater floor and crater-fill breccias and has been described 

in dctail (Dons and Naterstad, 1992; French et al., 1995; 1997). 

The Gardnos structure is intriguing in that the impactires contain anomalously 

high amounts of carbon averaging 0.5 to 1 .O wt %, which is 5- IO times higher than that 

of the metamorphic targct rocks and higher than typical carbon levels in iinpactites from 

other craters (Frcnch et al., :995: 1997). The FI3C of the impactites range from -28.1 to 

-3 I .  1 %c, plus the possible presence of a carbon-rich shale overlying the metamorphic 

t q e t  seqiience suggests that the carbon source may have been biologically derived 

o r y i i c  matter (Dons and Naterstad, 1992: French et al., 1997). However the unshocked 

metamorphic target rocks contain significantly less carbon than the shocked 

iiieiaiiioi-phic target rocks and iiiipactites suggesting the introduction of cai-bon material 

during the impact event (French et al.. 1997). Mechanisms for the introduction of  

carbon include the pervasive admixture of carbon-rich shale (Dons and Naterstad, 1992: 

Frcnch et al., 1995) or hydrothermal mobilisation of cxbon followed by emplacement 

(French et al., 1997). Black shale fragments are found within the impact breccias 

(Anderson and Burke, 1995). The nature of the carbon material, which was presunied to 

be amoiphous was not determined by French et al. ( 1997). Carbonaceous inaterial in 

shocked quartzites from the Gardnos structure was determined to be poorly crystalline 

with Sraphitic inclusions (Anderson and Burke, 1995). 

The inpactites are complicated by post-impact greenschist facies Caledonian 

inetamoiphic over-printing (400 Ma) and although graphite inclusions and carbon-rich 
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fractures are found in the shocked quartzite brcccias (Anderson and Burke, 1996) this 

graphite may have been produced by metamorphism. 

This thesis has identified graphite within the shocked impactites and two 

possible carbon source rocks, the Biri and Alum shales. As well as diamond within two 

s and a black matrix lithic impact breccia. The shale samples were 

investigated in order to determine if these lithologies could account for the increase in 

carbon content documented for the impactites compared to the unshocked target rocks 

(French et al., 1997). The samples were demineralised using HF:HCI to remove silicate 

and carbonate minerals and allow the identification of amorphous, organic and graphitic 

carbon using gas chromatography mass spectrometry (GC-MS). Splits of these 

residues were further trcatcd using chromic and fuming perchloric acids in order to 

investigate the resistant carbon phases using transmission ekctron microscopy (TEM) 

and htepped coinbustion combined with static mass spectrometiy for carbon isotopic 

analysis. 

A suite of Gardnos samples were investigated for soot as well as their carbon 

content (W. Wolbach and S .  Widicus. IWU. unpublished data), the full list is contained 

in appendix 7. 

5.2. GEOLOGICAL BACKGROUND AND STRATIGRAPHY. 

The age of the Gdrdnos crater is poorly constrained to between 900 and 400 Ma 

on the basis of pegniatites dated to 900 Ma and Caledonian metamorphic overprinting 

from 400 Ma (Natersiad and Dons, 1994). French et al. (1995) suggest a formation date 

around 650 Ma. The I .7 Ga target rocks were metamorphosed between 1500- 1700 Ma 

(Proterozoic) and again at 400 Ma during the Caledonian orogeny (French et al.. 1997). 

5.2.1. Target rocks. 

The basement rocks are composed of fine- to medium-grained granitic gneisses 

with minor amphibolites and quartzites (Dons and Naterstad, 1992; French et al., 1995) 

which havc been brecciated and fractured by the impact event. 
~ 
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The off-structure shales which have been suggested as a potential carbon source 

are the Biri shalc (late Proterozoic) (French et al.' 1997) and Alum shale (Cambro- 

Ordovician). The Biri shale was obtained 2 km south of Biri. approximately 50 km from 

the Gardnos structure and the Alum shale from 5 km east of Bjorgo. The Biri shale is 

pirt of lhe Latc Precambrian Biri Formation which comprises organic-rich limestones 

and shales deposited in a shallow marine basin in Southern Norway (Tucker, 1983). 

These shales do not outcrop at the Gardnos structure at the present day but are believed 

to have overlain the metamorphic sequence at the time of impact (French et al., 1997). 

5.2.2. Impactites. 

The crater was investigated by drilling a 400 m core in the northwest side of the 

crater (Naterstad and Dons, 1994) which penetrated sedimentary clastic rocks, melt 

bearing breccias and highly brecciated basement rocks including Gardnos breccia. The 

core did not reach iinshocked basement rocks.The impaciites comprise shocked and 

crushed quartzites, lithic breccias, melt-bearing breccias (suevite) and melt matrix 

breccias (impact melt rock) fornung small irregular bodies within the suevite (Dons and 

Naterstad. 1992; French et al., 1995; 1998). A geological cross-section through the 

crater showing the location of the Banden drill core, central uplift and extent of 

inipactites is shown in figure S.la,  the structure of the drill core is illustrated in figure 

5 .  Ib. The lithic breccias include the Gardnos breccia which forms discontinuous bodies 

within the fractured basement and black matrix lithic breccias. 

5.2.3. Shock metamorphism. 

Shock metamorphic effects are limited in the basement rocks and are mainly 

confined to the inipactites. The central uplift (figure 5.la) forms an exception ah it 

experienced maximum shock pressures from 20-35 Gpa (Robertson and Grieve, 1977; 

Grieve et al., 1981). Diagnostic shock effects are mainly observed in the crater fill 

breccias such a s  the melt-bearing suevites, black matrix breccias and melt-bearing 
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Figure 5 .  I .  (a) Schematic cross-section through the Gardnos impact crater. (b) Schematic 

stratigraphic section through the Branden drill core. ( 1  ) Crater-fill sediments, mainly 

grey-black sandstones, large fragment breccia. ( 2 )  Suevite with impact melt breccia (large 

wave symbols). (3) Gardnos breccia. (4) Basement rocks. [Adapted from French et al. 

( 1  997)]. 
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hi-eccias. These comprise planar deformation features in quartz and feldspar, glassy 

fragments, melted feldspars (French et al., 1997), kink bands in biotite, melted biotite 

(Naterstad and Dons, 1992; French et al., 1995) and maskelynite (French et al., 1995). 

Planar deformation features in quartz are seen in <I % of clasts and have a { 10131 (w) 

orientation diagnostic of shock (French et al., 1995; 1998). The planar deformation 

features and fractures may include methane-bearing fluid inclusions (Dons and 

Naterstad, 1992) which were formed during Caledonian (400 Ma) metamorphism 

(Anderson and Burke, 1995). These shock nietamorphism structures indicate that the 

degree of shock metamorphism ranges from stage I to 1V (table 5 .  i).  The degree of 

shock metamorphism decreases with depth from silicate melt in impact melt rocks and 

suevites to fracturing and brecciation in the underlying basement rocks. 

Sti-ncture 

Fracturing and granulation 

Kink bands in  biotite 

Planar deformation features 

in qiiartz 

Melted feldspars and biotite 

Silicate melt glass 

Pressure (Gpa) Temperature Stase 

("C ) 

1-10 0- 1 o0 o 
1-10 o- I o0 O 

1 0-45 100-900 1-11 

45-60 900- 1 700 111 

45-80 900-3000 111-IV 

5.2.4. Samples. 

Eight saiiiples each averaging I50 g, from the Gardnos structure were provided 

by Professor B. French and are described in table 2. I .  These samples are part of a 

larger collection from the Gardnos structure and surrounding area which 

comprise basement gneisses, black quartzites, local black shales and iinpact deposits 

such as lithic and suevite breccias. 
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The samples were ground io a powder using ali agate pestle and mortar. 4 g of 

each sample was treated using microwave assisted dissolution in HF:HCI, following the 

procedure described in section 2.6.3 to obtain an acid-demineralised residue. Following 

dissolution, the samples were treated with HF:HCI to remove any residual zircons and 

HCI to remove newformed fluorites. Approximately a third of each sample was treated 

with chromic acid at 70 “C to remove amorphous carbon and then a further third of this 

sample was treated with fuming perchloric acid at 2 110°C to remove crystalline 

graphite. Aliquots of thc original demineralised saniples were retained for GC-MS 

analysis and the perchloric and chromic acid-residue aliquots for transmission electron 

microscopy (TEM) and carbon stable isotope analysis using stepped combustion 

combined with static mass spectrometry. 

Sample no Lithology Graphite Diamond 
GI64 Alum shale X 
GI69 Biri shale X 

GI37  Suevite X X 
G I 3 3  Suevite X X 
GI78 Black lithic breccia X X 

GI20 Lithic breccia X 

-~~~ 
~ 

5.3. CARBONACEOUS COMPONENTS INCLUDING DIAMOND IN 

GARDNOS CRATER IMPACTITES. 

The demineralised samples were studied using a petrographic microscope as 

detailed in chapter 2. The high carbon content of these samples and overall black colour 

made the identification of minerals particularly difficult. This was compounded by the 

overall fine-grained nature of the samples (typically 5-50 pm). Individual zircons within 

the residues were considerably smaller (10-50 pm) than those observed in the Ries 

crater samples (150-500 pn). Diamonds were observed in the G133 suevite residue but 

due to their extremely small size (<30 bm) they could not be extracted 
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The samples were analysed using the TEM following the HF/HCI stage of the 

acid demineralisation (table 5.2). This initial analysis indicated that the suevite and black 

lithic bi-eccia saiiiples ((3137, GI33 and (3178) contained diamond as well as highly 

crystalline graphitc. The grains identified as graphite produced SAED paiterns with 

sii-ong spots and no diffuse rings or streaking. The SAED pattern suggests that the 

graphite was crystalline or highly crystalline. Studies of graphite maturity have shown 

that SAED patterns can be used to distinguish between poorly crystalline and highly 

ciystalline graphite as graphite maturity increases (Buseck and Huang, 1985). Electron 

diffraction pattcrns show increasing numbers of rings, decreased diffuseness and in well 

crystallised graphite, discrete spots (Buseck and Huang, 1985). Many of the grains 

identified as cubic diamond showed clear apographitic, platy morphologies, the SAED 

patterns of these grains however showed no indication of graphite or iondsdaieite. 

Diamond was identified within the GI37 and GI33 demineralised residues as 

well 21s the black matrix lithic impaci breccia GI78 and graphite was detected within all 

of the samples. Following perchloric acid oxidation at 120°C the presence of diamond 

and highly ciystalline graphite was confirmed by TEWSAED. This distribution is in 

contrast to that found at the Ries crater where diamonds are found in suevite and suevite 

coinponents but not within lithic breccias (Schmitt et al., 1999). The shales represent 

unsliocked potential carbon sources in the pre-impact stratigraphy of the Gardnos 

structure and do not outcrop in the vicinity of the impact crater at the present day. 

5.4. MORPHOLOGICAL FEATURES OF GRAPHITE FROM GARDNOS 

IMPACTITES. 

The range of moiThological stiuctures observed in the graphite grains was 

limited when conipared with those found in carbon grains at the Ries crater inipactites. 

The majority ofthe grains had strong hexagonal, platy structures and were typically very 

small in size (0.4 to 5 pm), confirming the characteristics noted from the optical analysis 

of the residues which were < 5-50 pm in size compared to <150-500 pni in the Ries 
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crater residues. The SAED patterns of graphite varied from clear spot patterns indicating 

a high degi.ee of crystallinity to more diffuse ring patterns suggesting less crystalline or 

polycrystalline material. The degree of crystallinity in graphite can be estimated from the 

SAED patterns with clear spot patterns indicating high crystallinity and diffuse ring 

patterns less crystalline (Buseck and Huang, 1985). 

5.4.1. Hexagonal, platy structures. 

Hexagonal and platy structures were the most common morphology observed in 

these jiraphite grains. The individual layers are stacked parallel to the basal plane and 

rarely appear to show rotation of the layers. Figure 5.2 shows a very small (400 nm) 

hexagonal graphite crystal from the G137 suevite residue which appears to he 

composed of 2-3 individual layers. 

From the SAED patterns of many of these samples the graphite spots are clear 

and distinct indicating a high degree of crystallinity. In contrast, some graphitic samples 

observed were less crystalline and had diffuse ring patterns rather than spots. 

The morphologies of these hexagonal and platy graphite grains are very similar 

to those of the apographitic diamonds identified within the Ries crater samples (this 

study) and those reported from other impact craters such as Popigai (Koeherl et al., 

1997) aid Lappajarvi (Laiigenhorst et al., 1999). 

5.4.2. Stacking faults. 

Stacking faults were detected in the graphite grains observed in all the Gardnos 

samples. Figure 5 . 3  shows a platy, layered carbon grain from the GI69 shale sample 

which was identified as graphite (inset SAED). The SAED pattern shows double 

reflections indicating several overlapping thin plates. Information concerning stacking 

faults in graphite is limited within the available literature, as this sample has not been 

subjected to impact-related shock these stacking faults arc likely to be the result of 

growth or metamorphic defonnation. 
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These stacking faults are similar to those observed in impact diamond from the 

Ries crater samples suggesting that stacking faults may be inherited structures. However, 

there are a number of different stacking fault configurations which can occur which 

cannot be distinguished without the use of HRTEM. 

5.5. MORPHOLOGICAL FEATURES OF DIAMOND FROM GARDNOS 

IMPACTITES. 

The structures observed in the diamond grains detected in suevite G 137 and a 

black lithic breccia GI 78 were similar to those observed in the graphite examples 

discussed above. 
, 

5.5.1. Hexagonal, platy structures. 

The diamond grains observed usiiig the TEM generally had platy, horizontal 

graphitic layering structures representing stacked plates (figure 5.321) inherited from the 

precursor gi-aphite. Double reflections on the SAED patterns support this observation. 

These layers occasionally show rotation around the axis of the basal plane and fractured 

niargins representing either the breakage of the diamond crystals or the removal of 

graphite coatings. The sample shown in figure 5 3  s h o w  two distinct layers with a 

horizontal offset between them; the grain is rounded in form although an elongate 

hexagonal structure is suggested possibly indicating corrosion of the grain. 

Again these hexagonal apographitic morphologies are similar to those seen in the 

Ries crater sainples (this study) and other impact craters. 

5.5.2. Etching. 

Etching was not well developed in these samples although the margins of some of 

the platy layered samples may be the result of corrosion or fracturing. The highly 

irregular margins of a platy diamond grain from the G13% suevite (figure 5.4) appear to 

show evidence of some etching. The lack of etched structures compared to the Ries 
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5.4 shows a dianiond from the suevite G137. The diamond is approximately 1 .S pm in 

sizc. composed of atleast 6 individual plates. The stacking faults can be seen in both the 

surface plate and several subsurface plates, forming a cross-hatching pattern intersecting 

at appi-oximately 60", indicating the different orientations of the plates. This feature was 

also dnserved in the R e s  crater impact diamonds. The stacking faults in figure S.4a aiid 

5.5 are less than IOnm apart emphasising the high density of these defect structures. 

As in the case of the Ries crater impactites stacking faults may be inheiited 

growth, deformation stmctures or the result from the growth of diamond at the expense 

of graphite. The observation of stacking faults in graphite grains indicates that these may 

be inherited features although the stacking faults observed in the diamond grains were 

moi-e defined. HRTEM is required in order to identify the type of stacking faults that 

occur in these grains aiid so the possible forination mechanisms. 

As in  the impact diamond grains observed in the Ries crater samples these 

snniples appear to show two different types of stacking fault 

and narrow sharply defined black lamellae. 

.hart thick black lamellae 

5.5.4. Polycrystalline textures. 

None of the dianiond grains observed under the TEM showed polycrystalline 

iiiorphological structures similar to those observed in the Ries crater samples. The SAED 

pattern for the diamond shown in figure 5.4 has diffuse diamond spots indicating a 

degree of polycrystallinity. The lack of obvious surface polycrystalline structures 

suggesis thai the diamonds may have annealed surfaces although the obvious stacking 

fault structures suggest that this is unlikely. As these diamonds are 0.4- 1 .S p m  in size 

they ilre likely to be composed of only a few crystallites. The ciystallites in 

polycrystalline diamond are reported to be O. I - 1 pm in size (Langenhorst et al.. 1998) 

whilst individual diamonds from the WT boundary layers are 2 6 nm (Gilmour et al., 

1992). This suggests that the Gardnos diamonds may be composed of around <1-100 

ciystallites hence the lack of clear polycrystalline SAED patterns. 
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5.5.5. Summary of morphological features. 

The diamonds froin these samples (suevite G133, G137 and black matrix lithic 

breccia (3178) are predominantly platy, layered grains with apographitic to graphitic 

hexagonal morphologies. Skeletal structures observed in the Ries crater impactites 

(Hough et al., 1995c; this study) and preferred orientation structures were not seen in 

thcsc rcsidues. This suggests that the primary mechanism for diamond formation was the 

direct shock transformation of graphite. However, the carbon source within the pre- 

impact stratigraphy is difficult to detemiine due to posi-impact metamorphism (400 Ma) 

io Lhe greenschist facies (Naterstad and Dons, 1994) which may have increased the 

degree of crystallinity in the graphite samples. As a significant proportion of the carbon 

in the samples is composed of poorly graphitised or amorphous carbon the contribution 

towards diamond formation from this carbon source must be considered. 

5.6. CARBON STABLE ISOTOPIC COMPOSITIONS OF GARDNOS 

IMPACTITES AND ACID DEMINERALISED RESIDUES. 

Acid deniineralised residues from this study were analysed for carbon stable 

isotopic compositions using stepped combustion combined with static mass spectrometry 

in order to  identify individual components and variations in the isotopic composition of 

these components. Bulk whole-rock carbon stable isotopic compositions were obtained 

Iroiii French et al. (1997). 

5.6.1. Bulk whole-rock carkm stable isotopic compositions. 

Whole-rock stable carbon isotopic analyses of the Gardnos samples indicated a 

relatively narrow range from 6°C = -28.1 to -3 1.5 700 (French et al., i 997). On the basis 

of thc isotopic composition of the impactites (depleted in "C by 3 %C relative to the 

basement rocks), Tucker (1983) suggested that bidogically fixed carbon derived from 

local shales may have provided the carbon for the observed concentration increases. 
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5.6.2. Carbon stable isotopic composition of acid demineralised residues. 

Two of thc demineralised residues were analysed by stepped cornbustion 

combined with static mass spectrometry. One prior to perchloric acid ((3137) and one 

following perchloric demineralisalion (G 178-P) 

(Appendix 5) .  

Transmission electron microscope analysis of both samplcs indicate the presence 

of diamond and highly graphitised carbon. Using stepped combustion two components 

were detected in the GI37 suevite residue with markedly different isotopic compositions 

(figure 5.5). 

Temperature ( "C) 

Figure 5.5. Stepped combustion analysis of GI 37 suevite acid-demineralised residue 

(sample weight = 14.3 pg). Z 6°C = -29.6 %C and Z carbon yield 17.8 ~ 1 % ; .  

The low temperature release from 300-500 "C has a 6°C of -30.5 %C which is in 

the same range as the bulk isotopic compositions (French et al., 1997). The high 

temperature release from 650-800 "C had a 6°C of-24 %C which is enriched in "C by 

3.9 7cc relative to the bulk compositions. The minor high temperature (> 600 "C) 
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component released by the residue would effectively be swamped by the greater low 

temperature yield in u bulk experiment. In addition the bulk experiment samples were not 

demineraliscd and may contain carbonate or amorphous carbon material which has been 

reinoved by the acid digestion process and chromic acid treatment in this study. The low 

iota1 carbon yield (17.8 "/) indicates that the sample was not pure and probably contained 

resistant zircons. 

Following fuming perchloric acid oxidation at 110 "C for 4 days to remove more 

resistant carbonaceous components such us graphitic carbon, a sample of u black lithic 

breccia G 178-P was aiialysed by stepped combustion. The results (figure 5.6) show 2-3 

carbon releases and markedly variable 6°C ranging from -27 to -32 %C. The low 

temperature release froin 300-400 "C ranges in 6°C from -27.6 to -3 1.2 %'o whereas the 

high temperature release at 650 "C has a 6°C of -32.5 %. The averaged 6°C 

composition was for the sample -28.8 %. These values are again within the range of 

those determined for the whole-rock samples (French et al, 1997). 

I700 1 , - IS 

Temperature ( "C) 

Figure 5.6. Stepped combustion analysis of '3178-P acid-deinineralised residue following 

pcrchloric acid treatment (sample weight = 17.6 pg). I: 8°C = -28.9 % and 

= 16.4 wt%. 

carbon yield 
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The carbon stable isotopic conipositions (6°C) of the sinall high temperature 

rcleases range from -24 to -32.5 % C .  Again the total carbon yield was low (16.4 %) 

indicating an impure sample. The difference in carbon yield between Cl37 aiid G178-P 

( I 8.6 to 16.4 96) is relatively small suggesting that amorphous carbon (which would be 

removed by perchloiic acid) was not a significant component in the G 137 sample. 

The average carbon stable isotopic compositions of these two samples (GI 37 and 

G 178) are relatively similar, 6°C -29.6 to -28.9 % r  but variations of over 7 %C exist 

within each residue. 

The two-stage releases (low temperature and high temperature) possibly suggest 

that the sample is composed of two main carbonaceous components, graphite or poorly 

crystailinc graphite (low termperature) and diamond (higli temperature). This is 

complicated by the low temperatures of the two releases. The graphite samples from the 

Ries crater combusted at between 450 and 550°C and the diamonds at 650-900 "C. 

These Ries crater samples were between I 50 and 300 p i  in size. It has already been 

noted that the grain size of the Gardnos residues (graphite, zircon and diamond) was 

distinctly finer than that of the Ries crater residues. The influence of grain size on 

combustion temperatures was investigated by Ash et al. (1990) whose results indicate 

that I - I 0 n m  diamonds combust at around 500 "C and 1 mni diamonds at 800-850 "C. 

Distinguishing between crystalline graphite and diamond can be difficult using stepped 

combustion plots. 

Therefore. although the TEMISAED analysis indicates that diamond and graphite 

21% present i n  these samples and the 178 sample was vigorously oxidised using fuming 

perchloric acid the two releases may represent mixtures of poorly crystalline graphite and 

amorphous carbon (low temperature release) and crystalline graphite and 5 I p m  

diamonds (high temperature release). The stepped combustions do suggest two different 

carbonaceous components and further demineralisation, TEM and stepped combustion 

investigations are required in order to clearly identify the components. 

Jennifer I Abbott Chapter 5 212 



5.7. DISCUSSIONS. 

Crystalline graphite and poorly crystailline amorphous carbon material was found 

in all of the Gardnos samples studied. Diamond has bcen identified in the two suevite 

samples and a black matrix lithic breccia. These diamonds occur at low concentrations 

and aire predominantly fine-grained and apographitic in structure. 

3.7.1. Carbon composition and sources. 

The Gardnos impact structure has experienced post-formation Caledonian 

geenschist faciesmetamorphic overprinting (Naterstad and Dons, 1994). The 

temperatures and pressures (350-550 "C, 0.2- 1 Gpa) were sufficient to convert some 

organic carbon to graphite. 

During prograde metamorphism, oxygen, hydrogen and nitrogen are released 

fnoiii organic matter and the residual carbon atoms become increasingly ordered (Grew, 

1974: Itaya, 198 I :  Buseck and Huang, 1985). The transformation of organic matter to 

graphite can occur between 300-500 "C (Ruland. 1968) and the degree of crystallinity 

and size of crystallites increases with metamorphic grade. but graphite can form in the 

chlorite zone (Buseck and Huang, 1985). The nature of the precursor carbon for 

example, aromatic structures with hexagonal benzene ring structures greatly affects the 

case of graphitisation and degree of structural order (Buseck and Huang, 1985). Small 

scale structural and chemical heterogeneity including rotational layer disorder persists at 

i-clntivcly low degrees of graphitisation (Rietmeijer, 199 i) .  

Graphite inclusions and carbon-rich fractures found in shocked quartzite breccias 

from the Gardnos structure (Anderson and Burke, 1996) indicate that a proportion of the 

carbon content is graphitic and ciystalline. The metamorphic overprinting makes it 

culi io determine the structure of the precursor carbon matcrid which would have 

been available for the shock transformation to diamond. The metamorphjc overprinting 

occurred within the Caledonian orogeny (400 Ma) (Naterstad and Dons. 1992: French et 

al.. 1998) which w ~ u l d  have affected the shales to an equivalent degree. Therefore 
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graphitic carbonaceous material would also have been produced from organic material 

within the shales. 

The stable carbon isotopic coinposition of graphite depends on lhe isotopic 

coinposition of the precursor organic matter and the extent of fractionation during 

inetamorphism. Several mechanisms may fractionate graphite during metamorphism 

including approximately 3 %C due to the removal of "C from the dehydrogenation loss of 

CH, (Peters et al., 198 la; 1981 b). Methane-bearing fluid inclusions found in PDF within 

the blackened quartzites (Naterstad and Dons, 1992; Anderson and Burke, 1995) formed 

by reaction between solid carbonaceous material and aqueous metamorphic fluids 

(Anderson and Burke, 1995). This suggests that the carbon stable isotopic composition 

of the zi-aphiie and carbonaceous material within the Gardnos iinpactites inay have been 

enriched in "C up to 3 % C  compared to any impact diamonds formed prior to the 

Calcùonian metamorphism. 

The metamorphic oveiprinting makes it d cult to determine whether the shales 
L 

contained graphite at the time ofthe impact. The iiiipact diamonds may therefore, be 

derived fi-oni either amorphous carboraceoiis material or graphiie derived from the 

basement rocks underlying the shales. 

The discovery of sub-micron impact diaiiionds within suevites and lithic breccias 

from the Gardnos impact crater confirms the suggestion by Vishnevsky and Raitala, 

( 1998) that impact diamonds can survive greenschist facies metainoi-phism. 

The Gardnos inipactites show a broad range of whole-rock carbon contents. 

Figure 5.7 shows the average carbon contents (wt 9'0) for the different impactites and 

potential carbon sources (basement rocks). The carbon content is variable between the 

diffei-eiit lithologies and indicates a clear IO-fold variation in carbon contents (French et 

al., 1995; 1998). 
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Figure 5.7. Average carbon contents (wt %) for Gardnos impactites and target rocks. [Data 

Irom French et al.. 19971. 

The total carbon and soot contents of the sample suite were provided by W. 

Wolbach and S. Widicus, IWU (unpublished data) and those results for the samples 

tised in this study are shown in table 5.3. 

Table 5.3. Cai-bon ~oiitent and soot for Gardnos structure samples. Data frani W. Wolbach 
and S .  Widiciis. IWU. (unpublished data). 
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The high ei-rors for some of the samples (178, 120 and 133) indicates that soot 

caiinot be confirmed in a11 the samples. The presence of soot in the melt-bearing suevite 

I37 could indicate that fires and combustion of carbon material may have been an 

important process during the impact event. The existence of soot in the unshocked shales 

164 Alum shale (Cambro-Ordovician) and 169 Biri (Proterozoic) is problematic unless 

these rocks accumulated carbon from fires during their deposition and formation. The 

material identified as soot may be poorly crystalline carbonaceous material or kerogen. 

5.7.2. Diamond yield and carbon-diamond transformation ratios. 

Assuming the carbon yield for stepped combustion steps 2 600 “C to be from 

diaiiioiid in the two samples analysed (GI37 and (3178, then the diamond yield from 

GI37 was 0.02 9% and for the G178 0.009 ’3%. The amount of graphite in the samples is 

harder to calculate, although again the carbon yield for the stepped analyses may be used 

as a rough measure and give graphite:diamond ratios of 8: 1 and 17: 1 respectively. This is 

clearly an overestimate as a great deal of the carbon in the samples would have been 

removed by the chromic and fuming perchloric acid treatments. In addition many of the 

Lvhole-rock samples have very high carbon contents composed of organic and 

amoiphous carbon as well as graphite. The original carbon prior to metamorphic 

overprinting may well have been predominantly amorphous and poorly crystalline, 

subsequently matured to graphite. 

5.7.3. Morphological features of diamond. 

The predominant feature of the diamonds found in these samples is a strong apo- 

graphitic morphology with numerous individual plates often associated with dense 

distributions of stacking faults. These stacking faults may represent inherited features or 

represent pre-transformation deformation as suggested to explain kink bands in apo- 

graphitic diamonds (Valter, 1986; Valter and Yerjomenko, 1996). Alternatively these 

stacking faults may represent growth or deformation structures during the diamond 
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formation. The relative lack of structural features in the diamonds from these samples 

may indicate that post-formation annealing has taken place or simply be a reflection of 

the linited number of samples observed. 

5.7.4. Graphite formation: shock metamorphism or greenschist regional 

metamorphism. 

This study has identified graphitic carbon within the shocked Gardnos impactites 

as well as within off-structure unshocked shales (this study) which were proposed as 

potential carbon sources (French et al., 1997). These shales are located off-stiucture in 

that the do not occur at the crater at the present day but are believed to have overlain the 

iiietariiorphic target rocks at the time of impact. The target rocks have experienced two 

episodes of metamorphism, firstly between 1500-1700 Ma and secondly following the 

impact at 380-400 Ma (Naterstad and Dons, 1994). Both of these episodes could have 

resulted in the formation of crystalline graphite from pre-existing organic matter. Raman 

spectra of this carbonaceous material indicates formation from metamorphic 

recrystallisatioii of biogenetic carbon in the greenschist facies (Anderson and Burke, 

1995). The concentration of carbon within the unshocked target rocks is low (figure 5.7) 

ranging from 0.22 to 0.05 wt 9% (French et al., 1997) indicating that only small 

peicrntages of carbon were introduced at the time of formation (pre-I100 ma). The 

shales which are suggested to have provided the observed increase in carbon 

concentrations in the impactites (French et al. 1997) are Proterozoic (Biri) to Cambro- 

Ordovician (Alum) iu age (590-505 Ma). Indicating that the Alum shale experienced a 

single metamorphic event (400 Ma) and may not have existed at the time of the impact 

which is poorly dated (900-400 Ma). 

Graphitisation of poorly crystalline and amorphous carbonaceous material can 

also be achieved during shock metamorphism, as shock experiments producing diamond 

and crystalline graphite indicate (Hirai et al., 1995). Shock graphitisation should produce 

matcrial inheriting the structure of the precursor carbon or very fine-grained material. 

Graphitisation during metamorphism proceeds through the development of increasingly 
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large crystallites, crystal lengths and crystalline perfection over time (Buseck and Huang, 

1985). During a brief shock event the formation oflaige, highly orientated crystals is 

unlikcly. Polycrystalline material with diffuse ring patterns on the SAED were observed 

in the graphite samples as well as material with spot patterns indicating a range in 

crystallinity or a inixiure of single crystal graphite and polycrystalline shock comminuted 

inaterial. Progressive comminution of pre-graphitic carbon subjected to experimental 

shock pressures up to 59.6 Gpa, produced characteristic polycrystalline ring patterns 

(Rictmeijer, 1995). The observation of dense distributions of stacking faults within the 

graphite and impact diamonds could suggest disordered shock formation. However the 

stacking fault structures were also observed in graphite from the unshocked off-structure 

shales. indicating that their formation is the result of growth or regional metamorphism. 

HRTEM is required in order to distinguish the iype of stacking faults involved. 

Thc evidence sÚggests that graphite was produced from organic material during 

both periods of regional metamorphism and polyciystalline textures due to shock 

comminution may have been produced by the impact and preserved in ciystdline 

graphite. The degree of crystallinity within the graphite was probably increased by the 

impact cvcnt and subsequent Caledonian metamorphism. 

5.7.5. Diamond formation mechanisms. 

The shock conditions (PR) experienced by the Gardnos inipactites during the 

impact event range from 1-80 Gpa and 0-3000 “C (table 5.1) with the majority of the 

irnpactites experiencing low degrees of shock. The suevite samples contain impact melt 

glass indicating peak pressures and temperatures of 60-80 Gpd and 900-3000 “C 

respcctively. The black matrix lithic breccia contains quartz and feldspar crystals 

displaying PDF indicating peak shock conditions of 10-45 Gpa and 100-900 “C. These 

conditions lie within the field for diamond stability (figure 4.16) as well as those required 

for the suggested diamond formation processes (Table 4.8). 

From the TEM/SAED analysis the graphite within these samples is on average 

well crystallised. This ciystalline maturity muy have been enhanced by greenschist facies 
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metamorphisni during the Calcdonian (400 Ma) and it is difficult 10 dcterinine the 

original carbon coinposition at the time of impact. The structures of thc dianionds that 

were seen undcr the TEM were strongly apographitic, displaying layering parallel to the 

hlisal plane and pseudo-hexagonal to hexagonal morphologies. This indicates that the 

carbon available for shock transformation was graphitic. In addition shock 

iiietamorphism by the impact event may have resulted in the graphitisation of poorly 

crystalline amorphous carbon material. Shock transformation experiments using 

amorphous and poorly crystalline carbon resulted in the formation of diamond and 

sraphite (Hirai et al, 1995). Shock metamorphism of pre-existing graphitic carbon may 

also produce structural features such as polycrystallinity. 

57.6. Preservation of diamond. 

As in the case of the Ries and other impact craters the preservation of diamond 

formed by shock transformations (235 Gpa and 23000 K) requires rapid cooling to 5 

1000 K in order to inhibit re-graphitisation (De Carli, 1995). The small size (0.43 pm) 

of thcse diamonds may he due to the size of the pre-existing graphite crystals within the 

target rocks or represent relict cores from re-graphitisation processes. The regional 

metamorphism had a maximum of 400-500 “C and 4-7 kbar representing greenschist 

iacies conditions. Vishnevsky and Raitala, (1998) determined that impact diamonds can 

survive regional metamorphism. 

5.8. CONCLUSIONS. 

58.1. Carbon compositions. 

Graphitic carbon has been identified using optical observations and TEWSAED 
. v  

in four samples of shocked impactites from the Gardnos impact structure as well as 

within two shalc saniples (this study) proposed :is potential carbon sources for a 

documented increase in carbon content between the unshocked metamorphic target rocks 

and shock5d impactites (French et al., 1997). In addition 0.4-5 pni diamonds have been 

identified using TEM in two suevite samples and a black matrix lithic impact breccia. 
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The concentration of diamond within the suevite and black mawix lithic impact 

brcccia was estimated at between 0.02 and 0.009 o/c i-espcctively. 

5.8.2. Carbon stable isotopic compositions. 

The bulk whole-rock isotopic compositions 6°C range from -28.1 to -31.5 % 

(French et al., 1997) indicating that these samples contain a "C-enriched component, 

which appears to he the diamond grains. The 6°C the high temperature release (possibly 

diamond) found within these saniples was -24 % in GI 37 suevite and between -26 to - 

32.3 %C in G178-P black matrix lithic breccia. The isotopic composition 6°C of the low 

temperature release (possibly graphite) was -30.8 % C  i n  GI 37 suevite and -29.9 to -31.3 

%.r in GI 78-P black matrix lithic breccia. 

The overall carbon stable isotopic compositions are within the range for marine 

organic material as suggested by French et al. (1997). The 6°C of diamonds from the 

Ries crater impactites (this study) are "C-depleted compared to those used to suggest 

that thc 6°C of carhon in the Gardnos samples was not derived from diamond (French et 

al., 1997). The results of this study indicate a wider range of carbon stable isotopic 

conipositions in impact diamonds as well as the presence of diamond within the Gardnos 

impactites. 

5.8.3. Diamond formation mechanisms. 

The shock pressures and temperatures experienced by the Gardnos impactites 

which contained diamond were within the field of diamond stability and formation. The 

structural characteristics of the diamonds indicated that the primary mechanism of 

formation was one of direct transformation with the preservation of inherited graphite 

morphologies. Diamonds displaying characteristics suggestive of a vapour growth 

formation «I- formation froin amorphous carbon material were not obs2rved. 

I 
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CHAPTER 6. CONCLUDING REMARKS AND 

FURTHER WORK. 

6.1. DIAMOND FROM THE RIES CRATER. 

1. Diamonds were found in glass bombs from the Ötting quarry suevite (Abbott et al., 

1996: 1998a), as well as in whole-rock suevites from the Ötting quarry, Seelbronn 

quariy and Polsingen quarry and gneiss from Aumühle. These discoveries of impact 

diamonds have been subsequently confirmed in other localities of the Ries crater 

(Ciebenschock et al. ,  1998). Three sections oi  suevite from the N-73 drill core were 

fo~ind io contain diamond (Abbott et al., 199%) and have been subsequently confirmed 

i n  a further section of the core (Schmitt et al., 1999). 

2. Following acid demineralisation the residues were found to contain 50-300 pm size 

diamonds visible under the petrological microscope, this was confirmed using 

transmission electron microscopy (TEM) and selected area electron diffraction (SAED) 

and where possible stepped combustion in order to distinguish individual carbonaceous 

components. The hexagonal polymorph of diamond, londsdaleite was not detected using 

TEM and SAED. TEM allowed exmination of the grains at a much higher resolution 

than bulk x-ray analyses that have been used previously to estimate londsdaleite 

contents within impact diamonds. The lack of londsdaleite in the SAED from the impact 

diamonds in  this study suggest that stacking faults may contribute to the occurrence of 

londsdaleite using x-ray analysis. 

3. The diamonds from the Ries crater identified during this study were of two distinct 

morphologies:- apographitic displaying inherited structurul features and skeletal 

polycrystalline diamonds with preferred orientations. Morphologically they displayed 

characteristics common to previously described impact dimonds (Vishnevsky et al., 

, 
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1989). Apographitic diamonds were found in the OQS, OQGB, SBS and N-73 core 

sections NC343, NC384 and NC494. 

5. The apographitic diamonds were observed under the petrological niicroscope (50-300 

pni) and TEM (5-20 pm). They were predominantly platy and composed of numerous 

(2-7) individual plates with hexagonal morphologies. Many of the examples observed 

using the petrological microscope displayed high birefringence (second to third order 

interference colours) indicative of internal stress and strain (Masaitis, 1995). Other 

examples were coated with black soot-like deposits. Surface structures included parallel 

and cross-hatched lineations that may represent twinning (Masaitis et al., 1990; Valter et 

al.. 1992; Koeberl et al., 1997; Langenhorst et al., 1999) or stacking faults on the 

individual plates. 

Under the TEM the samples showed well developed stacking faults, evidence of 

tu.inning and polyciystallinity. The individual plates were often offset with fractured or 

corroded margins. Fine scaled etching of grain surfaces (<I  pmj could represent the 

removal of individual crystallites (Langenhorst et al., 1999) or the expression of 

polycrystalline textures. 

U. Skeletal structure diainonds were only observed under the TEM and were smaller in 

size (<5-20 pm) than the apographitic diamonds. Stiucturally these diamonds were 

predominantly polyciystalline aggregates of cubic diamond with pronounced prefened 

orientations. The prefened orientation of individual crystallites along the long axis of 

the grains suggests growth in a prefened direction possibly perpendicular to the 

principal stress direction. Individual needle-like protrusions from these grains were 

< 10 nm thick, suggesting individual crystallites of < 10 nm thickness. Skeletal 

diamonds were observed in the OQS, OQGB, SBS and NC34.  
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7. Skeletal stixctures observed in NC384 were distinct in inoiphology from skeletal 

grains with a preferred orientation. These skeletal grains appear io represent layered 

apo-graphitic diamond-graphite intergrowths. 

It has been suggested that extensive corrosion and etching of apographitic 

diamonds within melts could produce diamonds with skeletal morphologies from 

apographitic diamond (Langenhorst et al., 1999). This appears to be the case for the 

skeletal structures observed in NC384 but not the distinctive skeletal diamonds from the 

fallout suevites and glass. These skeletal grains do not show any appiirent remnant 

graphitic structures or morphologies, rather they represent fine-grained ( 1-20 nm) 

crystallites with a pronounced preferred orientation. Preferred orientations have been 

observed in iinpact diamond, lonsdaleite and graphite in the ALHA77283 and Canon 

Diablo meteorites (Clarke et ai., 1981) and impact diamonds from Kai-a (Gurov et al., 

1995). CI 

The conditions suggested for the production of skeletal diamonds as a result of 

extensive corrosion and etching within impact melts (Langenhorst et al., 1999) can be 

cstiniated 6 be between 1700-3000"C, at shock stage IV -V. Diamond rapidly 

graphitises at teniperatures 1000-2000 K and the preservation of impact diamonds 

i-cquires rapid cooling to I loo0 K (De Carli, 1995). Graphitisation and the removal of 

these graphite or xnorphous carbon coatings is suggcsted to result in skeletal 

stiuctui-es. As indicated the skeletal grains preserve no apographitic structures unlike the 

heavily etched grains from the 384 m section of the N-73 core. 

8. The morphology of the diamond found in the Ries crater samples suggests that at 

least three possible mechanisms have been involved in the fomiation of the observed 

diamonds. The larger (I 300 inm) platy, apographitic diamonds most likely formed 

(I.om a direct phase transformation from graphite. With the rarer skeletal diamonds 

f«rniing from either a vapour phase deposition mechanism or the incomplete 

transformation of a niixture of poorly graphitised and graphitic carbon within an 

orientated stress field. 
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These morphological observations support the idea that the very complexity of 

carbon chemistry and impact related chemistry is such that a single mechanism for 

diamond fonnation is unlikely. The readiness with which carbon materials «fall types 

can bc converted into diamond supports this idea. The distribution of shock 

metamorphic conditions within the Ries crater that have been documented in detail in the 

literature indicate that the conditions for the various mechanisms of diamond formation 

clearly exist. The formation of other allotropes of carbon such as graphite, carbynes, 

fullerenes and carbon minerals such as silicon carbide are also possible. Restricting the 

formation of impact diamonds to a purely martensitic solid-state transformation 

(Langenhorst et al., 1999) ignores the various mechanisms by which diamonds have 

been produced (De Carli, i 967; 1979: De Carli and Jamieson, 1961) as well as 

suggested mechanisms, intermediary phases (Chomenko et al., 1975; Heimann, 1999) 

and chemical vapour deposition (Frencklach et al., 1989; Buerki and Leutwyler, 1991a; 
o 

1991b: Howardet al., 1990). L 

9. The whole-rock bulk stable carbon isotopic compositions of the fallout and fallback 

suevitcs, shocked gneiss, basement rocks and individual components extracted from 

these lithologies suggest compositions derived from the admixture of different 

proportions of carbonate and graphitic carbon. The correlation between '.'C enrichment 

and carbon contents indicates that between 500 and 2000 ppni of carbon in the 

iinpactites is composed of graphite. Additional carbon is derived from carbonate- 

hearing sedimentary cover rocks. The SBS is enriched in "C compared to the OQS and 

ihis is attributed to a higher proportion of sedimentary and carbonate rocks derived from 

shallow levels in the target stratigraphy. 

The N- 1973 drill core samples are depleted in "C compared to the fallout 

silevites and contain a lower concentration of carbon suggesting that the carbon within 

thesc suevites was predominantly derived from graphite-bearing basement rocks. 

Variations in the carbon content and 6°C can be attributed to pervasive calcite cements. 
r 

Jennifer I Abbott Chapter 6 224 



10. Stepped coinbustion combined with static inass spectrometry analyses of acid 

demiiieralised residues and extracted graphite, diamonds and Sic indicate that the 

primary carbon source for the diamonds was graphite. The 6°C composition of 

gi-aphite from these samples is depleted in "C compared to graphite analyses from 

Popigai impact crater (Masaitis, 1992; Shelkov, 1997), indicating that the graphite in the 

Ries is either less mature and therefore possibly less crystalline or has undergone less 

isotopic exchange with carbonate ininerals within the basement rocks. 

The 6°C values of individual diamonds extracted from the residues range from 

-26.6 IO -26.9 %. These compositions lie to the "C-depleted end of the range of 

graphite 6°C coinpositions (-19.9 to -26.6%). The bulk residue analyses encompa. 

6°C range from -17.0 to -26.5 % again lying within and slightly beyond the range of 

$1-aphite 6°C coinpositions. The "C-enriched graphitc analyses ( - 1  9.9 70,) was from 

the SBS which also yields "C-enriched bulk measurements suggesting a greater 

carbonate component and a contribution from "C-enriched graphite relative to the other 

samples. This is complicated by the "C-enriched bulk 6I3C results for NC494 (-17.9 

%o. Gi-aphite extracted from NC494 is "C-depleted suggesting that this suevite 

contains either a higher proportion of carbonatc material derived from shallow levels in 

lhe bnseinent or a greater proportion of post formation calcite cement. This section of 

the core (NC494) is part of a unit of suevite believed to comprise a fallout deposit that 

settled directly into the crater cavity in contrast to slumped material (NC343 and 

NC384j from the inner crater rim (Stöffler, 1977). 

11. The concentration of diamond in the Ries crater impactites can be estimated from the 

carbon yield of the residues and original sample mass. The concentrations range from 

0. i - 1.7 ppm, with graphite-diamond transformation ratios varying between 500: 1 and 

1000: 1. This can be attributed to the heterogeneous distribution of shock metamorphic 

pressures and temperatures experienced by the target rocks. In  addition these ratios 

suggest that the mechanisms involved do not result in complete graphite transformation. 
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6.2. THE GARDNOS CRATER. 

1. Inipactites from the Gardnos structure are characterised by elevated carbon contenis 

relative to the pre-inipact target rocks (French et al., 1997). The mineralogic composition 

oí'tliis amorphous carbon was not determined by French et al., (1997) and was therefore 

investigated during this study. All of the samples investigated were found to contain 

graphitic carbon distinguished under the TEM by characteristic SAED patterns. In 

addition the evidence strongly suggests that the two suevite samples and one black 

iniatrix breccia contain small (0.4-5 pm) apographitic diamonds. 

2. The diamonds were detected within suevite and a black matrix lithic breccia using 

transmission electron microscopy and selected area electron diffraction. The small size 

of these diaiiionds (< 0.7-5 pm) when observed under the TEM and the fine-grained 

natui-e of the residues under the petrological microscope was distinctive when compared 

to residues from the Ries crater which were much coarser. 

3. The diamonds displayed strong hexagonal, platy morphologies and stacking faults. 

The sinall grain sire prevented clear observation of the structures. 

4. The 6°C isotopic coinposition of the whole-rock Gardnos samples ranges from 

-28. I to -31.5 5 % ~  (Koeberl et al., 1997) a slightly wider range than observed in the 

residues used in this study -28.9 to -29.6 %C The diamond fractions from the stepped 

cornbustion profiles (> 600 "C) have 6°C values ranging from -24 to -32.5 5% which lie 

outside the range of compositions for the whole-rock analyses. This apparently 

sqgests  the incorporation of both "C-enriched and "C-depleted components that have 

not yet been identified. 

5 .  This study has identified graphitic carbon within the shockcd Gardnos impactites as 

well as within off structure unshocked shales (this study) which were proposed as 

potential carbon sources by French et al. (1997). The target rocks have experienced two 
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episodes of metamorphism, firstly between 1500-1700 Ma and secondly following the 

impact at 380-400 Ma (hiaterstad and Dons, 1994). Both of these episodes could have 

i-esulted in the formation of crystalline graphite from pre-existing organic matter. it is 

known that certain forms of organic material, e.g. aromatic structures with hexagonal 

benzene ring structures, greatly affect the ease of graphitisation and degree of structural 

order attained compared to other fomis (Buseck and Huang, 1985). 

Graphitisation of poorly crystalline and amorphous cai-bonaceous material can 

also be achieved during shock metamorphism, as shock experiments producing 

diamond and crystalline graphite indicate íHirai et al., 1995). Shock graphitisation 

should producc niaterial inheriting the structure of the precursor carbon or very fine 

grained material. 

Thc evidence suggests that graphite was produced from organic material during 

both periods of regional metamorphism. The polycrystalline textures due to shock 

coniniinution may have been produced by the inipact and preserved in crystalline 

graphite. The degree of crystallinity within the graphite was probably increased by the 

iiiipact event and subsequent Caledonian metamorphism. 

6. The shock conditions (Pm) experienced by the Gardnos impactites during the impact 

event range from i -80 Gpa and 0-3000 "C with the rna,jority of the impactites 

expeïiencing low degrees of shock. These conditions lie within the field for diamond 

stability as well as those required for the suggested diamond formation processes. 

From the TEWSAED analysis the graphite within these samples is well 

crystallised. This crystalline maturity niay have been enhanced by grcenschist facies 

inetamorphism during the Caledonian orogeny (400 Ma) and it is difficult to determine 

the original carbon composition at the time of impact. The structures of the diamonds 

that were seen under the TEM were strongly apographitic, displaying layering parallel to 

the basal plane and pseudo-hexagonal to hexagonal morphologies. This indicatcs that 

the carbon available for shock transfamation was graphitic. In addition, shock 

metamorphism by the impact event may have resulted in the graphitisation of poorly 
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ci-ystalline, almost amorphous, carbon material. Shock metamorphisiii of pre-existing 

graphitic carbon may also produce structural fcatures such as polycrystallinity. 

7. Wlicn coinpared with the Ries crater samples, the Gardnos iinpactites contain 

significantly more black amorphous and graphitic carbon. The concentration of 

diamond appears to be significantly less than that of the Ries crater, which may be a 

reflection of the fine grained nature of the material or connected with the size of the 

ci-ater itself. Though there is no clear correlation between the distribution and sire of 

impact diamonds and the size of the crater that they are associated with. 

6.3. FURTHER WORK. 

1. High resolution transmission electron microscope (HRTEM) analyses of the 

dianionds from the Ries and Gardnos impact craters is required in order to determine 

ille nature of the observed stacking fault and twinning structures. Identification of 

sli'uctures characteristic of graphite, growth or deformation would enable the 

detcriiiination of the pi-edominant formation mechanisms. 

2. Further transmission electron microscope analyses of Ries crater impactites with the 

aiin of identifying carbynes and other carbon polyinorphs including the diamond 

polymorphs such as 4H and 6H. 

3. T~incinission electron microscope analyses of grliphitic carbon to identify the degree 

o f  crystalline maturity. 

4. Thc selection of further diamonds and if possible S i c  from the Ries crater impactites 

for analysis Lising SEM and stepped combustion combined with static mass 

spectrometry. 
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5. Iii-riiu ohwvation of impact diamonds in shocked graphite hearing basement 

samples. 

6. Gas chromatography mass spectrometry and solvent extraction analyses of HF:HCI 

demiiieralised Gardnos impactites is required in order to identify the composition of 

amorphous and organic carhon material. Although graphitic carbon has been identified 

u s i p  the TEM the majority of the carhon material is poorly crystalline and amorphous. 

7. Further stepped combustion combined with static mass spectrometry analyses of 

Gardnos impactites in order to confirm the results presented here and characterise the 

remaining samples. 
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APPENDIX. 1. SOLUTIONS. 

I o 
I l  

1. Preparation of dilute hydrocloric acid for carbonate digestion. 

Reagents. Hydrochloric acid 37%. 

Apparatus. 2 x 250 ml glass measuring cylinders. 

500 rnl glass reagent bottle or 250 ml polyproylene wash 

bottle. 

* 

Procedure for the preparation of 250ml of desired molarity. 

In a fume cupboard. 

1. Measure out required amount of HCI, see table into ¿I glass measuring 

cyclinder (Tahlel.l) 

2. Measure out required ammount of distilled water into a separate cylinder. 

3. Pour the water into a reagent bottle. 

4. Add the HCI to the water. 

20x 32 

229 21 

Table 1.1. Dilution measurements for HCI. 
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2. Preparation of hydrofloric acid/hydrochloric acid for silicate digestion. 

Reagents. Hydrofluoric acid (48 %). 

Hydrochloric acid (37 96). 

SOO rnl polypropylene measuring cylinder. 

SO ml glass measuring cylinder. 

SOO ml non-drip polypropylene reagent bottle. 

Apparatus. 

Procedure to make 500 ml of 1OM HF/lM HCI. 

Prepare in fumecupboard. 

I .  Measure 173 ml of HF into a 500 ml polypropylene measuring cylinder. 

2. Measure 42 ml of HCI into a glass measuring cylinder. 

3. Add the HCI to the HF. 

4. Pour 285 rnl of distilled water into a polypropylene reagent bottle with a 

non-drip dispensing system. 

S. Add the HF/HCI mixture to the water in the reagent bottle, replace the cap and 

* 

swirl zcntly to mix. Allow to cool. 

3. Preparation of chromic acid. 

Reagents. Sulphuric acid (conc). 

Sodium dichromate. 

Apparatus. 500 ml beaker. 

SO in1 glass measuring cylinder. 

SOO in1 polypropylene measuring cylinder. 

Teflon rod. 

Procedure to make 500 ml of chromic acid. 

In a fume cupboard. 

1. iMeasure 49 nil of sulphuric acid into a SO ml glass measuring cylinder. 

2. Measure 45 1 rnl of distilled water into a 500 ml polypropylene measuring 

cylinder. 
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3. Pour water into 500ml glass beaker and add 49 1111 of sulphuric acid. 

4. Weigh 19.5 g of sodium dichromate and slowly add to acid mixture in 

beaker whilst stiring constantly. Mixture will generate heat. 

5. Allow to cool, do not use hot. 

4. Preparation of pentane slush. 

Reagents. Pentane 

Liquid nitrogen 

Apparatus. 250 mi dewar. 

SOO ml dewar. 

Glass stirring rod. 

Procedure. 

In fume cupboard. 

I .  Add 15-70 mi of pentane to a 250 ml dewar. 

2. Slowly add liquid nitrogen and stir with glass rod. 

3. Continue until white fuming ceases and mixture begins to freeze. Mix 

well ro ïorm a stiff mush. 

4. Cover with ~ I i i i i nun i  foil and store in fume cupboard when not required, add 

more liquid nitrogen when required. 
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APPENDIX 2. EXAMPLE ACID DIGESTION - ÖTTING QUARRY GLASS 

BOMB. 

29/01/1996 

14/12/1995 

Drained, tilled HiO, repeated. 

I 5/1 211995 

xi0 l / l  996 

3 1/01/1Y96 

Y/O I / I 99 6 

I1/0111996 

Drained, filled d.HIO. Drained filled HFHCI. placed on hotplate. 

I 2/0 I 11 996 

0110211996 

I 5/0  I / I  996 

16/01/1996 

Agitated, left on hotplate. 

17/01/1996 

02/02/1996 

I8101 11996 

Drained, filled H20, placed on hotplate. 

19/01 /I 996 

??/O111 996 

05/02/1996 

2510 l i 1  996 

26/0 I 1 I996 

Drained, filled H20. Gel-like "silica" prccipiiatc present at hasc o1 homh. All black 

Glass crushed io a granular powder using clean, haked agate mortar and pestle. 

Care taken to remove creamiwhite suevite coating on margin of hornh. Weighed 

out approximately 150 g. Average o í4  = 149.745 g using electronic halance 

Transferred quantitatively to Teflon homh. Dilute HCI (0.2 M) added slowly, 

until huhhling suhsides and filled. Bomb placed on hotplate at 70 "C. 

Drained, filled 6M HCI and placed on hotplate. Poor reaction to dilute acid, indicates 

low carbonate content 

HCI draincd, replaced with distilled water (H,O). Allowed to scitle and fresh 

H1O added. 

HIO drained. HF:HCI added. Placed on hotplate 170 "C). 

Sainplcs checked and agitated. After reaction HFHCI samplcs drained and replaced 

with fresh HRHCI. 

Sample agitated. Placed on Hotplate (70 "Cl. 

Sample drained after cooled. H,O added. Allowed to settle. Drained. HFHCI added 

and placed on hotplate (70°C). No evidence grey tluorites. 

Drained. H,O added. Gel-like deposit forming between glass and acid - silica?. Sample 

allowed tu scttlc. Drained refilled with H,O. Acid was becoming yellow =reacted. 

Saiiiplc drained. lilled H20 and allowed to settle. Drained again. Gel-like substance 

gone. Re-i'illcd with HF/HCI, placed on hotplate. 

Acid yellow in colour with gel-like suhstance on surface of sample. Drained and washei 

with H,O twice. Drained and lilled with 6M HCI, placed on hotplate (70°C) overnight 

Drained. filled fresh 6 M HCL, placed on hotplate. 

Drained. filled HIO. Allowed to settle and drained. Replaced with HF:HCI, placed o n  

hotplate. 

Sample drained, tilled H,O, allowed to ?eitle. Drained and filled 6 M HCI. placed o n  

hotplate. 

Drained. lilled 6 M HCI, placcd on hotplate. 



D6/02/ I996 

I íVWI996 

07/02/1 996 

hladc u p  chr<iinic acid. as per protocol sheet. 

118/02/1996 

l2/02/ I996 

l3/02/1996. 

32/10/1996 

I4/02/ I996 

Acid changed. 

I5/02/ I996 

:I611 111996 

I7/O6/ I996 

Drained, ~ a s h c d .  Alicr several weeks at 70-80°C in chromic acid. sample appcxs 

powdered saniple gone, very little sample remains, hard tu establish through cloudy 

precipitatc. Drained, filled 6 M HCI and placed on h(iiplntc. Dcvcloped strong yellow 

colour. 

Drained. filled H,O. Very litilc rcsiduc reniains. No strong colour (i.e.: organics). 

Some ciilloidel Gcl. Oncc beitled drained and filled 6 M HCI and pl;iccd un hotplate. 

Draincd. filled HIO,. Drained tilled HFIHCI, placcd on  hotplate. 

Drained. filled HIO. 

Drained. transferred to glass petri-dish, evaporated dry. 

Sainplcs weshcd with H2O. x2. left to dry. 

When dried. studied under petrological microscopc. Sample c~nsists of zircon. graphite 

aiid at least 2 diamonds c.  100-3M) pm. 

Traiisfcrred 10 disposahlc plastic petri-dish. left ti1 dry. 

Dry weight petri-dish ( ~ 8 )  = 16.0973+0.0OO2 g. 

Pctri-dish + residue ( ~ = 6 )  = 16.10842 g 

Residue = 11.12 ing 

Left over weekend t i i  dry = 3.2 mg 

Rehidue wished with H,O. transferi-ed ¡<i ccntrifuge vials. Ccntrifuged with H,O 

rcpeatedly. Centrifuged with 6 M HCI. 2,500 rpm and drained. Washed with HiO x2. 

Transferred io glass petri-dish. Chcckcd under petrcpaphic microscope. 

Chromic acid stagc 

:)Y/O9/1996 I Ti;iiisfctrcii to 15 liil Tetloii hoinh for chromic acid siagc. 

unchanged, no change in acid colour. 

Fuming Perchloric acid stage 

2 un I /i 997 

22ÍO I /I 997 

Sample studied under petrographic inicroscope. cleaner, s t i l l  a lot of 7.ii-con grains and 

piissihly pi~lpcrystalline graphitcigraphitc coated diamcind clusters. Photographed. 

Samples ti-aiisfcrrcd f r i m  glass petri-dish I« I5 ni1 Tcll i~i i  hoiiih for fuming perchloric 

and Conc HF í 150 '"2) siages. alonp with a number of  other samples 

Samples drained of H,O. left damp aiid a few drops of HCIO, added. Followiiig 

protociil outlincd in chapter 2 section samples were heated at 1ílíl-I5O"C unti l  fumcd 

dry. 4-5 hours. [ power cut J. 

Re- application of HCIO,, fumed 5-6 hours. 

Jennifer I Abbott Appendix 2 234 



2~íOi11997 

27/01 11997 

o I 1091 I997 

05/0911 9Y7 

I 2/090 I 99 7 

Saiiiplcs drained and washed with H,O. 

Sainples washed H,O. 

I 9/09/1 997 

2210911 997 

0 111 O i l  997 

26/(lY/ I 997 

Samples vhservcd under petrological microscope. 

Se\ eral samples WCI-c transîerred to high pressure iiictai hoiiibs. Otting Quari-y Glass 

homh saniple 2 was trcated and saiiiple I retained i n  case ofprohlemb. Tlic saiiiples 

wcrc covcrcd i n  Conc HF, 6 M HCI and :i îcw drops o r  "0;. 

Sainplcs in o x n  at 180 "C. 

3 samples reniuved, incliidiiip Otling quan-y glass homh. Allowcd i» COVI. 

Rsrnoved fl-om h»i.ih casings, di-aiiied and transfciTcd to washed 15 in1 Tetlon homhs. 

Samples drained and filled uiih H20. repeated x4. 

Samples transieiTed io clean, dry glass petri-dishes and left i» dry in luinc cuphoard. 

Pipcttcs Iluslied with H,O i n t o  matching sample petri-dish. 
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APPENDIX 3. TRANSMISSION ELECTRON MICROSCOPE BRIGHTFIELD 

AND SELECTED AREA ELECTRON DIFFRACTION IMAGES. 

40 
41 
42 

27/06/97 Ötting quarry glass bomb residue. 

Numhei- I Coinmew notcd 
I I Carbon yrain. 

SAED Xhec 

SAED 4 sec 
SAED 8 sec 

I 4 4  I SAED 4 sec I 
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45 
46 
47 

03/11/97. Nördlingen core 384 m section residue. 

SAED X sec 
Platy carbon crystal 
Platy carbon crystal 

4X I Iliyeied aiid fractured carbon grain 

S I  
52 
53 
S4 

Pic needle like elongate grain 
SAED 
SAED 
SAED 
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05/12/97. Seeibronn suevite residue. 

Number I Comments noted 1 

S 
6 
7 

~~~~~ 

2 I Polycrysiallinc carbon grain 
I Carbon grain with short fat stacking faults 

SAED 8 scc 
Thin large playty grain- construclive interference, and SF 

i I SAED 2 sec 

Y 
I o 
I l  
12 
13 
I4 
IS 
i 6  
17 

SAED 8 SIC 
SAED 4 sec 
SAED 2 sec 
Irregular layered .grain, SF. SAED 2 sec 
SAED 4 sec 
Elongate lractured grain. SAED 4 sec 
Platy elongate carbon grain. SF. SAED 4 sec 

SAED 2 sec 
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~ 

05/12/97. Nördlingen core 384 m section residue. 

Nuiiiher 
I(1hJ larpr opaque carbon :i-ain SAED 2 scc - 
2 1171 SAED 2 sec 
3 Ouerall pic 
4 Closeup pic 
5 SAED 2 sec 
6 

Comments noted (mislahled I = 16) 

Smaller opaquc carbon grain SAED 2 sec 

20 
21 
22 
23 

Y I SAED 2 sec 
I o 
I l  

I Sinal l  carhon orain SAED 2 sec 
I Pic layered. platy iieedlc likc extensions 

Eloiimie nieta1 silicate grain 
SAED 2 \ec 
Rectangular carhon grain SAED 2 sec 
Close-up pic 

I X  I SAED 2 sec 
I') I Eloiiraie carhoii prain lraclurcd 1 

31 
32 
33 
34 
35 
36 
37 
3X 

SAED 2 sec 
Small carbon grain SAED 2 sec 
SAED 2 sec 
Closeup pic etched platy carbon grain with SF 
SAED 2 sec - faint graphite - diamond 
Irrexuulai- cdrh«n gruin SAED 2 sec - diamond 
Pic ctchcd hlocky 
Lilrgc carbon grain ( no. 2X). SAED 2 sec 

24 I Pic 
25 I Large carbon grain 

27 Pic 
28 
29 

Large carbon grain SAED 2 sec 
Pic ciched opqaque carbon grain 



39 1 Pic 
40 I SAED 2 scc 

52 
53 
54 

10/12/97. Nördiingen core 384 m section residue. 

SAED 2 scc 
Pic 
PIC 

Nuiiikr 
I 
2 

4 
5 
6 
7 
X 
Y 

Commcnls noted 
Etched carhon grain 
Poor resolution carhon grain 
SAED 2 sec polycrystalline faint graphite 
Better focus pic (2) SF 
Overall pa in  
Platy carhon grain, needle like extensions. SF 
SAED 2 sec - ovcrexposed 
SAED 2 scc 
Polycrystalline cluster 

~~~~~~~ ~ ~ 

13 (14) Skeletal hlockv grain 
14(15) Closeup pic 
15 (16) SAED 2 scc 
16(17) Skeletal grain SAED 2 sec 

Jennifer 1 Abbott Appendix 3 240 



15/01/98. Ötting quarry glass bomb residue. 

Number 
I 
2 
7 

~ 

Comments notcd 
Large graphitic carhon grain 
SAED 2 sec - graphiie 
Pi,. 

5 
6 
7 

Y I Pic 

SAED 
Irregular carbon grain needle like areas, SF 
SAED mainly diamond very faini graphite 

15 I large crystal. SF and needle-like extensions 

17 
I X  
I Y  

SAED 
Cluster fine grained needles íCa + Mg) 
Very thin carbon sheet, SF, Kikuchi. SAED 

73 I Overall grain 

25 
26 
27 
2X 
2Y 

SAED 
Thin carhon plaly grain, SF 
SAED - diamond 
Blockv layered grain SF SAED 
Pic 

N uni  ber 
I (O) 

? ( I )  

i I Closeup pic 
5 I Skeletal graiii. needle like edges, thick interior. SAED 

Comnienis noted 
SAED dianiorid 
Rcctarigular platy grain. SF. inultiplc layers 

1 0 I Pic overall grain 
7 
8 
9 
I o 

closeup pic 
SAED 
large layered grain, needle like extensions pic top right 
Pic top left 

I l  
12 
I? 
14 

I6 I S k l l  skeletal carbon grain I 
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20 Ovcrall pic 
21 
22 Pic 
23 larze skcleial grain. SAED 
24 SAED 
25 Pic 
26 Twinned carhon grain SAED 

Skeletal etched carbon grain. SAED 
- 

24/03/98. Seeibronn suevite residue. 

Numhcr I Comments noted 
I 
7 I Pi,. 

I Polycrystalline carhon clusler SAED - graphite 

I S  
I6 
17 

3 I Pic 
4 I Cloudy gi-ain wine clear SF and layering 

SAED ~ diamond 
SAED 
Skelcilil grain 

6 
7 
X 

I SAED - diamond polycrystallinc 
I largc grain, kikuchi. twin ('!L needle like margins 

9 I Close-up pic 
I o I SAED 

~ ~~~ 

12 
13 I Skeietat grain 

I Skeletal elongate etched grain 

24/03/98. Nördlingen 343 m section residue. 
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22/04/98. Ötting quarry suevite residue. 

I o 
I l  
i2 

Close-up pic 
SAED 
Skeletal polycrystalline grain 

15 
I6 
17 
I X  
19 
20 

30/05/98. Bunte breccia residue. 

Pic 
Large c x h o n  Frain - SAED 
Pic 
Skeletal carhon prain 
SAED 
Pic 

Nuirihei- 
I 
2 
3 
4 
5 

Cominents noted 
Hexagonal graphiiic structure carbon grain 
SAED - diamond 
Pic 

Platy carbon pinin SAED 
Pic elonyatc i-utilc'? 

I l  I SAED 
I? I SAED 

Nuiiiher 
7 
8 
Y 
I o 

Commcnts noted 
Skclctal pain with faint SF 
SAED ~ diamond 
Blocky lractured carbon Erain 
Etched sti-uckm with SF 
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13 
14 
I S  
I6 
17 

Clo?e-up pic 
Sniali Frain. SAED 
Eiongatc fractured grain. SF 
C l o ~ - u p  image 
SAED - diainond 



Polsingen impact melt rock. 

I l  
12 
13 

Nuiiikr I Comments noted 
6 
I I Pii. 

I Layered grain, SF. SAED 

overall pic 
Carbon grain with SF. SAED 
Pic 

X I Large gi-ain SFiskelelal 
Y I C I O S C - ~ ~  pic SF 

Number 
I6 
17 
I Y  

Comments noted 
Elongate layered grain wirh faint SF. SAED 
Pic 
Pi,. 

I IS I Overail- pic I 
Aumiihle Gneiss 

5 
6 
7 
8 
9 
I o 
I l  

12 

pic 

SAED. faint kikuchi lines 
SAED 
SAED 
Pic 
SAED 
pic 

pic 

19 
20 I SAED 

I SAED - 2 plates. diamond 

21 I Pic close-up 
22 I Blocky carbon grain. SAED 

11/05/99. Gardnos 137 residue. 
~ ~~ ~~ 

Nuiriher I Comnients noied 
I I Hexagonal .graphitic structure platy grain. SAED 

3 I Plc 
4 I Similar grain. SAED 
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N umber 
13 
14 
23 
24 

26 
27 

2s 

Comments noted 
SAED - 2.06 
PIC 
SAED - 2.06 . 
Pic 

Pic 
PIC 

SAED - 2.06.3.34 

13/05/99. Gardnos 178 residue. 

N uin her 
I S  
16 
17 
18 
I') 
20 
21 

~~ 

N u m b e r  I Comments noted 
1 I SAED - 7.06 
- ? I Pic 

~~ ~ 

Comments noted 
SAED ~ 2.06, 3.34 
Pic 
SAED ~ 2.06 
Pic 
SAED - 2.06 
Pic 
SAED - 2.06 

~~ 

z 
4 I Pic 

I Hexagonal platy grain. SAED - 2.06 minor graphite 

3 
5 
6 
7 

S I SAED 
6 1 SAED i 

SAED 
Layered graphitic structure grain. SAED 
Pic 
Vcry amall paeudo-hexagonal grain 2-3 leycrs. SAED 

22/06/Y9. Gardnos 137 residue. 

Numhcr I Comments noted 
I 
2 1 SAED 

I Irrepilar laycrcd carbon grain. SAED 

7 I Pi,. 

I l  I Elanyate, layered grain with SF. SAED 
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22/06/99. Gardnos 169 residue. 

Nunihes 
1s 
I6 
17 
18 

Comments noted 
Triangular layered grain SF 
SAED 
SAED 
Pic 

Nurnher 
21 
22 
23 
24 
25 1 SAED 
26 I SAED 

Comments noted 
SAED 
Pic 
Elongatel SF and cross-hatching (layers) 
SAED 

07/07/99. Gardnos 178 residue. 

Numhei 
3 
4 
5 

Cornmcnts noted 
PIC platy grain SF 
P I C  close-up 
SAED 

6 
7 
8 
9 
in 
I l  
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Pic large p i n  densc SF laycrcd 
SAED 
Pic hexagonal platy layered grain 
Pic etched and comoded grain 
SAED 
Pic elongate layei-ed gruin 



APPENDIX 4. WHOLE ROCK CARBON STABLE ISOTOPES. 

4.1. Table of bulk 6I3C stable isotopic ratios for whole rock Ries crater samples. 

All sample bulk analyses dynaniic mass spectrometer (SIRA). 
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APPENDIX 5. STEPPED COMBUSTION COMBINED WITH STATIC MASS 

SPECTROMETRY. 

5.1. MS319. Ötting quarry suevite residue. 

-29.19 

-25.18 0.45 
I I 

600 I 38.87 1 -15.29 I 0.41 
I I I 

700 1 5699.35 I -22.01 I 0.31 

800 13.65 -18.09 0.39 

900 41.2Y -23.69 0.45 

-25.89 0.39 

5.2. MS343. Ötting quarry suevite Sic. 

5.3. MS355. Ötting quarry glass bomb. Diamond. 
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~ 3 1 . 1  

-27.4 

2 8 . 8  0.5 

800 I 2605.86 I -26.8 

5.4. Otting quarry glass bomb. Graphite. 1. 

0.5 

I 

3(K) 1 1002.18 1 -26.55 1 0.25 

I 1200 I 2166.88 I -27.95 I 0.15 I 

5.5. MS344. Ötting quarry glass bomb graphite. 2. 
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5.6. MS345. Ötting quarry Silicon carbide. 

1200 21.4 1 -25.6 I 0.4 
I I I I I 

I200 

I 1300 I 32.6 1 -27.4 I 0.2 I 

4.55 -24.14 0.45 

5.7. MS345. Seelbronn quarry suevite graphite. 

600 

650 

700 

750 

43 -18.4 0.3 

I93 - 17.8 0.5 

368 -16.7 0.3 

I010 -16.8 0.2 

5.8. MS318. Seelbronn quarry suevite residue. 



3260 -16.7 

-16.6 

900 6893 -17.2 

950 562 -17.4 0.4 

1000 7.81 -21.3 0.3 

T (T) C (ng) 

I I I 
I ion I 4.48 I -22.9 I 0.3 

8°C (%) +s (%) 

I I I 
I200  I 4.67 I -23.6 I 0.3 

600 1601.7 -26.6 0.16 

500 9R.8 I -25.2 

3155.34 -26.96 

391 1 -26.2 

xno 25 I .61 -26.23 

WO -12.26 0.25 

I200 3.8 -24.66 0.20 

0.2 

5.10. MS267. Nördlingen core residue 384. 

Y4.69 -16.08 0.2 I 

300  109.2 -25.6 

I .34 -27.87 
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5.1 I. MS293. Nördlingen core 384. Diamond. 

7 I .82 -77.99 

117.3 -23.46 

500 26.67 -22.5 0.22 

'r ('CI C (ng) 6°C (%o) +s (%I 

I 1 ~ 0 0  I 0.02 I -48.07 I 2.75 I 

200 

5.13. MS346. Nördlingen core 494 graphite. 

3.604 I -21.87 I 0.5 1 

1. 
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5.14. MS347. Nördlingen core 494 graphite. 2. 

Non Ries samples. 
5.15. MS323. Lappijarvi graphite. 

6 (%c) f S  (%) 

200 223.39 -24.13 0.49 

- i  8.62 

I200 9.19 -15.35 (1.489 

5.16. MS396. Gardnos 137. Pre-perchloric. 
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5.17. MS398. Gardnos 178. Perchloric. 
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APPENDIX 6. GARDNOS CARBON AND SOOT CONCENTRATIONS. 

Data from W. Wolbach and S.  Widicus, IWU, 1997. (unpublished data). 
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