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Abstract. We present several continued fraction algorithms, each of which gives an
eventually periodic expansion for every quadratic element of Qp over Q and gives a finite
expansion for every rational number. We also give, for each of our algorithms, the complete
characterization of elements having purely periodic expansions.

1. Introduction

In this paper, we intend to add a classical flavor to the p-adic world related to the well-
known theorem of Lagrange (resp., Galois) on the complete characterization of eventually
(resp., purely) periodic continued fractions (cf. [7], [5]; see also [9]).

In what follows, p denotes a prime, Qp the field of p-adic numbers, and Zp the ring
of p-adic integers. Schneider [11] gave an algorithm that generates continued fractions of
the form

pk1

d1 + pk2

d2 + pk3

. . .

(
k1 ∈ Z≥0; kn+1 ∈ Z>0 , dn ∈ {1, . . . , p − 1} (n ≥ 1)

)

and found periodic continued fractions for some quadratic elements of Zp over Q (see also
[3]). Ruban [10] gave an algorithm that generates continued fractions of the shape

g0 + 1

g1 + 1

g2 + 1

. . .

,

where

gn ∈
{

0∑

i=−m

eip
i

∣
∣
∣
∣ m ∈ Z≥0 , ei ∈ {0, 1, . . . , p − 1}

}

(n ≥ 0) .
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On the other hand, Weger [17] has found a class of infinitely many quadratic elements
α ∈ Qp over Q such that the continued fraction expansion of α obtained by Schneider’s
algorithm is not periodic. Ooto [8] has found a similar result related to the algorithm given
by Ruban. Weger [18] has considered that a simple and satisfactory p-adic continued frac-
tion algorithm does not exist, and given a periodicity result of lattices concerning quadratic
elements of Qp. Browkin [2] has proposed some p-adic continued fraction algorithms;
nevertheless, the periodicity has not been proved for the continued fractions obtained by
applying his algorithms to quadratic elements of Qp. By disclosing a link between p-adic
numbers and the hermitian canonical forms of certain integral matrices, Tamura [12] has
shown that a multidimensional periodic continued fraction converges to

(
α, α2, . . . , αn−1

)

in the p-adic sense without considering algorithms of continued fraction expansion, where
α is the root of a polynomial in Z[X] of degree n stated in Lemma 4.1. Recently, Bekki [1]
has shown the periodicity of his geodesic continued fraction algorithm, for some quadratic
elements of Qp with negative discriminants. However, it remains quite unclear whether or
not there exists a simple algorithm that generates periodic continued fractions for all the
quadratic elements of Qp.

The main objectives of this paper are to define some simple algorithms generating
continued fractions of the form

t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . .

(
k1 ∈ Z; kn+1 ∈ Z>0, tn ∈ Z \ pZ , dn ∈ {1, . . . , p − 1} (n ≥ 1)

)

(1)
and to give

(i) p-adic versions of Lagrange’s theorem for the algorithms, i.e., the periodicity of the
resulting continued fractions for all the quadratic elements of Qp overQ (including
those with positive discriminants), and

(ii) p-adic versions of Galois’ theorem concerning purely periodic continued fractions.

Moreover, we show that the continued fraction expansions of an arbitrary rational number
always terminate by our algorithms.

It is worth mentioning that our algorithms have a common background with those pro-
posed in [13, 14, 15, 16, 4] in the design of continued fraction algorithms. As described
earlier, Schneider’s algorithm cannot give a periodic expansion for every quadratic element
of Qp over Q. In contrast, our algorithms achieve the periodicity for every quadratic ele-
ment by relaxing Schneider’s restriction on numerators and by properly selecting tn in (1)
from Z \ pZ.

The rest of this paper is organized as follows. In Section 2, we consider expanding
α ∈ Qp into continued fractions whose form is more general than the form (1). In Section 3,
we establish convergence properties of the continued fractions introduced in Section 2. In
Section 4, we give two basic maps, T1 and T2, and present related lemmas. We define three
algorithms in terms of these basic maps in Section 5. In Section 6, we show that each of our
algorithms gives an eventually periodic expansion for every quadratic Hensel root, i.e., for
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every quadratic element of Qp over Q whose existence is guaranteed by Hensel’s Lemma.
We do the same for every quadratic element in Section 7. In Sections 8 and 9, we show
that the continued fractions for every rational number obtained by our algorithms always
terminate. We conclude with several remarks in Section 10.

2. p-adic continued fraction expansions

In what follows, α denotes an element of Qp unless otherwise mentioned. We mean
by the p-adic expansion of α the series

α =
∞∑

i=−∞
eip

i
(
ei = ei(α) ∈ {0, 1, . . . , p − 1} )

with ei �= 0 at most finitely many i ≤ 0. We define the p-adic integral and fractional parts
of α, denoted by [α]p and 〈α〉p respectively, as

[α]p :=
0∑

i=−∞
eip

i and 〈α〉p :=
∞∑

i=1

eip
i .

In this section, we consider expanding α into a continued fraction of the form

t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . .

(
k1 ∈ Z; ki+1 ∈ Z>0, ti , di ∈ Zp \ pZp (i ≥ 1)

)
.

Note that this class of continued fractions contains ones of the form (1). Since the conver-
gence of continued fractions can be proved in this general setting where ti and di are in
Zp \pZp , we deal with continued fractions of this form in this and the next sections. How-
ever, any of our algorithms introduced in Section 5 generates continued fractions whose ti
and di are in Z \ pZ and {1, . . . , p − 1}, respectively.

Let t be a map from Qp \ {0} to Zp \ pZp . Then, t (x)pvp(x)

x
∈ Zp \ pZp for all

x ∈ Qp \ {0}, where vp(α) denotes the p-adic additive valuation of α. We consider a
family of the maps of the form

T : Qp \ {0} → pZp ,

T (x) := t (x)pvp(x)

x
− d(x) , (2)

where d is a map from Qp \ {0} to Zp \ pZp . Since d(x) = t (x)pvp(x)

x
− T (x) and T (x) ∈

pZp , we have [d(x)]p =
[

t (x)pvp(x)

x

]

p
∈ {1, . . . , p − 1} for all x ∈ Qp \ {0}. Hence, d is

uniquely determined if the image of d , denoted by Im(d), satisfies Im(d) ⊂ {1, . . . , p − 1}.
Since

x = t (x)pvp(x)

d(x) + T (x)
,
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we have

T n−1(α) = t (T n−1(α))pvp(T n−1(α))

d(T n−1(α)) + T n(α)
,

provided that T n−1(α) �= 0 (n ∈ Z>0). Setting

ti := t
(
T i−1(α)

)
,

ki := vp

(
T i−1(α)

)
,

di := d
(
T i−1(α)

)
,

for i ∈ {1, . . . , n}, we have

α = t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . . + tn−1p
kn−1

dn−1 + tnp
kn

dn + T n(α)

.

Related to the continued fraction expansion of α, there occur three cases:

(i) T n(α) �= 0 for all n ∈ Z≥0.
We can expand α into the infinite continued fraction

t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . .

. (3)

We will show that the continued fraction (3) converges to α in the succeeding
section.

(ii) There exists N ∈ Z>0 such that T N(α) = 0 and T n(α) �= 0 for all 0 ≤ n < N .
We can expand α into the finite continued fraction

α = t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . . + tNpkN

dN

. (4)

(iii) α = 0.
We do not expand α = 0 any further.
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REMARK 2.1.

(i) We can consider a variety of maps T . In fact, we will give three algorithms of con-
tinued fraction expansion in Section 5; consequently, the expression in continued
fractions (3) and (4) are not uniquely determined for a given α ∈ Qp.

(ii) The continued fractions considered by Schneider [11] are generated by setting
t (x) = 1 for all x ∈ Zp \ {0} and Im(d) ⊂ {1, . . . , p − 1}.

3. Convergence of continued fractions

In this section, we show that the continued fraction described in Section 2 always
converges to α for α ∈ Qp. Without loss of generality, we may assume that α ∈ pZp \ {0}
in this section.

We define two sequences {pn}n≥−1 and {qn}n≥−1 in terms of ti , ki , di in (3) by the
following recursion formulas:

{
p−1 = 1 , p0 = 0 , pn = dnpn−1 + tnp

knpn−2 (n ≥ 1) ,

q−1 = 0 , q0 = 1 , qn = dnqn−1 + tnp
knqn−2 (n ≥ 1) .

In the case of the finite expansion (4), we define pn and qn for n with −1 ≤ n ≤ N .
Lemmas 3.1–3.3 given below are easily seen (cf. [9]).

LEMMA 3.1.

t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . . + tnp
kn

dn

= pn

qn
(n ≥ 1) .

LEMMA 3.2.

α = pn + T n(α)pn−1

qn + T n(α)qn−1
(n ≥ 1) .

LEMMA 3.3.

pn−1qn − pnqn−1 =
n∏

i=1

(
−tip

ki

)
(n ≥ 1) .

We denote by |α|p the p-adic absolute value of α ∈ Qp, i.e., |α|p := 1/pvp(α).

LEMMA 3.4.
|qn|p = 1 (n ≥ 0) .

Proof. The claim is true for n = 0 and n = 1. Assuming that |qi|p = 1 holds
for 0 ≤ i ≤ n with n ≥ 1, we have |qn+1|p = |dn+1qn + tn+1p

kn+1qn−1|p = 1 since
|dn+1qn|p = 1 and |tn+1p

kn+1qn−1|p ≤ 1/p. �
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THEOREM 3.5.

(i) Let n be an integer with n ≥ 1 or an integer with 1 ≤ n ≤ N if there exists an
integer N ≥ 1 such that T N(α) = 0. Then,

∣
∣
∣∣α − pn

qn

∣
∣
∣∣
p

= |T n(α)|p
p

∑n
i=1 ki

holds. In particular, ∣
∣∣
∣α − pn

qn

∣
∣∣
∣
p

= 1

p
∑n+1

i=1 ki

holds if T n(α) �= 0.
(ii) Let T n(α) �= 0 for all n ≥ 1. Then,

lim
n→∞

pn

qn

= α

holds.

Proof. (i) By Lemma 3.2, we have

α − pn

qn

= pn + T n(α)pn−1

qn + T n(α)qn−1
− pn

qn

= T n(α) (pn−1qn − pnqn−1)

(qn + T n(α)qn−1) qn

.

By Lemma 3.3, we have

∣
∣T n(α) (pn−1qn − pnqn−1)

∣
∣
p

=
∣
∣
∣
∣∣
T n(α)

n∏

i=1

( − tip
ki

)
∣
∣
∣
∣∣
p

= |T n(α)|p
p

∑n
i=1 ki

.

By Lemma 3.4, we have ∣
∣(qn + T n(α)qn−1

)
qn

∣
∣
p

= 1 .

Hence, we get ∣
∣
∣
∣α − pn

qn

∣
∣
∣
∣
p

= |T n(α)|p
p

∑n
i=1 ki

.

If T n(α) �= 0, then |T n(α)|p = 1/pkn+1 , which implies
∣
∣
∣
∣α − pn

qn

∣
∣
∣
∣
p

= 1

p
∑n+1

i=1 ki

.

The assertion (ii) immediately follows from (i). �

4. Two basic maps: T1 and T2

We later propose three continued fraction algorithms, each of which gives an eventu-
ally periodic expansion for every quadratic element of Qp over Q and gives a finite expan-
sion for every rational number. In this section, we introduce maps T1 and T2 on the basis of
which we construct the algorithms.

We denote by Ap the set of all the elements of Qp which are algebraic overQ of degree
at most two. For simplicity, we will abbreviate “algebraic over Q” to “algebraic”, and
“quadratic over Q” to “quadratic”. We mean, by the minimal polynomial of an algebraic
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element α, the integral polynomial of the lowest degree which has α as a root, whose
leading coefficient is positive, and whose coefficients are coprime. We denote the minimal
polynomial of x ∈ Ap by aX2 + bX + c if x is quadratic. We denote it by bX + c if x is
rational. Note that c �= 0 if and only if x �= 0. Let us define a map u : Ap \ {0} → Z \ pZ

by assigning
u(x) := c|c|p ∈ Z \ pZ

to each x ∈ Ap \ {0}. We put A′
p := Ap ∩ pZp . We define two maps T1 and T2 from

Ap \ {0} to A′
p by

T1(x) := u(x)pvp(x)

x
− d1(x) ,

and

T2(x) := −u(x)pvp(x)

x
− d2(x) ,

where d1 and d2 are maps from Ap \ {0} to {1, . . . , p − 1} which are uniquely defined so
as to let T1(x) and T2(x) belong to pZp, and thus to A′

p, for every x ∈ Ap \ {0}. It is clear
that T1 and T2 map any quadratic element of Ap to a quadratic one. We remark that T1 and
T2 belong to the family of the maps (2) if we ignore their domains.

Our algorithms introduced in the next section reduce expansions of algebraic elements
of Qp of degree at most two to expansions of those of pZp whose existence is guaranteed
by the following well-known lemma (see, e.g., [6]).

LEMMA 4.1 (Hensel’s Lemma). Let f (X) := Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈

Z[X] such that n ∈ Z>0, a1 ∈ Z \ pZ, and a0 ∈ pZ. Then, there exists a unique α ∈ pZp

such that f (α) = 0.

In what follows, we call an element of pZp a quadratic Hensel root if it is a root of
X2 +bX+c ∈ Z[X] where b ∈ Z\pZ, c ∈ pZ, and X2 +bX+c is irreducible. Likewise,
we call an element of pZp a rational Hensel root if it is a root of X+c ∈ Z[X] with c ∈ pZ

(obviously, the root is −c).

LEMMA 4.2. T1 and T2 map every quadratic Hensel root to a quadratic Hensel
root.

Proof. Let α ∈ pZp be an arbitrary quadratic Hensel root. By definition, α has a
minimal polynomial of the form X2 + bX + c ∈ Z[X] with b ∈ Z \ pZ and c ∈ pZ. We
see that the conjugate ασ �= α of α satisfies ασ ∈ Zp \ pZp since ασ = −b − α. Since
α = c/ασ , we have |α|p = |c|p. Recalling the definition of u, we see that

u(α)pvp(α)

α
= c

α
= ασ .

Let

ασ =
∞∑

i=0

eip
i

(
ei ∈ {0, 1, . . . , p − 1} , e0 �= 0

)
.
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Since ασ is a root of X2 + bX + c, we have e0 (e0 + b) ≡ 0 (mod p). Let r be an element
of {1, . . . , p − 1} satisfying r ≡ b (mod p). Since e0 �= 0, we have e0 + b ≡ 0 (mod p),
which implies e0 = p−r . Thus, d1(α) = p−r , and we have T1(α) = ασ −(p−r) ∈ pZp .
By substituting X + (p − r) for X in X2 + bX + c, we have the minimal polynomial of
T1(α) given by

X2 + {
b + 2(p − r)

}
X + (p − r)b + c + (p − r)2 ∈ Z[X] . (5)

Since Z \ pZ � b + 2(p − r) ≡ −r (mod p) and (p − r)b + c + (p − r)2 ∈ pZ, we see
that T1(α) is a quadratic Hensel root.

By a similar argument, we can show that T2(α) = −ασ − r ∈ pZp and its minimal
polynomial is given by

X2 + (−b + 2r)X − rb + c + r2 ∈ Z[X] . (6)

Since −b + 2r ∈ Z \ pZ and −rb + c + r2 ∈ pZ, we see that T2(α) is also a quadratic
Hensel root. �

REMARK 4.3. Both maps T1 and T2 preserve discriminants of the minimal polyno-
mials of quadratic Hensel roots, i.e., the discriminants of (5) and (6) are equal to b2 − 4c.

5. Continued fraction algorithms

On the basis of T1 and T2 introduced in the previous section, we can consider a va-
riety of continued fraction algorithms which yield an eventually periodic expansion for
every quadratic element of Qp and yield a finite expansion for every rational number. In
the present paper, we deal with three particular algorithms. As in Section 4, the minimal
polynomial of x ∈ Ap is denoted by aX2 + bX + c ∈ Z[X] for quadratic x, and by
bX + c ∈ Z[X] for rational x. Our algorithms decide which map, T1 or T2, is applied to
a given x ∈ Ap \ {0} on the basis of two coefficients of its minimal polynomial, namely
the coefficient b of X and the constant term c, regardless of the degree of x. In the follow-
ing, we specify our algorithms by specifying the map T : Ap \ {0} → A′

p used by each
algorithm:

Algorithm A:

T (x) := T2(x) .

Algorithm B:

T (x) :=
{

T2(x) if b ≥ 0 ,

T1(x) if b < 0 .

Algorithm C:

T (x) :=
{

T2(x) if b ≥ 0 and c > 0 ,

T1(x) otherwise .
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6. Expansions of quadratic Hensel roots

In this section, we deal with the expansions of quadratic Hensel roots, on the basis of
which we expand general quadratic elements of Qp. We show that each of our algorithms
gives an eventually periodic expansion for any quadratic Hensel root. We will deal with
the expansions of general quadratic elements of Qp and those of rational numbers in the
subsequent sections.

When considering an expansion of a quadratic Hensel root α, it is convenient to iden-
tify α with the pair (b, c) of coefficients of its minimal polynomial X2 + bX + c. In the
following, we will do so and allow writing α = (b, c). Similarly, we write T (α) also as
T (b, c). We note that in view of (5) and (6), we have

T1(b, c) =
(
b + 2(p − r), (p − r)b + c + (p − r)2

)
, (7)

and

T2(b, c) = ( − b + 2r,−rb + c + r2), (8)

where r is an element of {1, . . . , p − 1} satisfying r ≡ b (mod p).
Let S be the set of all quadratic Hensel roots, i.e.,

S :=
{
(b, c) ∈ Z2

∣
∣ b ∈ Z \ pZ, c ∈ pZ, and X2 + bX + c is irreducible

}
.

We put

S1 := {
(b, c) ∈ S | b > 0, c > 0

}
,

S2 := {
(b, c) ∈ S | b < 0, c > 0

}
,

S3 := {
(b, c) ∈ S | b < 0, c < 0

}
,

S4 := {
(b, c) ∈ S | b > 0, c < 0

}
.

We further put

R := {
(b, c) ∈ S | 1 ≤ b ≤ p − 1

}
,

R1 := {
(b, c) ∈ S1 | 1 ≤ b ≤ p − 1

}
,

R4 := {
(b, c) ∈ S4 | 1 ≤ b ≤ p − 1

}
.

In the following subsections, we give Theorems 6.1, 6.3, and 6.5 which state the pe-
riodicity of the continued fraction expansion obtained by Algorithms A, B, and C, for any
given quadratic Hensel root.

6.1. Expansions of quadratic Hensel roots by Algorithm A
THEOREM 6.1. The expansion of every quadratic Hensel root obtained by Algo-

rithm A (i.e., T2) is purely periodic with period one or two.

Proof. Let (b, c) ∈ S. Let r be an element of {1, . . . , p − 1} satisfying r ≡ b

(mod p). Then, T2(b, c) = (−b + 2r,−rb + c + r2
)
. Using −b + 2r ≡ r (mod p),

we easily see that T 2
2 (b, c) = (b, c). Thus, (b, c) is a purely periodic point with period two

or one. �
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REMARK 6.2. It is easy to see that (b, c) ∈ S is a fixed point of T2 if and only if
(b, c) ∈ R.

6.2. Expansions of quadratic Hensel roots by Algorithm B
THEOREM 6.3. The expansion of every quadratic Hensel root obtained by Algo-

rithm B is eventually periodic with period one.

Proof. Let (b, c) ∈ S. We will show that (b, c) is an eventually fixed point of the
map T associated with Algorithm B by considering the following three cases:

(i) b ∈ {1, . . . , p − 1}. According to the definition of Algorithm B, we apply T2 to
(b, c) ∈ R. As described in Remark 6.2, such (b, c) is a fixed point.

(ii) b < 0. We apply T1 to (b, c) with b < 0. We can write b = −np + r , where n ∈
Z>0 and r ∈ {1, . . . , p − 1}. Let (b′, c′) = T1(b, c). Then, b′ = −(n−1)p+p−r .
Thus, the n-fold iteration of T1 maps (b, c) to a fixed point given in (i).

(iii) b > p. We apply T2 to (b, c) with b > p. We can write b = np + r , where
n ∈ Z>0 and r ∈ {1, . . . , p − 1}. Let (b′, c′) = T2(b, c). Since b′ = −np+ r < 0,
this case reduces to (ii). �

By the proof of Theorem 6.3, we get the following corollary.

COROLLARY 6.4. The set of purely periodic points of T associated with Algorithm
B within S is R.

6.3. Expansions of quadratic Hensel roots by Algorithm C
THEOREM 6.5. The expansion of every quadratic Hensel root obtained by Algo-

rithm C is eventually periodic.

Proof. We will show that every orbit of T associated with Algorithm C starting from
a quadratic Hensel root is eventually periodic.

First, we need to discuss the dynamics of T on S. We apply T2 to (b, c) ∈ S1 and T1

to (b, c) ∈ ⋃4
i=2 Si . We see by (7) that there exists no fixed point of T1 in

⋃4
i=2 Si since

b �= b + 2(p − r). Thus, the fixed points of T on S are those of T2 in S1, i.e., the points
(b, c) ∈ R1 (cf. Remark 6.2). We see by (7) that in S4, the values of b and c strictly increase
with each iteration of T1, and thus every (b, c) ∈ S4 is eventually mapped into S1. Every
(b, c) ∈ S1 other than the fixed points is mapped into either S2 or S3 under T2 (cf. Proof
(iii) of Theorem 6.3). In S2 and S3, the value of b strictly increases with each iteration of
T1, and every (b, c) ∈ S2 ∪ S3 is eventually mapped into R = R1 ∪ R4 (cf. Proof (ii) of
Theorem 6.3).

Second, we should note that T1 on S is bijective. The inverse map T −1
1 : S → S is

given by
T −1

1 (b, c) = (
b − 2r,−rb + c + r2) , (9)

where r is an element of {1, . . . , p − 1} satisfying r ≡ b (mod p).
Due to the dynamics of T on S, any orbit starting from a quadratic Hensel root eventu-

ally enters either R1 or R4. If the orbit enters R1, then the orbit is eventually periodic with
period one since every element of R1 is a fixed point.
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In what follows, we will show that the orbit entering R4 is also eventually periodic by
showing that every element of R4 is a purely periodic point. Let (b0, c0) ∈ R4. Repeated
iteration of T (i.e., T1) eventually maps (b0, c0) into S1. Two cases occur:

(i) (b0, c0) is mapped into S1 by iterating T even times, i.e., there exists n ∈ Z>0 such
that T 2n(b0, c0) ∈ S1 and T i(b0, c0) ∈ S4 for 0 ≤ i ≤ 2n − 1.

(ii) (b0, c0) is mapped into S1 by iterating T odd times, i.e., there exists n ∈ Z>0 such
that T 2n−1(b0, c0) ∈ S1 and T i(b0, c0) ∈ S4 for 0 ≤ i ≤ 2n − 2.

We note the following fact: Let r := b0 ∈ {1, . . . , p − 1}. By induction, we can show

T 2k
1 (b0, c0) = (2pk + r, p2k2 + rpk + c0) (k ∈ Z) ,

T 2k−1
1 (b0, c0) = (2pk − r, p2k2 − rpk + c0) (k ∈ Z) .

Let us consider Case (i). We see that

T 2n(b0, c0) = T 2n
1 (b0, c0)

= (2pn + r, p2n2 + rpn + c0) ∈ S1 .

Hence, we have

T 2n+1(b0, c0) = T2(2pn + r, p2n2 + rpn + c0)

= (−2pn + r, p2n2 − rpn + c0) .

On the other hand, we see that

T −2n
1 (b0, c0) = (−2pn + r, p2n2 − rpn + c0)

= T 2n+1(b0, c0) .

Since −2pn + r < 0, we have

(b0, c0) = T 2n
1 ◦ T 2n+1(b0, c0)

= T 4n+1(b0, c0) .

Therefore, in Case (i), (b0, c0) is a purely periodic point.
In a similar manner, we can prove that also in Case (ii), (b0, c0) is a purely periodic

point. �
REMARK 6.6. We see from the proof of Theorem 6.5 that Algorithm C can generate

periodic continued fractions of arbitrary long periods.

The following lemma characterizes the set of purely periodic points of T associated
with Algorithm C within S.

LEMMA 6.7. The set of purely periodic points of T associated with Algorithm C
within S is P1 ∪ R1 ∪ S3 ∪ S4, where P1 is defined by

P1 := {
(b, c) ∈ S1 \ R1

∣
∣ c < [b]p 〈b〉p

}
.

Proof. Every element of R1 and R4 is a purely periodic point (cf. the proof of Theo-
rem 6.5).

Every (b, c) ∈ S4 \ R4 is a purely periodic point since (b, c) is mapped into R4 by
iterating T −1

1 . Thus, every element of S4 is a purely periodic point.
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It is not difficult to see that (b, c) ∈ S1 \ R1 is a purely periodic point if and only if
T −1

1 (b, c) ∈ S4 which, by (9), is equivalent to c < rb − r2 = [b]p 〈b〉p. Hence, P1 is the
set of all purely periodic points in S1 \ R1.

There exists no purely periodic point in S2. In fact, we can see this as follows: Let
(b, c) be an arbitrary element of P1. We have T2(b, c) ∈ S3 since −rb + c + r2 = c −
[b]p 〈b〉p < 0 (cf. (8)). Hence, no purely periodic orbit enters S2.

Every orbit starting from (b, c) ∈ S3 passes through R4 and P1, and then it re-enters
S3. We denote by (b0, c0) (resp., (b∗, c∗)) the point in R4 (resp., in P1) on the orbit.
Obviously, there exists m ∈ Z>0 such that (b, c) = T −m

1 (b0, c0). Since T2(b∗, c∗) ∈ S3 is
a point on the purely periodic orbit passing through (b0, c0), there exists m∗ ∈ Z>0 such
that T2(b∗, c∗) = T

−m∗
1 (b0, c0). We easily see that T −1

1 ◦ T2(b∗, c∗) = (−b∗, c∗). Since
b∗ > p and c∗ > 0, we see that T −1

1 ◦ T2(b∗, c∗) ∈ S2, which implies m ≤ m∗. Hence,
(b, c) is a point on the purely periodic orbit passing through (b0, c0). Therefore, every
(b, c) ∈ S3 is a purely periodic point. �

7. Expansions of quadratic elements of Qp

Let α be an arbitrary quadratic element of Qp. In this section, we will first show that
each of the three algorithms gives an eventually periodic expansion for α, by showing that
α is mapped to a quadratic Hensel root under some iterate of T1 and T2. We will then give a
theorem that characterizes elements having purely periodic expansions for each algorithm.
In the last part of this section, we will give some examples of expansions of quadratic
elements of Qp.

Let ασ be the conjugate of α other than α. We consider the following three cases:

Case 1: |α|p < |ασ |p,
Case 2: |α|p > |ασ |p,
Case 3: |α|p = |ασ |p.

Case 1: |α|p < |ασ |p:
Let aX2 + bX + c ∈ Z[X] be the minimal polynomial of α. We see that

|ασ |p =
∣
∣∣
∣−

b

a
− α

∣
∣∣
∣
p

=
∣
∣∣
∣
b

a

∣
∣∣
∣
p

and

|α|p =
∣
∣∣

c

aασ

∣
∣∣
p

=
∣
∣∣
c

b

∣
∣∣
p

.

Since |α|p < |ασ |p, we have ∣
∣
∣
ac

b2

∣
∣
∣
p

< 1 . (10)

Recalling the definition of u, we see that

u(α)pvp(α)

α
= u(α)

α|α|p = c|b|p
α

∈ Zp \ pZp .
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By substituting c|b|p/X for X in aX2+bX+c, we have the minimal polynomial of c|b|p/α

given by
X2 + b|b|pX + ac|b2|p ∈ Z[X] .

Note that b|b|p ∈ Z \ pZ, and ac|b2|p ∈ pZ by (10). Hence, c|b|p/α is the conjugate of
the quadratic Hensel root c|b|p/ασ . By the proof of Lemma 4.2, we can see that the p-adic
fractional part of the conjugate of a quadratic Hensel root is also a quadratic Hensel root.
Therefore, T1(α) = 〈

c|b|p/α
〉
p

and T2(α) = 〈−c|b|p/α
〉
p

are quadratic Hensel roots.
Consequently, in Case 1, α is mapped to a quadratic Hensel root under one iteration

of either T1 or T2.

Case 2: |α|p > |ασ |p:
Let aX2 + bX + c ∈ Z[X] be the minimal polynomial of α. Following a discussion

similar to the one in Case 1, we see that

|α|p =
∣
∣∣
∣
b

a

∣
∣∣
∣
p

, |ασ |p =
∣
∣∣
c

b

∣
∣∣
p

, and

∣
∣∣
∣
b2

ac

∣
∣∣
∣
p

> 1 . (11)

Let us consider the case of applying T1 to α. Since

T1(α) = u(α)

α|α|p − d1(α) ,

the conjugate T1(α)σ �= T1(α) of T1(α) is given by

T1(α)σ = u(α)

ασ |α|p − d1(α) .

By (11), we have ∣
∣∣
∣

u(α)

ασ |α|p
∣
∣∣
∣
p

=
∣
∣∣
∣
b2

ac

∣
∣∣
∣
p

> 1 .

Since |d1(α)|p = 1, we have

∣
∣T1(α)σ

∣
∣
p

=
∣
∣
∣
∣

u(α)

ασ |α|p
∣
∣
∣
∣
p

> 1 .

Similarly, in the case of applying T2 to α, we see that |T2(α)σ |p > 1.
Since |T1(α)|p ≤ p−1 and |T2(α)|p ≤ p−1, we see that |T1(α)|p < |T1(α)σ |p and

|T2(α)|p < |T2(α)σ |p. Therefore, Case 2 reduces to Case 1 after one iteration of T1 or T2.

Case 3: |α|p = |ασ |p:
Let {εn}n≥1 be an arbitrary sequence in the set {1, 2}. We obtain an expansion of α of

the form (3) by applying Tεn ◦ · · · ◦ Tε1 (n ∈ Z>0) to α. Let us define a sequence {αn}n≥0
by

α0 := α and αn := Tεn ◦ · · · ◦ Tε1(α0) (n ≥ 1) .

Assuming that |αn|p = |ασ
n |p for all n ∈ Z≥0, it is not difficult to see that the expansion of

α is identical with that of ασ obtained by applying Tεn ◦ · · · ◦ Tε1 (n ∈ Z>0) to ασ . Then,
by Theorem 3.5 (ii), we get α = ασ , which is a contradiction. This proves that there exists
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n ∈ Z>0 such that |αn|p �= |ασ
n |p. Therefore, Case 3 reduces to Case 1 or Case 2 after

sufficient iterations of T1 and T2.

Consequently, in all the cases, α is mapped to a quadratic Hensel root under some iter-
ate of T1 and T2, regardless of the order in which they are applied. Hence, by Theorems 6.1,
6.3, and 6.5, we have the following theorem.

THEOREM 7.1. The expansion of every quadratic element of Qp over Q obtained
by each of Algorithms A, B, and C is eventually periodic.

REMARK 7.2. In contrast to T2 (i.e., Algorithm A), T1 gives a nonperiodic expan-
sion for every quadratic element of Qp. In fact, every quadratic element is mapped to a
quadratic Hensel root by iterating T1 as we have seen above, but it is clear by (7) that no
quadratic Hensel root is a periodic point of T1.

We now turn to the characterization of elements with purely periodic expansions for
each algorithm. Note that elements with purely periodic expansions are necessarily in pZp .

Except for quadratic Hensel roots, there exists no quadratic element of pZp whose
expansion by our algorithms is purely periodic. This is because every quadratic element of
pZp is mapped to a quadratic Hensel root under some iterate of T1 and T2.

By Theorem 9.1, which will be shown in Section 9, we also see that there exists no
rational number whose expansion is periodic.

Consequently, for each algorithm, the set of elements having purely periodic expan-
sions, i.e., the reduced set, is identical with the set of purely periodic points within the set S

of quadratic Hensel roots. Hence, by Theorem 6.1, Corollary 6.4, and Lemma 6.7, we have
the following theorem.

THEOREM 7.3. The reduced sets for Algorithms A, B, and C are given by S, R, and
P1 ∪ R1 ∪ S3 ∪ S4, respectively.

We now give some examples of expansions of quadratic elements of Qp obtained by
our algorithms. Below, we denote the periodic pattern that first appears in a (purely or
eventually) periodic expansion by using four asterisks (∗) if the period is greater than one.
We denote it by using two asterisks if the period is equal to one.
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Example 1:
Let p = 2, and let α be the quadratic Hensel root of X2+X+2. For this α, Algorithms

A, B, and C give the same expansion:

α =
∗−2

∗
1 + − 2

1 + − 2

. . .

.

Example 2:
Let p = 2, and let α be the quadratic Hensel root of X2 − 11X + 6. Our algorithms

give the following expansions for α.
The expansion by Algorithm A:

α =
∗−3 × 2

∗
1 +

∗−9 × 2

∗
1 + − 3 × 2

1 + − 9 × 2

1 + − 3 × 2

. . .

.

The expansion by Algorithm B:

α = 3 × 2

1 + − 22

1 + − 3 × 22

1 + − 9 × 2

1 + − 11 × 2

1 + − 3 × 23

1 +
∗

3 × 23

∗
1 +3 × 23

. . .

.
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The expansion by Algorithm C:

α = 3 × 2

1 +
∗

−22

∗
1 + − 3 × 22

1 + − 9 × 2

1 + − 11 × 2

1 + − 3 × 23

1 + − 3 × 23

1 + − 11 × 2

1 + − 9 × 2

1 + − 3 × 22

1 + − 22

1 +
∗−3 × 2

∗
1 + − 22

1 + − 3 × 22

. . .

.

Example 3:
Let p = 3, and let α be the quadratic Hensel root of X2 − 11X + 6.
The expansion by Algorithm A:

α =
∗−2 × 3

∗
1 +

∗
−2 × 32

∗
1 + − 2 × 3

1 + − 2 × 32

1 + − 2 × 3

. . .

.

The expansion by Algorithm B:

α = 2 × 3

2 + − 4 × 3

1 + − 2 × 32

2 + − 8 × 3

1 +
∗

8 × 3

∗
1 +8 × 3

. . .

.
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The expansion by Algorithm C:

α = 2 × 3

2 +
∗−4 × 3

∗
1 + − 2 × 32

2 + − 8 × 3

1 + − 8 × 3

2 + − 2 × 32

1 + − 4 × 3

2 +
∗−2 × 3

∗
2 + − 4 × 3

1 + − 2 × 32

. . .

.

Example 4:
Let p = 3, and let α be the root of 3X2 − 5X + 1 whose 3-adic absolute value |α|3 is

equal to 3.
The expansion by Algorithm A:

α = − 3−1

1 + − 32

2 +
∗

−32

∗
2 +

∗
−33

∗
2 + − 32

2 + − 33

. . .

.

The expansion by Algorithm B:

α = 3−1

2 + − 3

1 + 3

2 + − 3

1 +
∗
3

∗
1 + 3

1 + 3

. . .

.
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The expansion by Algorithm C:

α = 3−1

2 + − 3

1 + 3

2 +
∗−3

∗
1 + − 3

2 +
∗−3

∗
2 + − 3

1 + − 3

. . .

.

REMARK 7.4. There is a known, straightforward method for forming a continued
fraction for a root of X2 + bX + c, namely to iterate X = −b − c/X. Such a continued
fraction converges if |b|2p > |c|p. However, this trivial method cannot give an expansion
for every quadratic element of Qp. In addition, the partial denominators of the expansion
are equal to −b which is not usually in {1, . . . , p − 1}, or more precisely, which can take
an arbitrarily large value. This method is quite different from our algorithms that realize
the continued fraction expansion by the iterative application of properly selected linear
fractional maps.

8. Expansions of rational Hensel roots

α = 0 is the root of X ∈ Z[X] and thus is a rational Hensel root. As described in
Section 2, we do not expand α = 0 any further.

Let us consider expansions of rational Hensel roots other than 0, i.e., those of roots of
X + c ∈ Z[X] with c ∈ pZ \ {0}. Recall the definitions of our algorithms in Section 5.
Since the coefficient b of X of the minimal polynomial in Z[X] satisfies b = 1 for every
rational Hensel root, we can classify our algorithms into two classes:

Class I: Algorithms which apply T2 to every rational Hensel root other than 0 (Algorithms
A and B)

Class II: Algorithms which apply T2 to a rational Hensel root if the coefficient c of its
minimal polynomial satisfies c > 0 and which apply T1 if c < 0 (Algorithm C)

In the following, we show that whichever class an algorithm belongs to, it gives a finite
expansion for every rational Hensel root other than 0.

Class I:
Let α be an arbitrary rational Hensel root other than 0. Applying T2 to α, we have

T2(α) = −u(α)

α|α|p − d2(α) .
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Let X + c ∈ Z[X] be the minimal polynomial of α. Since α = −c, we see that |α|p = |c|p.
Since −u(α)

α|α|p = 1 ,

we have d2(α) = 1, which implies

T2(α) = −c

α
− 1 = 0 .

Therefore, α is expanded into the finite continued fraction

α = −c

1
by each of the algorithms belonging to Class I.

Class II:
Let α be an arbitrary rational Hensel root other than 0, and let X + c ∈ Z[X] be the

minimal polynomial of α.
If c > 0, we apply T2 to α. Hence, α is expanded as

α = −c

1
(cf. Class I).

Let us consider the case where c < 0. In this case, we apply T1 to α. Since

u(α)

α|α|p = −1 ,

we see that d1(α) = p − 1, which implies

T1(α) = c

α
− (p − 1) = −p . (12)

Note that T1(α) = −p is also a rational Hensel root whose minimal polynomial is X +p ∈
Z[X]. Since the constant term p of X + p is positive, −p is expanded as

−p = −p

1
(13)

by using T2. By (12) and (13), we see that α is expanded as

α = c

p − 1 + − p

1
when c < 0.

Therefore, the algorithm belonging to Class II also gives a finite continued fraction for
α.

As a consequence, we get the following theorem.

THEOREM 8.1. Each of Algorithms A, B, and C gives a finite expansion for every
rational Hensel root.
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9. Expansions of rational numbers

In this section, we will show that each of the three algorithms gives a finite expansion
for every rational number.

Let α be an arbitrary rational number. If α is a rational Hensel root, our algorithms
give a finite expansion for α (cf. Theorem 8.1).

Let us consider the case where α is not a rational Hensel root. Let bX + c ∈ Z[X] be
the minimal polynomial of α. Obviously, α = −c/b. We easily see that

u(α)

α|α|p = −b|b|p ∈ Z \ pZ ,

which implies that T1(α) = 〈−b|b|p
〉
p

and T2(α) = 〈
b|b|p

〉
p

are in pZ, i.e., they are
rational Hensel roots. Therefore, the expansion of α obtained by each of our algorithms is
finite also in the case where α is not a rational Hensel root.

Summarizing the discussion above, we have the following theorem.

THEOREM 9.1. Each of Algorithms A, B, and C gives a finite expansion for every
rational number.

10. Concluding remarks

It is worth making some remarks on the generality of our results.

1. We have dealt with continued fractions of the form (1), but we can also consider
another basic type, namely continued fractions of the form

d0 + t1p
k1

d1 + t2p
k2

d2 + t3p
k3

. . .

(
kn ∈ Z>0, tn ∈ Z\pZ , dn ∈ {1, . . . , p − 1} (n ≥ 1)

)

(14)
with d0 ∈ Qp such that d0 = [d0]p. The convergence of continued fractions
(14) is also guaranteed by Theorem 3.5. By applying our algorithms to the p-adic
fractional part 〈α〉p of α ∈ Ap, we can generate continued fractions of the form
(14). Even with this modification, all the theorems in this paper still hold.

2. We have focused on the expansion of the elements of Ap, but it is easy to extend
our algorithms to cover all the elements of Qp. One of the simplest ways to do this
is to expand every element of Qp \ Ap by using the map T such that t and d in (2)
satisfy t (x) = 1 for all x ∈ Qp\Ap and Im(d) ⊂ {1, . . . , p − 1}. The convergence
of resulting continued fractions is guaranteed, as we have seen in Section 3. Note
that even with this extension, a given element of Qp \ Ap has neither a periodic
nor finite expansion since Im(t) and Im(d) are included in Q.

Algorithms other than those presented here, as well as the extension of our approach
to multidimensional p-adic continued fractions, will be reported in forthcoming papers.
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