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The Hanbury Brown–Twiss (HBT) effect, at the
quantum level, is essentially an interference of
one particle with another, as opposed to in-

terference of a particle with itself. Conventional
treatments of identical particles encounter difficulties
while dealing with entanglement. A recently intro-
duced label-free approach to indistinguishable parti-
cles is described, and is used to analyze the HBT ef-
fect. Quantum wave-packets have been used to pro-
vide a better understanding of the quantum inter-
pretation of the HBT effect. The effect is demon-
strated for two independent particles governed by
Bose–Einstein or Fermi–Dirac statistics. The HBT ef-
fect is also analyzed for pairs of entangled particles.
Surprisingly, entanglement has almost no effect on
the interference seen in the HBT effect. In the light
of the results, an old quantum optics experiment is re-
analyzed, and it is argued that the interference seen
in that experiment is not a consequence of non-local
correlations between the photons, as is commonly be-
lieved.
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1 Introduction

Interference of waves is a very old and well studied sub-
ject. Waves emanating from two sources give rise to
interference, provided that there is a coherence in the
phases of the two. This can be understood with the fol-
lowing argument. Suppose there are two sources A and B,
waves emerging from which fall on a distant screen. At a
point x1 on the screen, the contribution of the two classi-
cal waves can be written as

E(x1) = αeıkrA1 + βeıkrB1−ıφ, (1)

where k is the wave-vector of the two waves, rA1, rB1
are the displacements as shown in Figure 1, and φ is the
difference in the phases of the two sources. Assuming
α, β to be real, the intensity at the point x1 is then given
by

I(x1) ≡ |E(x1)|2 = α2 + β2 + 2αβ cos
[
k(rA1 − rB1) + φ

]
.

(2)
The above expression represents interference between the
wave from A and B, at point x1 on the screen. One can
see that if the phase difference between the two waves,
φ, fluctuates randomly with time, which amounts to inte-
grating the above over φ, the interference will be washed
away.

〈I(x1)〉 ≈ α2 + β2. (3)

Thus two independent, incoherent sources of waves do not
give rise to interference. Hanbury Brown and Twiss car-
ried out an experiment with radio waves which involved
correlating intensities at two points on the screen, coming
from two independent sources [1]. Their experiment can
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Figure 1: A schematic diagram for a two source interference, and also for a intensity correlation at two points. Sources A and B
are stationary while the detectors at x1 and x2 are movable.

be easily understood from the preceding example. An
intensity correlation at two points x1 and x2 on the screen
can be written as

I(x1)I(x2) = |E(x1)|2|E(x2)|2

=
[
α2 + β2 + 2αβ cos(k(rA1 − rB1) + φ)

][
α2 + β2 + 2αβ cos(k(rA2 − rB2) + φ)

]
(4)

After averaging over φ, the φ-dependent terms drop out,
and one is left with

〈I(x1)I(x2)〉 ≈ (α2 + β2)2

+2(αβ)2 cos(k(rA1 − rB1 − rA2 + rB2)).

(5)

Surprisingly, although individual intensities do not show
any oscillation, there is interference between the intensi-
ties at two different points on the screen. This is what is
called the Hanbury Brown–Twiss (HBT) effect. Random
fluctuation of phases of the independent source has no
effect on the oscillations seen in the intensity correlations.
Notice that the visibility [2] of the above interference
pattern is 2(αβ)2

(α2+β2)2 which is bounded from above by 1/2.
The HBT effect was explained using classical waves,

but when the same experiment was proposed using light,
there was a lot of skepticism, and people thought it would
not work. The reason was that the HBT effect arose from
two different waves interfering with each other, and many
people believed that a photon interferes only with itself,
two photons never interfere with each other [3, p. 9].
Hanbury Brown and Twiss carried out the experiment
with light and demonstrated the HBT effect [4]. The
first quantum understanding of the HBT effect for light
was given by Fano [5]. The HBT effect has now been
demonstrated for quantum light [6, 7]. Not only that, it
has also been demonstrated with massive particles, both
of bosonic [8–10] and fermionic [11] nature.

The HBT effect for massive particles is intriguing, as
it involves interference between two different particles.
Particles are seen to be bunched together without any
interaction between them. It is a purely quantum mechan-
ical effect, and the classical wave explanation is only a
part of the story. Full treatment of the HBT effect can
of course be done using quantum many-body theory, as
the particles are treated as being indistinguishable there.
However, that maybe an overkill, as it is essentially a two
particle effect. In the following we treat two massive par-
ticles as traveling wave-packets, and use them to analyze
the HBT effect.

2 Label-free approach to identical
particles

For a quantum treatment of the HBT effect, it is essen-
tial to take the indistinguishability of the particles into
account. However, treatment of identical particles in
quantum mechanics, particularly those involving entan-
glement, has been an issue which has been much de-
bated [12–29]. The problem can be seen in the very basic
symmetric or anti-symmetric wavefunctions that are usu-
ally written, e.g. φA(x1)φB(x2) ± φB(x1)φA(x2). Although
the particles are assumed to be indistinguishable, we put
labels 1 and 2 on them. In addition, since the above
state is not separable, the question arises, whether it is an
entangled state? The problem of labeling, of course, dis-
appears if one uses the second quantization approach [30].
However, the problems in dealing with entangled states
do not go away just by using second quantization. Re-
cently a new state-based approach has been introduced
which does not label the particles, and appears to address
the entanglement related issues satisfactorily [31]. In the
following, we will explain this approach and use it to
analyze HBT experiment with quantum particles.
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In this new approach, the basic assumption is that in
dealing with more than one identical particles, the parti-
cles cannot be individually addressed. This is in accor-
dance with the quantum theory. The combined state of
two particles, which may consist of single-particle states,
is treated as a holistic indivisible entity [31]. One can-
not ask for the form of this state. What one can ask, is
what the two particle probabiliity amplitude of finding
the two particles in two different states is. For example,
if one particle is in the single-particle state |ψ〉 and one
in the state |φ〉, the two-particle state is represented as
|φ, ψ〉. One may not talk about the “form” of this state in
terms of single-particle states |ψ〉 and |φ〉. However, the
probability amplitude of finding one particle in state |α〉
and the other in state |β〉, i.e., in the combined state |α, β〉,
is given by

〈α, β|φ, ψ〉 = 〈α|φ〉〈β|ψ〉 + η〈α|ψ〉〈β|φ〉, (6)

where η2 = 1. One can check that the state |φ, ψ〉 is
not normalized simply by replacing |α, β〉 by |φ, ψ〉 in
the above equation. The state |φ, ψ〉 has to be multiplied
with 1√

1+η|〈φ|ψ〉|2
in order to normalize it. The probability

amplitude of finding the particles at positions x1 and x2,
i.e., in the state |x1, x2〉 is given by

〈x1, x2|φ, ψ〉 = 〈x1|φ〉〈x2|ψ〉 + η〈x1|ψ〉〈x2|φ〉, (7)

which is the familiar symmetric or antisymmetric two-
particle wavefunction. The difference is that, in this case
1 and 2 are not labels of particles, but corresponds to the
two positions of a joint measurement.

A one-particle operator Â acts on the two-particle state
in the following way:

Â|φ, ψ〉 = |Âφ, ψ〉 + |φ, Âψ〉. (8)

The expectation value of a one-particle operator, using
(6) and (8), is given by

〈Â〉 = 〈φ, ψ|Â|φ, ψ〉

= 〈φ|Âφ〉 + 〈ψ|Âψ〉

+η
(
〈φ|ψ〉〈ψ|Âφ〉 + 〈ψ|φ〉〈φ|Âψ〉

)
, (9)

which agrees with the expression of the conventional
analysis.

3 Independent particles

Let there be two particles described by two wave packets,
traveling along y-axis. The two particles emerge from two
sources localized at positions x0 and −x0. We described
the two particles by two Gaussian wave packets of width

ε each, localized at x0 and −x0, denoted by |φA〉 and |φB〉,
respectively. Since the particles are indistinguishable, the
combined initial state of the two particles can be written
as

|ψ(0)〉 = |φA, φB〉 (10)

This satisfies the essential requirement for HBT effect,
that the particles be identical, in the quantum sense. The
conventional two-particle wavefunction is then just the
probability amplitude of finding one particle at x1 and
one at x2, and can be written down using (6) as follows:

ψ(x1, x2, 0) = 〈x1, x2|φA, φB〉

= 〈x1|φA〉〈x2|φB〉 + η〈x1|φB〉〈x2|φA〉

=
1
√
πε

(
e
−(x1−x0)2

ε2 e
−(x2+x0)2

ε2

+ηe
−(x1+x0)2

ε2 e
−(x2−x0)2

ε2

)
(11)

where η = ±1. The last line in the above equation
specifies the Gaussian form of the states emerging from
the sources A and B, namely, φA(x) = exp −(x−x0)2

ε2 and

φB(x) = exp −(x+x0)2

ε2 . For bosonic particles, the wave-
function should be symmetric, and η should be 1. For
fermions, the two-particle wavefunction should be anti-
symmetric, requiring η to be −1. We assume that the
particles are traveling along the positive y-direction with
a constant velocity v0. For simplicity we ignore the ex-
plicit time evolution along the y-axis, and assume that
evolution for a time t′ just transports the wave packets by
a distance l = v0t′. The dispersion of the wave packets
along the transverse x-direction is more interesting and
may give rise to interference between wave packets.

Notice that if one of the two sources produces a wave
packet with an additional phase factor, say eıφ, that phase
factor will present in the both the terms in (11), and can
be pulled out, becoming irrelevant.

The Hamiltonian governing the time evolution is that of
two free particles. The two-particle eigenstate will simply
be |p, p′〉 which means one particle has momentum p and
the other p′. One can thus write

Ĥ|p, p′〉 =

(
p2

2m
+

p′2

2m

)
|p, p′〉 (12)

After traveling for a time t, the particles reach the screen.
Time evolution of the initial state |φA, φB〉 can be worked
out by introducing a complete set of two-particle momen-
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tum eigenstates:

|ψ(t)〉 = e−ıĤt/~|φA, φB〉

= e−ıĤt/~
∑
p,p′
|p, p′〉〈p, p′||φA, φB〉

=
∑
p,p′

e−ı
(p2+p′2)t

2m~ |p, p′〉[
〈p|φA〉〈p′|φB〉 +η〈p|φB〉〈p′|φA〉

]
=

∑
p,p′
|p, p′〉[

〈p|φA(t)〉〈p′|φB(t)〉 +η〈p|φB(t)〉〈p′|φA(t)〉
]

= |φA(t), φB(t)〉, (13)

where

〈p|φA(t)〉 = e−
ıp2t
2m~ 〈p|φA〉, 〈p′|φB(t)〉 = e−

ıp′2t
2m~ 〈p|φB〉.

(14)

From the momentum representation of |φA〉 and |φB〉, the
position representation can be evaluated. The amplitude
of finding the particles at positions x1 and x2 then works
out to be

ψ(x1, x2, t) = α

(
e
−(x1−x0)2

ε2+ı∆ e
−(x2+x0)2

ε2+ı∆ +ηe
−(x1+x0)2

ε2+ı∆ e
−(x2−x0)2

ε2+ı∆

)
,

(15)

where ∆ ≡ 2~t/m, and α = 1√
π(ε+ı∆/ε)

. For simplicity
we introduce the notation ψt = ψ(x1, x2, t). The joint
probability density of finding the particles at x1 and x2 is
given by

|ψt|
2 =

1
πσ2

(
e
−2ε2(x1−x0)2

ε4+∆2 e
−2ε2(x2+x0)2

ε4+∆2

+e
−2ε2(x1+x0)2

ε4+∆2 e
−2ε2(x2−x0)2

ε4+∆2

+ηe
−(x1+x0)2

ε2+ı∆ e
−(x2−x0)2

ε2+ı∆ e
−(x1−x0)2

ε2−ı∆ e
−(x2+x0)2

ε2−ı∆

+ηe
−(x1−x0)2

ε2+ı∆ e
−(x2+x0)2

ε2+ı∆ e
−(x1+x0)2

ε2−ı∆ e
−(x2−x0)2

ε2−ı∆

)
,(16)

where σ2 = ε2 + ∆2/ε2. The above simplifies to

|ψt|
2 =

2
πσ2 e

−2ε2(x2
1+x2

2+2x2
0)

ε4+∆2 cosh
[
4ε2(x1 − x2)x0

ε4 + ∆2

]
1 + η

cos
(

4∆(x1−x2)x0
ε4+∆2

)
cosh

(
4ε2(x1−x2)x0

ε4+∆2

)
 . (17)

The right-hand side of Eq. (17) represents an interference
pattern in the joint probability of detection of the two
particles, with respect to the distance between the two
positions x1 and x2 on the screen. For η = 1, it constitutes
the HBT effect for massive particles, which obey Bose

statistics. The same result will also apply to independent
photons with the proviso that ∆ = λL/π, where λ is the
wave-length of the photons and L is the distance traveled
by them in time t. In fact, the relation ∆ = λL/π may
also be used for massive particles in which case λ will
represent the de Broglie wavelength of a particle. It is
easy to check that, for |x1 − x2|, x0 � rA1 + rA2, rB1 + rB2,
the cosine term in (5) reduces to cos(4x0(x1 − x2)/∆),
which is the same as the cosine term in (17), provided
that ε4 � ∆2.

At this stage it may be useful to understand the physical
meaning of various terms in the joint probability distri-
bution (16). In our usual classical way of thinking, we
imagine that there is a possibility of the particle from
source A reaching x1 and that from source B reaching x2.
The solids lines in Figure 1 represents this possibility and
the first term in (16) represents its probability. There is
also the possibility of the particle from source A reach-
ing x2 and that from source B reaching x1. The dashed
lines in Figure 1 represent this possibility and the sec-
ond term in (16) represents its probability. However, in
quantum mechanics particles are not localized objects.
In fact they are capable of demonstrating wave and par-
ticle natures in different situations. They should rather
be called quantons [32]. Quantons may be visualized
as fuzzy objects, sometime being spreadout like a wave,
and sometimes localized as particles. They can very well
interfere with themselves. If two independent quantons
can interfere with each other, there is also the possibility
of quantons from A and B partially contributing to the
quanton detected at x1, and at x2. Since the quantons are
identical, we have no way of knowing which source they
came from. In Figure 1, the solid line rA1 and the dotted
line rB1 represent the possibility of A and B contributing
to the quantons reaching x1, and the solid line rB2 and
the dotted line rA2 represent the possibility of B and A
contributing to the quantons reaching x2. The last two
terms in (16) represent this possibility. One can see that
if the quantons are not identical, the last two terms would
not be there. This argument is in agreement with the fact
that the HBT effect cannot be seen for particles which are
not identical.

The last two terms can also be interpreted as describing
interference between the processes represented by the
solid and the dashed lines. For certain values of x1, x2
it might so happen that the solid lines process and the
dashed lines process destructively interfere. In that case,
there will be no simultaneous detection of quantons at all.

The visibility of this interference pattern is
1

cosh
(

4ε2(x1−x2)x0
ε4+∆2

) , which is bounded from above by 1.

Contrast this with the classical HBT effect described
by (5), where the visibility cannot be greater than 1/2.
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This implies that there are certain distances between the
detectors 1 and 2 for which the probability of detecting
particles simultaneously is zero! The probability of
detecting two particles very close to each other is
enhanced. This can be interpreted as a bunching effect.
Remarkably, the particles tend to get bunched together
even when there is no interaction between them. This
is a purely quantum mechanical effect and has been
experimentally observed in photons [6, 7] as well as
massive particles [8–10].

For η = −1, the relation (17) implies that the probabil-
ity of simultaneously detecting two particles very close to
each other is nearly zero! Even when the particles strike
the screen at random, there is a certain probability of two
of them hitting the screen very close to each other. In
the case η = −1, the probability of landing very close to
each other is even smaller than this random chance. It
appears as if the particles are repelling each other. This
is what is called anti-bunching effect and has been ob-
served for particles following Fermi–Dirac statistics, e.g.,
electrons [11].

4 Entangled particles

Let us now investigate the scenario where the particles
are entangled. There are certain sources of photons which
generate photons in entangled pairs. Entanglement man-
ifests itself in strong quantum correlations between the
two particles. To our knowledge, the effect of entangle-
ment on the HBT effect has not been quantified. Einstein,
Podolsky and Rosen (EPR) first drew attention to a mo-
mentum entangled state of two particles [33]

ΨEPR(x1, x2) =

∫ ∞

−∞

e
ıpx1
~ e

−ıpx2
~ e

−ı2x0 p
~ dp, (18)

which can be written in Dirac notation as

|ΨEPR〉 =

∫ ∞

−∞

|p〉1| − p〉2e
−ı2x0 p
~ dp, (19)

where labels 1 and 2 refer to particle 1 and 2, respectively.
This state is for distinguishable particles. If one were to
write an EPR state for identical particles, in our label-free
approach, it would be the following

|Ψident
EPR 〉 =

∫ ∞

−∞

|p,−p〉e
−ı2x0 p
~ dp. (20)

The amplitude of finding the particles at x1 and x2 is given
by

〈x1, x2|Ψ
ident
EPR 〉 =

∫ ∞

−∞

[
〈x1|p〉〈x2| − p〉

+η〈x1| − p〉〈x2|p〉
]
e
−ı2x0 p
~ dp,

(21)

which will be just the symmetrized or antisymmetrized
form of (18).

The problem with the EPR state (18) is that it cannot
be normalized, and also it does not describe particles
with varying degree of entanglement. To address these
shortcomings, we introduce a generalized EPR state for
identical particles

|Ψ〉 = C
∫ ∞

−∞

∫ ∞

−∞

|q + p, q − p〉e
−ı2x0 p
~ e−

p2

~2σ2 e−
q2Ω2

~2 dp dq,

(22)
where q + p and q − p label single-particle momentum
eigenstates, C is a normalization constant, and σ,Ω are
certain parameters. In the limit σ,Ω→ ∞ the state (22)
reduces to the EPR state (20), if −2x0 here is identified
with x0 in the EPR state.

The two-particle amplitude of finding them at x1 and
x2 is given by

Ψ(x1, x2) =

√
σ

πΩ

(
e−(x1−x2−2x0)2σ2

e−(x1+x2)2/4Ω2

+ηe−(x1−x2+2x0)2σ2
e−(x1+x2)2/4Ω2)

. (23)

The state (23) is an extended version of the generalized
EPR state introduced earlier [34]. It is straightforward to
show that Ω and σ quantify the position and momentum
spread of the particles in the x-direction. The interesting
thing about this state is that for 2Ω = 1/σ = ε

√
2, it

is no longer entangled and reduces exactly to the sym-
metric state (11) studied in the last section, which is a
symmetrized or anti-symmetrized product of two Gaus-
sians centered at x0 and −x0. So the entangled state is
essentially two shifted Gaussians entangled with each
other. The state (23) is symmetric under the interchange
of the two particles, thus describing bosonic particles.

The stage is now set to study HBT effect with two en-
tangled particles, described by the state (23). The two
particles travel in the y-direction for a time t before reach-
ing the screen. During this time, the states evolves in
transverse x-direction too. As done in the last section,
we ignore the time evolution in the y-direction, and only
consider the evolution in the x-direction. If one is deal-
ing with photons, one can use an alternative wave-packet
evolution [35]. The state of the two particles, on reaching
the screen (or detectors), is given by

Ψ(x1, x2, t) = Cte

[
−

(x1+x2)2

4Ω2+ıδ

] (
exp

[
−

(x1 − x2 − 2x0)2

1/σ2 + ıδ

]
+η exp

[
−

(x1 − x2 + 2x0)2

1/σ2 + ıδ

])
, (24)

where Ct =

√
1
π

[{
Ω2 +

(
λL

2πΩ

)2
} {

1
σ2 +

(
2σλL
π

)2
}]−1/4

,
δ = 4~t/m = 2λL/π and L is the distance in the
y-direction, traveled by the particles during time t.
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Figure 2: A schematic diagram of the Ghosh–Mandel experiment [36]. A UV pump laser falls on a non-linear crystal and
produces pairs of entangled photons via spontaneous parametric down-conversion (SPDC), traveling in different directions.
These photons are deflected by two mirrors and recombined where two movable detectors detect them in coincidence.

The probability density of joint detection of particles
at x1 and x2 can now be calculated, and is given by

|Ψ(x1, x2, t)|2 = |Ct|
2e
−8Ω2(x1+x2)2

16Ω4+δ2 e
−2((x1−x2)2+2x2

0)/σ2

1/σ4+δ2

cosh
[
8(x1 − x2)x0/σ

2

1/σ4 + δ2

]
1 + η

cos
(

8δ(x1−x2)x0
1/σ4+δ2

)
cosh

[
8(x1−x2)x0/σ2

1/σ4+δ2

]
 . (25)

The above expression closely resembles (17) derived for
particles which are not entangled. Let us explore it in the
situation when the entanglement between the two parti-
cles is strong. From the Gaussian in (x1 − x2) in (23), one
can see that as σ increases, the Gaussian narrows, and
(x1 − x2 − 2x0) becomes more localized, which implies
stronger position correlation between detected particles.
Stronger position correlation implies stronger entangle-
ment. Thus, entanglement is strong when σ is large and
one can safely assume 1/σ4 � δ2. In this limit, the cosine
term becomes cos[8(x1 − x2)x0/δ] = cos[4(x1 − x2)x0/∆],
which means that the interference fringe width is the
same as in the case of independent particles and also in
the classical case. The Gaussian terms in (25) assume the
approximate form

e
−2(x1+x2)2

4Ω2+δ2/4Ω2 e
−2((x1−x2)2+2x2

0)

σ2δ2 .

These Gaussians represent broad profiles both in x1 + x2
and x1 − x2. Therefore it appears that entanglement does
not cause any suppression of HBT effect, and remains
almost as it is for independent particles.

In the opposite limit, i.e., when the entanglement goes
to zero, one can write 4Ω2 = 1/σ2 ≡ 2ε2 (say). In this
limit, (25) exactly reduces to (17), as expected.

5 The Ghosh–Mandel Experiment

In the light of the preceding analysis, we now take a fresh
look at an old quantum optics experiment by Ghosh and
Mandel [36]. This experiment was among the category
of first experiments showing spatial correlation of pho-
tons. A UV laser beam was incident on a non-linear
crystal resulting in the production of a pair of photons via
spontaneous parametric down-conversion (SPDC). Such
photons are known to be entangled, and show quantum
correlations. The two photons travel in different direc-
tions at a small angle with respect to each other. Two
mirrors are used to bring the two photons together, and
two detectors, in the detection plane, detect them in co-
incidence (see Figure 2). While a single detector saw no
interference, a coincident count of the two detectors, as
a function of their relative separation showed an interfer-
ence pattern.

The visibility of interference was greater than 1/2,
which demonstrated the non-classical nature of photons.
This experiment has also been discussed in a textbook
[37], and the interference pattern is believed to be a re-
sult of non-local quantum correlation between the two
photons [36, 37].

One would notice the close similarity between the
Ghosh–Mandel experiment and our model system study-
ing HBT effect with entangled particles. The two detec-
tors in the Ghosh–Mandel experiment, at x1 and x2, see
the photons reaching them after getting deflected from
the two mirrors. In effect they see the photons as coming
from two spatially separated virtual sources A and B (see
Figure 2). With this recognition, the setup in Figure 2
is virtually the same as that in Figure 1, and our model
system captures the essence of the Ghosh–Mandel experi-
ment. One might wonder if the generalized EPR state can
describe the state of entangled photons emerging from an
SPDC. In fact, the state of the SPDC photons, produced
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from a Gaussian pump beam, is closely similar to the gen-
eralized EPR state (23) if one puts x0 equal to zero [38].
The effect of the two mirrors in the Ghosh–Mandel exper-
iment (see Figure 2), is to make the two photons appear
to arrive from two spatially separated locations. Hence,
the introduction of x0 in (23) incorporates the effect of
the two mirrors into the state of the entangled photons.

Our analysis shows interference of entangled particles,
and the visibility is close to 1. So it reproduces the result
of the Ghosh–Mandel experiment. However, the surpris-
ing part is that the same result is obtained when we use
independent bosonic particles which are not entangled,
as shown in Section 3. When independent bosonic parti-
cles are used, one sees an interference in the coincidence
count as a function of the relative position of the detec-
tors, and the visibility is close to 1. But that is the result
that is obtained in the Ghosh–Mandel experiment too.
This implies that in the Ghosh–Mandel experiment, if the
photons pairs were not entangled, the result would be the
same as that for entangled photons. Thus the effect seen
in the Ghosh–Mandel experiment is essentially the HBT
effect. As the interference in the HBT effect is indepen-
dent of whether the two particles are entangled or not,
the Ghosh–Mandel experiment is not a demonstration of
non-local quantum correlation or entanglement between
photons, as many seem to believe [37, §6.5]. However, in
the light of our analysis, the Ghosh–Mandel experiment
was historically the first unambiguous demonstration of
interference between two photons, which is a completely
non-classical effect in itself, and probably would not have
been expected by Dirac [3]. A word of caution might
be needed here. The HBT effect should not be naively
considered a consequence of just a physical overlap of
two wave-packets of two photons [39]. It should rather be
thought of as interference of two two-photon amplitudes.

6 Conclusion

To summarize, we have used wave-packets to study
the HBT effect in quantum particles following Bose–
Einstein and Fermi–Dirac statistics, using a recently in-
troduced label-free analysis of indistinguishable particles.
The bunching and anti-bunching has been demonstrated
through a simple analysis. We have also analyzed the
HBT effect for pairs of particles which are entangled in
position and momentum through an EPR like state. These
entangled particles also show an HBT effect which is not
different from the HBT effect in independent particles, in
any noticeable way.

We have also argued that the Ghosh–Mandel experi-
ment is essentially the HBT effect with entangled parti-
cles. However, the interference seen in that experiment, is

not a consequence of any non-local correlation between
the two photons. Exactly the same effect would be ob-
served if the photons were not entangled.
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