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We present a short review of the theory of weak
measurement. This should serve as a map for
the theory and an easy way to get familiar

with the main results, problems and paradoxes raised
by the theory.
Quanta 2013; 2: 7–17.

1 Introduction

Weak measurement is increasingly acknowledged as one
of the most promising research tools in quantum mechan-
ics. Tasks believed to be self contradictory by nature such
as ‘determining a particle’s state between two measure-
ments’ prove to be perfectly possible with the aid of this
technique. Similarly for the theory within which weak
measurement has been conceived, namely the two-state
vector formalism. Within this framework several new
questions can be raised, for which weak measurement
turns out again to be the most suitable tool for seeking
answers. In the following we very briefly present some
of the techniques, problems and paradoxes arising from
the theory.

Weak measurements can reveal some information
about the amplitudes of a quantum state without collaps-
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ing the state into eigenvectors. This is done by a weak
coupling between the measurement device and the sys-
tem. Weak measurements generalize ordinary quantum
(projective) measurements: following the weak coupling
the state vector is not collapsed but biased by a small
angle, and the measurement device does not show a clear
eigenvalue, but a superposition of several values. One
question is immediately raised: what type of information
can weak measurement reveal?

While trying to answer the above question we real-
ize that weak measurement theory presents a plethora of
quantum strange phenomena, not yet completely under-
stood. In the paper we shall present and discuss some of
the paradoxes and peculiarities of the theory.

2 Weak measurements: the
one-state vector formalism

We start with a short review of ordinary strong measure-
ment, then we define the notion of weak measurement as a
generalization of strong measurement. Next we describe
some properties of weak measurement.

2.1 Strong quantum measurements

Let |ψ〉 be a pure vector state. Consider the standard for-
malism of quantum measurement theory. We differentiate
between the outcome of the measurement m, the probabil-
ity to get that measurement outcome p(m), and the state

Quanta | DOI: 10.12743/quanta.v2i1.14 May 2013 | Volume 2 | Issue 1 | Page 7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Quanta

https://core.ac.uk/display/293169023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:boaz.tamir@mail.huji.ac.il
mailto:eliahuco@post.tau.ac.il
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.12743/quanta.v2i1.14


of the system after the measurement |ψm〉 [1–4].
We can describe the measurement process using the

formalism of vector operators. Let M̂m be a set of lin-
ear operators satisfying

∑
M̂†mM̂m = Î then we will say

that the set defines a quantum measurement where the
probability is defined by

p(m) = 〈ψ|M̂†mM̂m|ψ〉 (1)

and the vector state (non normalized) after the measure-
ment is

|ψm〉 = M̂m|ψ〉 (2)

If M̂m are also projective operators i.e. M̂†mM̂m = M̂m

then we say that the measurement is projective.

Example 1

Consider the state

|ψ〉 =
1
√

2
(|0〉 + |1〉) (3)

where |0〉 and |1〉 are the eigenvectors of the Pauli spin
matrix in the z-direction

Ŝ z =

(
1 0
0 −1

)
(4)

Measuring the state using the projectors M̂0 = |0〉〈0|,
M̂1 = |1〉〈1| gives the result 0 or 1 respectively with
probability 1

2 . Following the measurement, the state of
the system is |0〉 or |1〉 respectively.

In some cases it is enough to know the probabilities of
the measurement outcome e.g. when the final state is not
so important. In such cases it is enough to demand the
existence of a set of positive operators Êm such that∑

m

Êm = Î (5)

where the probability to get m is

p(m) = 〈ψ|Êm|ψ〉 (6)

This is known as positive operator-valued measurement
(POVM). As a general scheme for implementing a POVM
one can couple the system with an ancilla which repre-
sents the environment, evolve the whole system and an-
cilla using a unitary operator, and then measure the ancilla
space using a projective measurement. This produces a
series of positive operators on the original system. The
technique is frequently used in quantum operations and
is also known as the operator-sum representation (see
also [4, chapter 8]).

2.2 Weak measurements: definition

There are many motivations for generalizing quantum
projective measurements into weak measurements: main-
taining the initial state while gradually accumulating in-
formation [5], determining the system’s state in-between
two strong measurements [6] and revealing unusual weak
values [7] are just three examples, others will be described
below.

Weak measurement should be treated as a generaliza-
tion of quantum strong measurement. In weak measure-
ment theory both the system and the measurement device
are quantum systems [8]. Weak measurement consists of
two steps. In the first step we weakly couple the quantum
measurement device to the quantum system. In the sec-
ond step we strongly measure the measurement device.
The collapsed state of the measurement device is referred
to as the outcome of the weak measurement process. For
a measurement to be weak, the standard deviation of the
measurement outcome should be larger than the differ-
ence between the eigenvalues of the system. We will now
describe this process in details. The procedure resembles
the strong measurement process described in [1], how-
ever here we use a very weak entanglement between the
system and the measurement device (see [8]).

Let |φd〉 denote the wave function of the measurement
device. When represented in the position basis it will be
written as

|φ〉 = |φd〉 =

∫
x
φ(x)|x〉dx (7)

where x is the position variable of the measuring needle.
Let X̂d be the position operator such that X̂d |x〉 = x|x〉
(here, we use X̂ to distinguish the operator X̂ from its
eigenvector |x〉 and eigenvalue x, the same for P̂, the
subscript d is used for measuring device). We will also
assume that φ(x) behaves normally around 0 with some
variance ∆ = σ2:

φ(x) = (2πσ2)−
1
4 e−x2/4σ2

(8)

We will later (strongly) measure |φd〉 i.e. collapse the
device’s needle to get a value which is the weak measure-
ment’s outcome.

Let S denote our system to be measured. Suppose Â is
an Hermitian operator on the system S . Suppose Â has N
eigenvectors |a j〉 such that Â|a j〉 = a j|a j〉.

Consider the general state vector |ψ〉 expressed in the
eigenbasis of Â:

|ψ〉 =
∑

j

α j|a j〉 (9)

Consider the interaction Hamiltonian Ĥint [8, chapter 7]

Ĥ = Ĥint = g(t)Â ⊗ P̂d (10)
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Here g(t) is a coupling impulse function satisfying∫ T

0
g(t)dt = 1 (11)

where T is the coupling time and P̂d is the operator con-
jugate to X̂d such that [X̂d, P̂d] = ı~.

We shall start the measuring process with the vector

|ψ〉 ⊗ |φ(x)〉 (12)

in the tensor space of the two systems. Then we apply the
Hamiltonian

e−ıĤt/~|ψ〉 ⊗ |φ(x)〉 (13)

It is easy to see that on each of the vectors |a j〉⊗ |φ(x)〉 the
Hamiltonian Ĥ takes X̂d to X̂d+a j, (Heisenberg evolution)

X̂d(T ) − X̂d(0) =

∫ T

0
dt
∂X̂d

∂t

=

∫ T

0

ı

~
[Ĥ, X̂d]dt = a j (14)

(see [9, section 8.4]). The corresponding transformation
of the coordinates of the wave function is

e−ıĤT/~|ψ〉 ⊗ |φ〉 =
∑

j

α j|a j〉 ⊗ |φ(x − a j)〉 (15)

The above wave functions φ have high variance and there-
fore they overlap each other. The higher the variance the
weaker the measurement process. If these normal wave
functions do not overlap then the measurement is strong.
Therefore we can control the process by the choice of the
variance.

Example 2

Take Â = ~
2 Ŝ z and let Ĥint = Â ⊗ P̂d. Write |ψ〉 in the

basis of eigenvectors of Ŝ z i.e. |ψ〉 = α|0〉 + β|1〉.
Following the weak coupling the system and the mea-

suring device are entangled∫
x
[α|0〉 ⊗ φ(x − ~/2) + β|1〉 ⊗ φ(x + ~/2)]|x〉dx (16)

where the above functions φ are two normal functions
overlapping each other, due to their high variance.

2.3 Biasing the initial vector

In Example 2 we can write the entangled system and the
measurement device as∫

x
[e−

(x−~/2)2

4σ2 α|0〉 ⊗ |x〉 + e−
(x+~/2)2

4σ2 β|1〉 ⊗ |x〉]dx (17)

We will now strongly measure the needle of the measuring
device. Suppose the needle collapses to the vector |x0〉,
then our system is now in the state

[e−
(x0−~/2)2

4σ2 α|0〉 + e−
(x0+~/2)2

4σ2 β|1〉] ⊗ |x0〉 (18)

without the integration. The eigenvalue x0 could be any-
where around 0 or 1, or even further away especially if σ
is big enough i.e. the measurement is very weak.

If the needle collapses to a value x0 around 1 this means
that the amplitude to post-select |0〉 is a little higher than
the amplitude to post-select |1〉 and vice versa. So the
collapse of the needle biases the system’s vector. However
if σ is very big with respect to the difference between
the eigenvalues of Ŝ z then the bias will be very small and
the outcome system’s vector will be very similar to the
original vector.

To sum up, the system’s vector is being biased a little in
a direction that corresponds to the needle’s outcome value.
This is a generalization of strong measurements. On the
one hand the information we get, that is the value of the
needle, is very vague, and on the other hand the system’s
vector does not collapse but is being biased a little. If the
measurement is getting stronger we will have a clearer
value, very close to one of the eigenvalues of the system
and an almost collapse of the system’s vector i.e. a strong
bias in the direction that corresponds to the needle’s value.
Note that there is always a correspondence between the
value of the needle and the direction of the bias. This is
the reason we can look at the weak measurement process
as a generalization of the strong measurement one.

2.4 Computing the average of all
eigenvalues

Let Â be an Hermitian operator on the system S . Suppose
|a j〉 are eigenvectors for Â with eigenvalues a j. We will
show that using weak measurements it is easy to compute
the average of all eigenvalues [10].

Weakly couple the state |ψ〉 =
∑

j α j|a j〉 to a measuring
device which has a normal distribution centered around 0.
Our system is now described by

|ψ〉 = (2σ2π)−
1
4

∑
j

α j|a j〉e−(x−a j)2/4σ2
(19)

Looking at the needle, the probability density to get x is

p(x) = (2σ2π)−
1
2

∑
j

|α j|
2e−(x−a j)2/2σ2

(20)

which is a multinormal distribution with many modes.
Now, if σ is big enough with respect to the variance of
eigenvalues, it is simple to show that

p(x) ≈ (2σ2π)−
1
2 e−(x−

∑
j |α j |

2a j)2/2σ2
(21)
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where the above normal distribution is centered around∑
j |α j|

2a j which is the average over all eigenvalues (use
the fact that ey/σ

2
≈ 1 + y/σ2 for σ �

√
y). We can then

use the distribution of the needle to sample an estimate
for the average or the sum of all eigenvalues.

2.5 The uncertainty relation

The argument for the uncertainty principle follows a dis-
cussion in [8]. Given a large ensemble of identical parti-
cles, suppose we measure part of them using an observ-
able X̂ and the other part with a conjugate observable
P̂. We will show that the variances ∆X and ∆P satisfy
the inequality ∆X∆P > ~ (see [4, p.89] and also subsec-
tion 3.9).

Suppose we want to weakly measure the position x of
a particle. We shall use a probe particle as a measuring
device. Consider

Ĥint = −g(t)X̂ ⊗ X̂d (22)

where Xd is the position coordinate of the probe particle.
Hence the variance ∆Pd of the probe’s momentum sets a
lower bound for the variance ∆X of the system

∆X ≥ ∆Pd (23)

Alternatively, suppose we want to weakly measure the
momentum p of the particle. Consider

Ĥint = g(t)P̂ ⊗ P̂d (24)

Hence the variance ∆Xd of the coordinate of the probe
sets a lower bound for the variance ∆P of the momentum
of the system

∆P ≥ ∆Xd (25)

Now given a large ensemble of identical particle, some
will be weakly measured by X̂, the others by P̂. By the
above two inequalities

∆P∆X ≥ ∆Pd∆Xd (26)

Hence the uncertainty principle for the system is deduced
from the uncertainty for the probes. However the probes
are being measured by strong measurements and clearly
satisfy the uncertainty principle.

2.6 Physical realizations

We end this section with a few remarks regarding the
realization of weak measurements. Many practical ex-
periments such as [11–15] have been performed over the
years to implement weak measurements. Although the
setups are different, most of them share a common basis:
inserting a small bias to the wave function (in position,

polarization, frequency etc.) which hardly affects its time
evolution. When this bias is later detected, it reveals some
information regarding the wave-function and enables to
calculate the weak-value in retrospect. In [12] for ex-
ample, the weak measurement is accomplished with a
thin piece of birefringent calcite that slightly changes the
polarization of the photons passing through by introduc-
ing a phase shift between the ordinary and extraordinary
components of polarization. This phase shift depends on
their transverse momentum and therefore upon dissolving
the rays using a beam displacer and detecting them with
a CCD camera their trajectories can be reconstructed.

Up to now, the experiments verify all theoretical predic-
tions, but nevertheless, much effort is invested in order to
produce more accurate and broader experimental setups.

3 Weak measurement and
post-selection: the two-state
vector formalism

In this section we define the notion of weak measurement
with post-selection. Introducing post-selection into the
theory of weak measurement results in many strange,
interesting and sometimes puzzling phenomena such as
huge, negative and even complex weak values, super-
oscillations, amplification, negative probabilities etc. We
start with some definitions.

3.1 Definitions

Let Â be an Hermitian operator on the system S , let |ψin〉

and |ψfin〉 denote two state vectors in the Hilbert space of
S , and |φ(x)〉 the state vector of the needle. Suppose we
weakly measure an ensemble of particles prepared in the
state |ψin〉 using the Hamiltonian Ĥ = Â ⊗ P̂d. We will
now post select the final vector |ψfin〉. The amplitude to
get |ψfin〉 will be

〈ψfin|e−ıĤT/~|ψin〉 (27)

It means that we start with several copies of our system,
all are weakly measured by Ĥ. We then select only those
that are found to be in the direction of |ψfin〉 [8, 16, 17].
Practically and computationally post-selection could be
viewed as the result of a strong measurement. If {|ψfin,i〉}i
is a basis for the Hilbert space of S , where |ψfin,0〉 = |ψfin〉

then consider the two operators

P̂1 = |ψfin〉〈ψfin| ⊗ Îd (28)

P̂0 =
∑
i,0

|ψfin,i〉〈ψfin,i| ⊗ Îd (29)
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We will use the above two operators to strongly measure
|ψw〉 = e−ıĤT/~|ψin〉 ⊗ |φ(x)〉. We will only look at the
vector states for the outcome 1, (see subsection 2.1)

|ψfin〉〈ψfin|e−ıĤT/~|ψin〉 ⊗ |φ(x)〉 (30)

We assume now that P̂d is distributed around 0 with low
variance. Therefore X̂d will have high variance and the
measurement will be weak. Hence the above vector is

|ψfin〉〈ψfin|(1 − ıÂ ⊗ P̂dT/~)|ψin〉 ⊗ |φ(x)〉

= |ψfin〉 ⊗ 〈ψfin|ψin〉(1 − ı〈Â〉wP̂dT/~)|φ(x)〉

= |ψfin〉 ⊗ 〈ψfin|ψin〉e−ı〈Â〉wP̂dT/~|φ(x)〉 (31)

where [18]:

〈Â〉w =
〈ψfin|Â|ψin〉

〈ψfin|ψin〉
(32)

We can now compute p(1), i.e. the probability to get the
outcome 1, by the post-selection due to strong measure-
ment

p(1) = 〈ψw|P̂
†

1P̂1|ψw〉 = |〈ψfin|ψin〉|
2 (33)

Note that the normal probability distribution we get is
centered around the weak value 〈Â〉w. Note also that
|〈ψfin|ψin〉|

2 multiplies the normal distribution. This factor
could be very small if |ψfin〉 and |ψin〉 are almost orthogo-
nal and therefore the post-selection process could require
the use of many particles.

Following the weak coupling, the tensor is described
by Equation 15. The post-selection procedure reshuffles
the Gaussian functions using new amplitudes that depend
on |ψin〉 and |ψfin〉. This is the reason for the fact that
all those exponents gather around a new value when we
apply the post-selection.

3.2 Strange weak values

If we use post-selection it is easy to see that the needle’s
distribution could be centered at a value which is far from
any of the eigenvalues of the operator Â [8].

Example 3

Suppose Â = ~
2 Ŝ z, |0〉 and |1〉 are the eigenvectors of Ŝ z.

Let
|ψin〉 =

1
√

2
(|0〉 + |1〉) (34)

|ψfin〉 =
1
2

(
2 +
√

2
) 1

2
|0〉 +

1
2

(
2 −
√

2
) 1

2
|1〉 (35)

Then 〈Â〉w = (1 +
√

2) ~2 (see [8, chapter 16]), which is
more than twice the largest eigenvalue of Â.

In Example 3 the strange value of the needle was in
the range of the variance of the needle, i.e. close to the

eigenvalues of Â. However it is possible to construct an
example where the strange value goes very far. From
Equation 32 it can be noted that if |ψfin〉 and |ψin〉 are
almost orthogonal this value could be large. In [19] a
weak measurement of the spin of a particle gave a value
of 100 ~2 .

The following example is a version of an example
introduced in [20]. It shows that by post selecting a very
rare vector we could get a very strange weak value. In
other words these strange weak values appear with very
low probability.

Consider e−ıŜ z⊗L̂/~ where the momentum operator L̂
represents a small shift of the needle’s wave function.
Let |ψin〉 = α|0〉 + β|1〉. Then consider the equation of
operators on the needle’s space

e−ıŜ z⊗L̂/~|ψin〉 = α|0〉e−ıL̂/~ + β|1〉eıL̂/~ (36)

We shall now post select two vectors Û |0〉 and Û |1〉,
where

Û =
1
√

2

(
1 1
−1 1

)
(37)

First compute (as operator equation on the needle’s space)

Û†e−ıŜ z⊗L̂/~|ψin〉 =
α
√

2
(|0〉 + |1〉)e−ıL̂/~

+
β
√

2
(|1〉 − |0〉)eıL̂/~

=
1
√

2
(αe−ıL̂/~ − βeıL̂/~)|0〉

+
1
√

2
(αe−ıL̂/~ + βeıL̂/~)|1〉 (38)

If we now post-select |0〉 the momentum operator on the
needle is

(1 − ıL̂0/~) (39)

where
L̂0 =

α + β

α − β
L̂ (40)

Else, if we post-select |1〉 the momentum operator on the
needle is

(1 − ıL̂1/~) (41)

where
L̂1 =

α − β

α + β
L̂ (42)

Suppose α is very close to β. If we post select Û |0〉 then
L̂0 could be high above the eigenvalues of Ŝ z, however
this post-selection will have a very low probability |α−β|2.
Alternatively, the probability to post select Û |1〉 is high
|α + β|2, but L̂1 is close to 0. To sum up, we could have
a very low probability to get a distribution function (for
the needle) which is shifted very far from the eigenvalues
of the measured operator. The post-selection process
sums the shifted normal wave function with some weights.
Such sums could accumulate around a ‘strange’ value.
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3.3 Super-oscillations

Consider the ensemble of particles

|ψin〉 = 2−
N
2

N⊗
i=1

(|0i〉 + |1i〉) (43)

|ψfin〉 =

N⊗
i=1

(α|0i〉 − β|1i〉) (44)

where |α|2 + |β|2 = 1. Let Â =
∑

Ŝ z/N, then following the
post-selection it is easy to see that the wave function of
the needle is [8]:

2−
N
2
(
αe−ıP̂d/N~ + βeıP̂d/N~

)N
|φ(x)〉 (45)

If we apply these operators on the function |φ(x)〉 one
by one, we can see a superposition of shifted functions
which are also weighted by polynomials in α and β. This
resembles a random walk. In general, such expressions
give rise to super-oscillations [21, 22].

Consider the following function

f (x) =

(
1 + a

2
e2πıx/N +

1 − a
2

e−2πıx/N
)N

(46)

where a > 1. If we take a very small x, (x <
√

N):

f (x) ≈ e−2πıax (47)

The peculiar thing is that originally the expression for
f (x) contained only high wavelengths (N > 1), however
its global expression for small x has a wavelength 1/a
which could be much smaller. Such super-oscillations do
exist, however they last for a very small length (x <

√
N)

since their length is exponentially proportional to their
energy [22].

Super-oscillations in weak measurement theory could
exist if P̂d is small, and indeed we demand that P̂d is
distributed around 0 with a very low variance (weak inter-
action). Then the global shift of the needle which is the
weak value corresponds to some super-oscillation.

3.4 The interpretation of post-selection

There is a question about the meaning of the weak value
that we get following the post-selection [23]. Could it be
that the measurement depends on a post selected vector
i.e. a future event? Before the post-selection any measure-
ment outcome looks random in between the eigenvalues
of Â. Following the post-selection these results (more
accurately small part of the results) seems to accumulate
around a value. It looks as if this value suggests a physi-
cal entity, however the information concerning this entity
is presented to us only a posteriori.

In [8] and [16] it was claimed that the correct way to
interpret those weak values is in terms of a time symmet-
ric theory. Quantum theory should be thought of as a time
symmetric theory. A pre selected state is no more physi-
cal than a post selected state. Any physical theory should
consist of an initial condition, an evolutionary process
and a final condition. The evolutionary process could be
looked at as a process that evolves the initial condition
forward in time, but also as a process that evolves the final
condition backwards in time. Looking at the quantum
process as most physicists do, from the initial condition
forward in time, inserts an artificial time direction into
the theory, a direction which does not exists in its own
in quantum theory. The evolution process of the quan-
tum theory follows the Aharonov–Bergmann–Lebowitz
formula [24]: given a non degenerate operator Â with
eigenvectors |ai〉 and eigenvalues ai, the probability to
measure the eigenvalue a j is

p(a j) =
|〈ψfin|a j〉〈a j|ψin〉|

2∑
i

|〈ψfin|ai〉〈ai|ψin〉|2
(48)

It is easy to write the known S -matrices using such a for-
mula while keeping the initial and final states. Therefore
the Aharonov–Bergmann–Lebowitz formula generalizes
the computation of amplitudes in the ordinary pre selected
time antisymmetric quantum theory.

Note that the probability to get some value j could be 1
even if |ψin〉 is not an eigenvector of Â. In the denominator
it could indeed be that all of the summands besides the
jth cancel and therefore the quotient is 1 (see Example
4). A quick look at Equation 1 shows that this could not
happen for strong projective measurements.

Whenever the Aharonov–Bergmann–Lebowitz formula
produces an eigenvalue with certainty we can interpret it
as an element of reality. This value is certain under the
initial and final conditions that we picked. A related dis-
cussion regarding the different definitions for ‘elements
of reality’ appears in [10].

3.5 Complex weak values

The weak value 〈Â〉w is a matrix coefficient and could
have complex values. How do complex values effect the
needle’s wave function?

Theorem [Jozsa] [25]: Consider Ĥint = g(t)Â ⊗ P̂d

and let |α〉 be the pointer’s wave function following the
post-selection

|α〉 = 〈ψfin|ψin〉e−ı〈Â〉wP̂d |φ〉 (49)
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If 〈Â〉w = a + ıb, M̂ any observable, then

〈M̂〉 f = 〈M̂〉i + ıga〈P̂d M̂ − M̂P̂d〉i

+ gb(〈P̂d M̂ + M̂P̂d〉i − 2〈P̂d〉i〈M̂〉i) (50)

where

〈M̂〉i =
〈φ|M̂|φ〉
〈φ|φ〉

(51)

〈M̂〉 f =
〈α|M̂|α〉
〈α|α〉

(52)

Proof: The proof is a simple use of the definition of
|α〉. The computation of 〈M̂〉 f is up to O(g) where g is
the coupling impulse function (Equation 11). Note also
that e−ı〈Â〉wP̂d is non-unitary (has complex arguments) and
〈α|α〉 = 1 + 2gb〈P̂d〉i.

Corollary: If 〈Â〉w is imaginary, 〈Â〉w = ıb, then

〈P̂d〉 f = 〈P̂d〉i + 2gbVar(P̂d) (53)

If 〈Â〉w is real, 〈Â〉w = a, then

〈X̂d〉 f = 〈X̂d〉i + ga (54)

So real values of 〈Â〉w shift the needle’s expectation value
of X̂d and imaginary values of 〈Â〉w shift the needle’s
expectation value of P̂d.

3.6 Amplification

We can use weak measurements for an amplification pro-
cess [26–28]. If |ψfin〉 is almost orthogonal to |ψin〉 then
|〈Â〉w| could be as large as we want. We could use this to
amplify signals. There is a trade off between the amplifi-
cation and the complexity of the post-selection process.
When the two functions are almost orthogonal it would
be hard to post select |ψfin〉, however having post selected
|ψfin〉 the amplification factor is high. In [27] weak mea-
surements were used to amplify a small momentum per-
turbation in a Sagnac interferometer. In the following we
will briefly review the argument.

Let the initial vector be

|ψin〉 =
1
√

2

(
e−ıη/2|�〉 + ıeıη/2|	〉

)
(55)

where η is some phase differentiating between the two
beams. Let the final vector be

|ψfin〉 =
1
√

2
(ı|�〉 + |	〉) (56)

Suppose we add a small amount of momentum k to the
device. We want to measure its effect on the phase differ-
ence between the two beams. We can take any observable

Â that differentiates between the two paths and measure
kÂ:

Â = |�〉〈� | − |	〉〈	 | (57)

The interaction Hamiltonian is

Ĥint = gkÂ ⊗ X̂d (58)

where the wave function of the needle will be written in
the momentum representation.

It is easy to compute

〈Â〉w = ık cot(η/2) (59)

〈ψfin|ψin〉 = sin2(η/2) (60)

Since 〈Â〉w is imaginary, we will look at the shift of 〈X̂d〉.
By the above theorem of Jozsa (for the Hamiltonian Equa-
tion 58 where X̂d is used instead of P̂d):

〈X̂d〉 f = 〈X̂d〉i + 2gk cot(η/2)Var(X̂d) (61)

Hence for a very low η the value of 〈X̂d〉i will be shifted
away. Note however that for such small angles it will also
be hard to post-select since 〈ψfin|ψin〉 = sin2(η/2).

Compare now the shift of the weak value of X̂d with
the phase shift we usually measure on a Sagnac interfer-
ometer as functions of the small momentum k added to
the system. This will be the amplification factor of the
signal. It looks as if this factor could be very large and
even unlimited. In [28] it was shown that if we use the
Jozsa expansion to all orders of g we can see the bound
on the amplification factor.

3.7 Violation of the product rule

It is easy to see that a sum of weak values is a weak value
of the sum of the measurement operators. However such a
theorem is not true for the product of weak measurements.
In standard quantum theory if a state is an eigenvector for
two operators then the product of the eigenvalues is the
eigenvalue of the product of the operators. But as we saw
above weak values could be certain even if the initial state
was not an eigenvector. The following example clarifies
this fact.

Example 4: The shell game

Let
|ψin〉 =

1
√

3
(|A〉 + |B〉 + |C〉) (62)

|ψfin〉 =
1
√

3
(|A〉 + |B〉 − |C〉) (63)

Let P̂A = |A〉〈A|, P̂B = |B〉〈B| and P̂C = |C〉〈C|. Each
of the above projection operators has eigenvalues 0 or
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1. These operators are degenerate and therefore to com-
pute probabilities we use a version of the Aharonov–
Bergmann–Lebowitz formula for degenerate operators.
We conclude that measuring P̂A yields 1 with probability
1 [8]. The same is true for P̂B: measuring P̂B yields 1
with probability 1. However measuring the product P̂AP̂B

yields 0 with probability 1. Hence the product rule in not
true in the two-state vector formalism.

3.8 Negative probabilities

Consider a projective operator P̂. Its eigenvalues are 0
or 1, therefore its expectation value on a general state |ψ〉
could be anywhere between 0 and 1. We could think of
such a value as the probability to be in the state defined
by the projection.

Projection operators which are weakly measured could
have other values. In Example 4 above 〈P̂C〉w = −1. What
does it mean that the weak projection operator P̂ has a
negative value? We could generalize the above argument
saying that there is a negative probability to be projected
into the state defined by P̂ [29], [30]. Let’s dwell on this
argument.

The initial wave function in Example 4 represents a
superposition of three position states. Suppose we have
a positive particle that could be in one of three positions,
and the initial state is a superposition of those three states.
Trying to verify if the particle is in position A is like mea-
suring the projector P̂A. The measuring device for each of
the projectors could measure the transverse momentum of
an electron while passing near the corresponding position

Ĥint = X̂d ⊗ P̂A (64)

If the positive particle is in one of the above positions
then we expect a deflection of the electron towards that
direction. However, computing the weak values of the
projectors we get

〈P̂A〉w = 1 (65)

〈P̂B〉w = 1 (66)

〈P̂C〉w = −1 (67)

A negative value of P̂C corresponds to a deflection of
the momentum wave function in the opposite direction,
away from the particle. This looks very strange as if
the electron is avoiding the positive charge. However
experiments do show that the deflection is away from the
positive particle [11]. This also looks as if the particle
has changed its charge from positive to negative.

We could use this result to say that a negative proba-
bility could be interpreted as a positive probability for an
opposite physical event.

Negative probability could also be used to explain para-
doxical results that follow from the violation of the prod-
uct rule. Consider the following example.

Example 5: The Cheshire cat experiment

A Cheshire cat experiment is a case where we can separate
quantum variables by using projection operators. In this
case we separate a cat from its grin [31].

Let P̂0 = |0〉〈0| denote a cat’s grin, P̂1 = |1〉〈1| a cat’s
frown where |0〉 and |1〉 are the eigenvectors of the Pauli
spin matrix Ŝ z. Let P̂A = |A〉〈A| denote a position A,
P̂B = |B〉〈B| a position B. Let

|ψin〉 =
1
2

(|0〉 + |1〉)|A〉 +
1
2

(|0〉 − |1〉)|B〉 (68)

|ψfin〉 =
1
2

(|0〉 − |1〉)(|A〉 + |B〉) (69)

By simple computation we can see that 〈P̂A〉w = 0,
〈P̂B〉w = 1, so the cat is in position B. Also 〈Ŝ z〉w = 1
so the cat is grinning. However 〈Ŝ zP̂B〉w = 0 and
〈Ŝ zP̂A〉w = 1 so the grin is in position A. Hence the cat
is in position B and its grin is in position A. This strange
result is an outcome of the violation of the product rule.

The Cheshire cat experiment could be interpreted using
negative probabilities, i.e. negative values of projective
operators. We compute the weak values of all the products
of the above projectors

〈P̂AP̂0〉w =
1
2

(70)

〈P̂AP̂1〉w = −
1
2

(71)

〈P̂BP̂0〉w =
1
2

(72)

〈P̂BP̂1〉w =
1
2

(73)

Note that although some of the values are negative the
cat’s position and the grin’s position have positive real
values and therefore positive probability. Note that
〈P̂B〉w = 〈P̂B(P̂0 + P̂1)〉w = 1 and therefore the cat is
in position B. Also 〈(P̂A + P̂B)P̂0〉w = 1 and therefore
the cat is grinning. Moreover 〈P̂AP̂0〉w − 〈P̂AP̂1〉w = 1.
This should be interpreted as the probability of a grin in
position A, minus the probability of a frown in position
A. If we interpret the probability of a frown as a negative
probability of a grin then we can conclude that the grin is
in position A.

Observe that although some of the probabilities above
were negative, in each question having a real physical
meaning the negative probabilities disappeared, and we
were left with positive probability. Feynman used exactly
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this property in his discussion on negative probabilities
[29].

Negative probabilities were also used as an alternative
approach to Bell’s inequalities [32]. For a general review
on extended probabilities see [33].

3.9 Paradoxes

There are several paradoxes that stem from weak mea-
surements with post-selection. Some of them were al-
ready discussed above like the Cheshire cat paradox or
the quantum shell game. There is also the faster than light
paradox [34] and many others. Here we shall discuss a
paradox that concerns the two slit experiment. We will
show that it is possible to describe the path of the particle
without disturbing the interference pattern [12, 13]. The
pattern of the interference will be measured by a weak
coupling while the path will be revealed a posteriori. The
possibility of measuring the average trajectory without
disturbing the interference does not in itself contradict
the mathematical formulation of the Heisenberg principle.
This formulation of the principle states that on a large
ensemble of identical particles while measuring some of
them with a variable X̂ and the others with a variable
P̂ conjugate to X̂, the product of the uncertainties satis-
fies ∆X∆P > ~ [3, 4]. It is generally accepted that the
correct interpretation of the Heisenberg principle is that
the measurements of X̂ do disturb the measurements of
P̂. Therefore we can say that weak measurement theory
question the interpretation that the mere disturbance is
the core of the principle.

Let Â denote some weak measurement on a system S
with initial sate |ψ〉. Let |1〉, ..., |l〉 denote an orthogonal
basis for the system. Suppose |ψ〉 =

∑
k ck|k〉. Couple

weakly the system to the measurement device. Now sup-
pose we want to post select using the above basis. In
fact, this is a strong projective measurement using the
projectors |k〉〈k|. We shall repeat the process N times for
some large N, each time register the weak value

〈Â〉k =
〈k|Â|ψ〉
〈k|ψ〉

(74)

for the |k〉 that was post selected. Therefore we use all
results of the strong post-selection. We will get Nk values
of 〈Â〉k for each of the k’s. Observe now that

∑
k

Nk

N
〈k|Â|ψ〉
〈k|ψ〉

≈
∑

k

|ck|
2 〈k|Â|ψ〉
〈k|ψ〉

=
∑

k

c∗k〈k|Â|ψ〉

=〈ψ|Â|ψ〉 (75)

We can therefore use the post-selected states to compute
the average 〈ψ|Â|ψ〉 (see also subsection 2.4).

However the operator Â and the measurement operator
of the post-selection could represent two non-commuting
observables. Consider for example the two slit experi-
ment. Suppose we place a series of momentum detectors
at the screen edge of the experiment. The detector can
identify the transverse momentum of the particle and
therefore identify the slit through which it passed. This
in fact is a post-selection. We can identify a posteriori
the path of the particle. Suppose now Â enables a weak
measurement of the projection of the position variable
of the particle into a small area between the two slits
and the screen (we have already used weak projectors in
the sections above). The average of a projection opera-
tor could be considered as a density or amplitude. We
could use the above process to compute 〈ψ|Â|ψ〉 which
corresponds to the amplitude of the wave function of the
particles in a small area. The measurement is weak and
therefore does not interfere with the wave pattern. We
can continuously change the position of Â, therefore Â
is like a ‘weak screen’ in between the two slits and the
‘strong screen’. Therefore we can see the whole pattern
of the interference and at the same time have a list of all
trajectories which is a paradox.

It seems that by using the two-state vector formalism it
is possible to know the average trajectory of the particle
without disturbing the interference. Notice however that
a trajectory is known a posteriori from the point of view
of the one-state vector formalism [12].
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RS, Egusquiza ÍL (editors), Berlin, Heidelberg:
Springer, 2007, pp.399-447. http://arxiv.org/
abs/quant-ph/0105101

[17] Story JG, Ritchie NWM, Hulet RG. Weak mea-
surements. Modern Physics Letters B 1991;
5 (26): 1713-1725. http://dx.doi.org/10.
1142/S0217984991002069

[18] Vaidman L. Weak value and weak measurements.
In: Compendium of Quantum Physics, Greenberger
D, Hentschel K, Weinert F (editors), Berlin, Heidel-
berg: Springer, 2009, pp.840-842. http://arxiv.
org/abs/0706.1348

[19] Aharonov Y, Albert DZ, Vaidman L. How the result
of a measurement of a component of the spin of a
spin-1/2 particle can turn out to be 100. Physical
Review Letters 1988; 60 (14): 1351-1354. http://
dx.doi.org/10.1103/PhysRevLett.60.1351

[20] Kempe J. Quantum random walks: An intro-
ductory overview. Contemporary Physics 2003;
44 (4): 307-327. http://arxiv.org/abs/
quant-ph/0303081

[21] Ferreira PJSG, Kempf A. Superoscillations: Faster
than the Nyquist rate. IEEE Transactions on Signal
Processing 2006; 54 (10): 3732-3740. http://dx.
doi.org/10.1109/TSP.2006.877642

[22] Aharonov Y, Colombo F, Sabadini I, Struppa DC,
Tollaksen J. Some mathematical properties of su-
peroscillations. Journal of Physics A 2011; 44
(36): 365304. http://dx.doi.org/10.1088/
1751-8113/44/36/365304

[23] Vaidman L. Defending time-symmetrized quan-
tum theory. 1996; http://arxiv.org/abs/

quant-ph/9609007

[24] Aharonov Y, Bergmann PG, Lebowitz JL. Time
symmetry in the quantum process of measurement.
Physical Review B 1964; 134 (6): 1410-1416. http:
//dx.doi.org/10.1103/PhysRev.134.B1410

[25] Jozsa R. Complex weak values in quantum mea-
surement. Physical Review A 2007; 76 (4): 044103.
http://arxiv.org/abs/0706.4207

Quanta | DOI: 10.12743/quanta.v2i1.14 May 2013 | Volume 2 | Issue 1 | Page 16

http://dx.doi.org/10.1063/1.3663720
http://dx.doi.org/10.1063/1.3663720
http://arxiv.org/abs/1206.6224
http://arxiv.org/abs/1206.6224
http://arxiv.org/abs/1208.3203
http://arxiv.org/abs/quant-ph/9601005
http://arxiv.org/abs/quant-ph/0310091
http://arxiv.org/abs/quant-ph/0310091
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1126/science.1202218
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://dx.doi.org/10.1103/PhysRevLett.109.100404
http://arxiv.org/abs/quant-ph/0412204
http://arxiv.org/abs/quant-ph/0412204
http://dx.doi.org/10.1088/1367-2630/14/7/073016
http://dx.doi.org/10.1088/1367-2630/14/7/073016
http://arxiv.org/abs/quant-ph/0105101
http://arxiv.org/abs/quant-ph/0105101
http://dx.doi.org/10.1142/S0217984991002069
http://dx.doi.org/10.1142/S0217984991002069
http://arxiv.org/abs/0706.1348
http://arxiv.org/abs/0706.1348
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://arxiv.org/abs/quant-ph/0303081
http://arxiv.org/abs/quant-ph/0303081
http://dx.doi.org/10.1109/TSP.2006.877642
http://dx.doi.org/10.1109/TSP.2006.877642
http://dx.doi.org/10.1088/1751-8113/44/36/365304
http://dx.doi.org/10.1088/1751-8113/44/36/365304
http://arxiv.org/abs/quant-ph/9609007
http://arxiv.org/abs/quant-ph/9609007
http://dx.doi.org/10.1103/PhysRev.134.B1410
http://dx.doi.org/10.1103/PhysRev.134.B1410
http://arxiv.org/abs/0706.4207
http://dx.doi.org/10.12743/quanta.v2i1.14


[26] Nishizawa A, Nakamura K, Fujimoto M-K. Weak-
value amplification in a shot-noise-limited interfer-
ometer. Physical Review A 2012; 85 (6): 062108.
http://arxiv.org/abs/1201.6039

[27] Dixon PB, Starling DJ, Jordan AN, Howell JC. Ul-
trasensitive beam deflection measurement via in-
terferometric weak value amplification. Physical
Review Letters 2009; 102 (17): 173601. http:
//arxiv.org/abs/0906.4828

[28] Koike T, Tanaka S. Limits on amplification
by Aharonov-Albert-Vaidman weak measurement.
Physical Review A 2011; 84 (6): 062106. http:
//arxiv.org/abs/1108.2050

[29] Feynman R. Simulating physics with computers.
International Journal of Theoretical Physics 1982;
21 (6): 467-488-488. http://dx.doi.org/10.
1007/BF02650179

[30] Zhu X, Wei Q, Liu Q, Wu S. How “negative prob-

abilities” emerge in weak measurements? 2012;
http://arxiv.org/abs/1212.6324

[31] Aharonov Y, Popescu S, Skrzypczyk P. Quantum
Cheshire cats. 2012; http://arxiv.org/abs/
1202.0631

[32] Cereceda JL. Local hidden-variable models and
negative-probability measures. 2000; http://
arxiv.org/abs/quant-ph/0010091

[33] Mückenheim W, Ludwig G, Dewdney C, Hol-
land PR, Kyprianidis A, Vigier JP, Cufaro Petroni
N, Bartlett MS, Jaynes ET. A review of ex-
tended probabilities. Physics Reports 1986; 133
(6): 337-401. http://dx.doi.org/10.1016/
0370-1573(86)90110-9

[34] Rohrlich D, Aharonov Y. Cherenkov radiation
of superluminal particles. Physical Review A
2002; 66 (4): 042102. http://arxiv.org/abs/
quant-ph/0107025

Quanta | DOI: 10.12743/quanta.v2i1.14 May 2013 | Volume 2 | Issue 1 | Page 17

http://arxiv.org/abs/1201.6039
http://arxiv.org/abs/0906.4828
http://arxiv.org/abs/0906.4828
http://arxiv.org/abs/1108.2050
http://arxiv.org/abs/1108.2050
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/BF02650179
http://arxiv.org/abs/1212.6324
http://arxiv.org/abs/1202.0631
http://arxiv.org/abs/1202.0631
http://arxiv.org/abs/quant-ph/0010091
http://arxiv.org/abs/quant-ph/0010091
http://dx.doi.org/10.1016/0370-1573(86)90110-9
http://dx.doi.org/10.1016/0370-1573(86)90110-9
http://arxiv.org/abs/quant-ph/0107025
http://arxiv.org/abs/quant-ph/0107025
http://dx.doi.org/10.12743/quanta.v2i1.14

	Introduction
	Weak measurements: the one-state vector formalism
	Strong quantum measurements
	Weak measurements: definition
	Biasing the initial vector
	Computing the average of all eigenvalues
	The uncertainty relation
	Physical realizations

	Weak measurement and post-selection: the two-state vector formalism
	Definitions
	Strange weak values
	Super-oscillations
	The interpretation of post-selection
	Complex weak values
	Amplification
	Violation of the product rule
	Negative probabilities
	Paradoxes


