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1. Introduction

Let C be a projective smooth curve of genus g defined over Fq , the finite field of q

elements, where q = pf is a power of a prime number p. A. Weil proved that the zeta
function of C/Fq has the form

Z(C/Fq, t) = P(t)

(1 − t)(1 − qt)
,

where P(t) is a polynomial with integral coefficients of degree 2g such that the constant
term is 1 and the leading coefficient is qg . Moreover he showed that if α1, . . . , α2g are the
roots of P(t) then |αi | = q−1/2 (thus |αi/

√
q| = 1) for i = 1, . . . , 2g . We say that C is

supersingular if all the αi/
√

q are roots of unity. This holds if and only if the zeta function
of C/Fqn over a suitable finite extension Fqn of Fq has the form

Z(C/Fqn, t) = (1 + qn/2t)2g

(1 − t)(1 − qnt)
.

Although it is usually hard to obtain the explicit form of the zeta function, there is a
special class of curves whose zeta functions have been deeply studied. Let m > 1 be an
integer not divisible by p and consider the Fermat curve of degree m

Fm : xm + ym + zm = 0

defined over Fq . It follows from the Davenport and Hasse relation ([12]) that the zeta
function of Fm can be expressed using Jacobi sums. As a result, one can easily see that Fm

is supersingular if and only if the following condition holds:

pi ≡ −1 (mod m) for some i (1)

For each triple of integers α = (a, b, c) such that 0 < a, b, c < m and a + b + c = m, let
Fα denote the projective model of the curve defined over Fp by the equation

vm = (−1)cua(1 − u)b .

As is well known, these curves are dominated by the Fermat curve Fm. Therefore, if Fm is
supersingular, then so is Fα . However, the converse is not always true. Namely, even if (1)
fails to hold, Fα can be supersingular.
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Given m and α, it is not hard to determine whether Fα is supersingular or not because
a combinatorial criteion for Fα to be supersingular is known (see Proposition 3.3). As an
example, we begin with a sufficient condition for Fα to be supersingular. To state it, for an
integer a, we denote by 〈a〉m the integer such that 0 ≤ 〈a〉m < m and 〈a〉m ≡ a (mod m).
For two triples α = (a, b, c) and α = (a′, b′, c′), we write α ≈ α′ if there is an integer
such that (m, t) = 1 and {a′, b′, c′} = {〈ta〉m, 〈tb〉m, 〈tc〉m}.

THEOREM 1.1. Suppose that f is even and one of the following conditions holds:
(i) 4|m, pf/2 ≡ m/2+1 (mod m), and α ≈ (1, 〈pi〉m, 〈−2pj 〉m) for some integers

i, j .
(ii) There exist a divisor d of m and positive integers i, j such that

pi ≡ 1 (mod d), pj ≡ −1 (mod d) ,

and α ≈ (1, 〈−pj 〉m, 〈pj − 1〉m).
Then Fα is supersingular.

However, it is not so easy to determine the set of the pairs (m, α) for which Fα is
supersingular. If (a, b, c,m) = 1, we say that α is primitive. In this paper we shall exhibit
some examples of primitive elements α for which Fα is supersingular when condition (1)
does not hold. Our results mainly concern the following two cases:

(i) m is a power of a prime number.
(ii) m = 3l or 4l, where l is a prime number greater than 3.
First, we consider the case where m is a power of a prime number l. If l is an odd

prime number, then it is known that f must be even. Since (Z/mZ)× is a cyclic group, this
implies that pf/2 ≡ −1 (mod m). Therefore (1) holds. Thus the following theorem holds.

THEOREM 1.2. Suppose that either m = 4 or m = le, where l is an odd prime
number. Then Fα is supersingular if and only if condition (1) holds.

In the case of l = 2 and e > 2, the situation is slightly complicated since in this case
(Z/mZ)× is not cyclic.

THEOREM 1.3. Let m = 2e (e > 2) be a power of 2. Assume that pi �≡ −1
(mod m) for any integer i and α is primitive. Then Fα is supersingular if and only if α is
one of the following types.

(i) pf/2 ≡ m/2 + 1 and α = (1, 〈pi〉m, 〈−2pj 〉m) for some integers i, j ≥ 0 such
that 1 + pi ≡ 2pj (mod m).

(ii) α ≈ (1, 〈−pi〉m, 〈pi − 1〉m) for some integer i > 0 such that pi ≡ 1 (mod f ).

In the case of m = 3l or 4l with l > 3 being a prime, we can determine when Fα is
supersingular. To state the results, let

V1(m) = {x ∈ (Z/mZ)× | x2 = 1}
be the 2-torsion group of (Z/mZ)×. Then

V1(m) =
{{±1,±u} (m = 4l) ,

{±1,±v} (m = 3l) ,
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where u = m/2 − 1 = 2l − 1 and v denotes the element of (Z/3lZ)× such that

v =
{

1 (mod 3) ,

−1 (mod l) .

Let H be the subgroup of (Z/lZ)× generated by the class of p, and let H̃ be the subgroup
of (Z/mZ)× generated by the classes of −1 and p.

THEOREM 1.4. Let m = 3l. Let α = (a, b, c) be a primitive element. Assume that
pi �≡ −1 (mod m) for any integer i. Then Fα is supersingular if and only if one of the
following conditions holds:

(i) If pf/2 ≡ v (mod m), then one of the following assertions holds.
(1) p ≡ 1 (mod 3) and either f = l − 1 or f = (l − 1)/3. Moreover, if

f = (l − 1)/3, then a ≡ b ≡ c (mod 3) and {a, b, c} is a complete set of
representatives of (Z/lZ)×/H .

(2) α ≈ (1, 〈−pi〉m, 〈pi − 1〉m), where i is an integer such that pi ≡ 1
(mod 3).

(ii) If pf/2 ≡ v (mod m), then one of the following assertions holds.
(1) a ≡ b ≡ c (mod 3) and either

(a) 3 ∈ H or
(b) {a, b, c}H is the subgroup of (Z/lZ)× of order 3f and 3 ∈ 〈a,H 〉.

(2) α ≈ (1, 〈v〉m, 〈−v − 1〉m).

THEOREM 1.5. Let m = 4l. Let α = (a, b, c) be a primitive element. Assume that
pi �≡ −1 (mod m) for any integer i. Then Fα is supersingular if and only if one of the
following conditions holds:

(i) If pf/2 ≡ m/2 − 1 (mod m), then p ≡ 1 (mod 4), a ≡ b (mod 4) and one of
the following assertions holds:
(1) f = l − 1.
(2) f = (l−1)/2, l ≡ 1 (mod 4) and {a, b} is a complete set of representatives

of (Z/mZ)×/H̃ .
(3) α ≈ (1, 〈pi〉m, 〈−2pi〉m) for some integer i.

(ii) If pf/2 ≡ m/2 + 1 (mod m), then either 2 ∈ H or α ≈ (1,m/2 − 1,m/2).
(iii) Either α ≈ (1, 3l − 1, l) or (1, l − 1, 3l), and the following assertions hold:

(1) If 2‖a, then 2 ∈ H .
(2) If 4|a, then −2 ∈ H .

2. Cyclic quotients of Fm

In this section we recall some basic facts on the cyclic quotients of the Fermat curve
Fm over a finite field. Let µm be the group of m-th roots of unity in the algebraic closure of
Fp, and put

Gm = (µm × µm × µm)/∆ ,
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where ∆ = {(ζ, ζ, ζ ) | ζ ∈ µ} denotes the diagonal subgroup of µm × µm × µm. We let
Gm act on Fm by the following manner.

(x : y : z) �−→ (ζ x : ηy : ξz) ((ζ, η, ξ) ∈ Gm, (x : y : z) ∈ Fm) .

Then the group
Zm := {(a, b, c) ∈ (Z/mZ)3 | a + b + c = 0}

can be naturally regarded as the character group of Gm by putting

α(g) = ζ aηbξc ∈ µm (α = (a, b, c) ∈ Zm, g = (ζ, η, ξ) ∈ Gm) .

If α is primitive, then the homomorphism α : Gm → µm is surjective and Ker(α) is a cyclic
group of order m.

Now for each α ∈ Zm, we define Fα to be the quotient curve Fm/Ker(α). If α =
(a, b, c) ∈ Zm, (a, b, c,m) = d and a + b + c = m, then Fα is the projective curve in P3

defined by
T m′ = Xa′

Y b′
Zc′

, X + Y + Z = 0 ,

where m′ = m/d, a′ = a/d, b′ = b/d, c′ = c/d , and the natural surjection Fm → Fα is
given by

(x, y, z) �−→ (X, Y,Z, T ) = (xm′
, ym′

, zm′
, xa′

yb′
zc′

) .

If we put α′ = (a′, b′, c′) ∈ Zm′ , then Fα is isomorphic to Fα′ . Therefore, we have only
to focus on primitive elements. Moreover, if two elements α, α′ of Zm are identical after a
permutation of the components, we write α ≈ α′. It is then clear from the definition that
Fα is isomorphic to Fα′ whenever α ≈ α′.

Let α ∈ Zm be a primitive element. Considering the affine plane Z �= 0 in P2 and
letting u = −X/Z, v = −Y/Z, we find that Fα is birational to the affine curve defined by

vm = (−1)cua(1 − u)b .

Applying the Riemann-Hurwitz formula for the covering Fα → P1 associated to the ratio-
nal function u on Fα , one can easily calculate the genus of Fα :

g(Fα) = m − (m, a) − (m, b) − (m, c)

2
+ 1 .

One of easy consequences of this formula is the following.

PROPOSITION 2.1. The genus g(Fα) is positive if and only if none of a, b, c is zero.

This naturally leads us to consider the subset of Zm defined by

Am := {(a, b, c) ∈ Zm | a, b, c �= 0} .

In order to calculate the zeta function of Fm or Fα , we recall the definition of Jacobi
sums. Fix a multiplicative complex valued character χ : F×

q → µm(C) of order m. For
α = (a, b, c) ∈ Zm, we define the Jacobi sum Jα by

Jα = Jα(χ) = 1

q − 1

∑
x+y+z=0

χ(x)aχ(y)bχ(z)c
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where the sum is over the triples (x, y, z) ∈ (F×
q )3 satisfying x +y + z = 0. It is clear from

the definition that if α ≈ α′, then Jα = Jα′ .
We define an action of Z/mZ on Zm: For u ∈ Z/mZ and α = (a, b, c) ∈ Zm, put

u · α = (ta, tb, tc) .

Clearly for α = (a, b, c) ∈ Am we have u ·α ∈ Am if and only if ua, ub, uc �≡ 0 (mod m).
Let

[α] = {u · α | u ∈ Z/mZ, u · α ∈ Am} .

Then the cardinality of [α] is m − (m, a) − (m, b) − (m, c) + 2. Note that #[α] equals
2g(Fα).

THEOREM 2.2. The zeta functions of Fm/Fq and Fα/Fq are calculated as follows:
(i) Let P(t) = Z(Fm/Fq, t)(1 − t)(1 − qt). Then P(t) is a polynomial given by

P(t) =
∏

α∈Am

(1 + Jαt) .

(ii) For α ∈ Am with a + b + c = m, let Pα(t) = Z(Fα/Fq, t)(1 − t)(1 − qt). Then
Pα(t) is a polynomial given by

Pα(t) =
∏

β∈[α]
(1 + Jβt) .

Jacobi sums satisfy the following properties.

PROPOSITION 2.3. If α ∈ Am, then |Jα| = √
q.

Proof. See [16]. �

We say that Jα is pure if J k
α is real for some positive integer k. In other words, Jα is

pure if and only if Jα = ε
√

q for some root of unity ε. Theorem 2.2 then shows that Fα is
supersingular if and only if Jα is pure and that Fm is supersingular if and only if Jα is pure
for all α ∈ Am.

PROPOSITION 2.4. If pi ≡ −1 (mod m), then Jα = ±√
q and in particular it is

pure.

Proof. For t ∈ (Z/mZ)×, we denote by σt the element of the Galois group
Gal(Q(ζm)/Q) such that ζ

σt
m = ζ t

m. Then J
σt
α = Jt ·α for any t ∈ (Z/mZ)× and J

σp
α = Jα.

It follows that Jα belongs to Q(ζm)〈σp〉, the fixed subfield of the subgroup 〈σp〉 generated by
σp. Therefore, if pi ≡ −1 (mod m), then J

σ−1
α = Jα . Since σ−1 is the complex conjugate,

this shows that Jα is real. But, since |Jα|2 = q , it follows that Jα = ±√
q . �

Conversely, it is known that if Jα is pure for any α ∈ Am then pi ≡ −1 (mod m) for
some integer i. Therefore we obtain the following

COROLLARY 2.5. Fm is supersingular if and only if Condition (1) holds.
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3. Preliminaries

In this section we define a commutative ring Rm and submodules Am,Bm,Dm of Rm.
First, we define Rm to be the free abelian group over Z/mZ\{0}. We write an element

of Rm as
α =

∑
a∈Z/mZ\{0}

ca(a) (ca ∈ Z) .

For simplicity we write (a1, · · · , ar ) for
∑r

i=1(ai). Next, for a, b ∈ Z/mZ \ {0}, define the
product of (a), (b) ∈ Rm by the rule

(a)(b) =
{
(ab) if ab �= 0 ,

0 if ab = 0 .

Extending linearly this product, we define the ring structure on Rm. Let

Am =
{∑

a

ca(a) ∈ Rm

∣∣∣∣ ∑
a

caa = 0

}
.

For any a ∈ Z/mZ \ {0}, let 〈 a
m

〉 denote the rational number such that 0 <
〈
a
m

〉
<

1 and m
〈
a
m

〉 ≡ a (mod m). Let Bm be the submodule of Rm generated by elements
(a1, · · · , ar ) ∈ Rm such that

r∑
i=1

〈
tai

m

〉
= r

2
(∀t ∈ (Z/mZ)×) .

We define Dm to be the Z/mZ-submodule of Rm generated by (1,−1). Thus, Dm consists
of elements of Rm of the form

(a1,−a1, · · · , ar,−ar) (r ∈ N) .

It is then easy to see that Dm is contained in Bm. Indeed this follows from the relation〈 a

m

〉
+

〈−a

m

〉
= 1 (a ∈ Z/mZ \ {0}) .

Let νp = (1, p, · · · , pf −1) ∈ Rm. The following two subsets of Rm will be funda-
mental in the study of purity problem of Jacobi sums.

Bm(p) = {α ∈ Rm | νpα ∈ Bm} .

Thus an element (a1, · · · , ar) of Rm belongs to Bm(p) if and only if

r∑
i=1

f −1∑
j=0

〈
tpj ai

m

〉
= rf

2
(∀t ∈ (Z/mZ)×) . (2)
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In order to investigate the structure we define a map τd : Rm → Rm/d for each divisor
d|m.

τd(a) =




ϕ(m)

ϕ(m′)


 ∏

l|d/(m,a)
p�m/d

(1,−l−1)


(a′) (if (m, a)|d) ,

0 (if (m, a) � d) ,

where m′ = m/(m, a), a′ = a/(m, a).
Let C(m) be the character group of (Z/mZ)× and let C−(m) be the set of χ ∈ C(m)

such that χ(−1) = −1. Then the following proposition characterize the set Bm in terms of
characters in C−(m). If χ ∈ C(m) and α = ∑

ca(a) ∈ Rm, we put

χ(α) =
∑

caχ(a) .

Let PC−(m) be the set of primitive odd characters of (Z/Z)×.

PROPOSITION 3.1. For α ∈ Rm, we have α ∈ Bm if and only if χ(τd(α)) = 0 for
any χ ∈ PC−(m/d) and for any d|m.

If l is a prime divisor of m and la �≡ 0 (mod m), we define the standard element
element σl,a by

σl,a =




(
a, a + m

d
, a + 2m

d
, . . . , a + (l − 1)m

l
,−la

)
(l > 2) ,(

a, a + m

2
, −2a,

m

2

)
(l = 2) .

If 4a �≡ 0 (mod m), we put

σ ′
2,a =

(
a, a + m

2
, 2a + m

2
, −4a

)
.

Moreover, for x = (x1, . . . , xr) ∈ Rm, we put

σl,x =
r∑

i=1

σl,xi , σ ′
2,x =

r∑
i=1

σ ′
2,xi

.

PROPOSITION 3.2. If la �≡ 0 (mod m), then σl,a ∈ Bm. Moreover, if 4a �≡ 0
(mod m), then σ ′

2,a ∈ Bm.

Proof. See [2]. �

PROPOSITION 3.3. Let α = (a, b, c) be a primitive element. Then the Jacobi sum
Jα is pure if and only if α ∈ Bm(p), that is, νpα ∈ Bm.

Proof. See [16]. �

Let
U(m) = {t ∈ (Z/mZ)× | χ(t) = 1 (∀χ ∈ PC−(m))} .
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If 4|m, we put u = m/2 − 1 and if ord3(m) = 1, we denote by v the element of (Z/mZ)×
such that

v ≡
{

1 (mod 3)

−1 (mod m/3) .

Then for an integer m with ord2(m) �= 1 we have

U(m) =




{1} if 4 � m and ord3(m) �= 1 ,

{1, u} if 4|m and ord3(m) �= 1 ,

{1, v} if 4 � m and ord3(m) = 1 ,

{1, uv} if 4|m and ord3(m) = 1 .

From the relation (2) one can easily see that if Jα is pure then f must be even. As for
the simplest case f = 2, the following theorem is proved in [5, Theorem 3.5].

THEOREM 3.4. Suppose f = 2, p �≡ −1 (mod m) and

m �∈ {12, 15, 20, 21, 24, 30, 39, 40, 42, 48, 60, 66, 78, 84, 120} .

For a primitive element α, the Jacobi sum Jα is pure if and only if one of the following
conditions holds:

(i) α ∼ (1, w,−(1 + w)) and p ≡ −w (mod m), where w2 ≡ 1, w �≡ ±1
(mod m) and, in addition, w �≡ m

2 + 1 (mod m) if 8|m.
(ii) 4|m and α ∼ (1, 1,−2) and p ≡ m

2 + 1 (mod m).
(iii) 16|m and α ∼ (1, m

2 + 1, m
2 − 2) and p ≡ m

2 − 1 (mod m).
(iii′) 8‖m and α ∼ (1, m

2 + 1, m
2 − 2) and p ≡ m

4 + 1, m
2 − 1, 3m

4 + 1 (mod m).
In these four cases, we have

Jα =



±p in the case of (i) and (iii) ,

±χ(2)−ap in the case of (ii) ,

±χ(2)
m
4 −2ap in the case of (iii’) .

4. Proofs of Theorem 1.1 and Theorem 1.3

In this section we prove Theorem 1.1 and Theorem 1.3.

THEOREM 4.1. Suppose that f is even and one of the following conditions holds:
(i) 4|m, pf/2 ≡ m/2 + 1 (mod m), and α = (1, pi ,−2pj ) for some integers i, j .

(ii) There exist a divisor d of m and positive integers i, j such that

pi ≡ 1 (mod d), pj ≡ −1 (mod m/d),

and α = (1,−pj , pj − 1).
Then Fα is supersingular.

Proof. (i) In this case, we have

νpα = νp(1, 1,−2) .
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Since pf/2 ≡ m/2 + 1 (mod m), it follows that

(1, 1,−2)νp = (1,m/2 + 1,m/2 − 2)νp

= (1,m/2 + 1,m/2 − 2)(1,m/2 + 1)ν′
p

= 2(1,m/2 + 1,−2,m/2)ν′
p − 2(m/2,m/2)ν′

p ∈ Bm .

Therefore α ∈ Bm(p).
(ii) In this case, we have

(1,−pi, pi − 1)νp = (1,−1)νp + (pi − 1)νp .

Since pi − 1 ≡ 0 (mod d) and pj ≡ −1 (mod m/d), we see that (pi − 1)νp ∈ Dm.
Therefore α ∈ Dm(p). This completes the proof. �

THEOREM 4.2. Let m = 2e (e > 1) be a power of 2 and suppose that α is primitive.
Then Fα is supersingular if and only if α is one of the following types.

(i) α = (1, pi ,−2pj ) for some integers i, j ≥ 0 such that 1 + pi ≡ 2pj (mod m).
(ii) α = (1,−pi, pi − 1) for some integer i > 0 such that pi ≡ 1 (mod f ).

Proof. Since the assertion is true for m = 4, we assume that m > 4. For simplicity
suppose that α = (1, a, b) with (m, a) = 1 and (m, b) > 1. Note that f is even and
pf/2 �≡ −1 (mod m). Hence pf/2 ≡ m/2 + 1 or m/2 − 1 (mod m).

Case 1. First, suppose that pf/2 ≡ m/2 − 1 (mod m). Then pf/2 ≡ −1 (mod 4).
If f > 2, then f/2 is even and pf/2 ≡ 1 (mod 4), which is a contradiction. Thus f = 2
and so p ≡ −1 (mod 4). In this case, we have χ(p) = 1 for any χ ∈ PC−(m). Since
νpα ∈ Bm, it follows that 1 + χ(a) = 0 for any χ ∈ PC−(m). Therefore a ≡ m/2 + 1
(mod m), and α = (1,m/2 + 1,m/2 − 2).

Case 2. Next, suppose that pf/2 ≡ m/2 + 1 (mod m).
Case 2-1. If p ≡ 1 (mod 4), then p ≡ m/f + 1 (mod 2m/f ) and we have

〈p〉 = {t ∈ (Z/mZ)× | t ≡ 1 (mod m/f ))} .

It follows that χ(νp) = 0 for any χ ∈ C(m) such that cond(χ) > m/f , where cond(χ)

denotes the conductor of χ . Let d = (m, b) and b′ = b/d . Then

τf (νpα) =
{
f {(1, a) + d(b′)} (if d ≤ f ) ,

f (1, a) (if d > f ) .

In the first case, we have 1 + χ(a) + dχ(b′) = 0 for any χ ∈ PC−(m/f ). This holds only
when d = 2, a ≡ 1, b′ ≡ −1 (mod m/f ). It follows that a ∈ 〈p〉 and b ∈ −2〈p〉. Hence
α is of type (i).

In the second case, we have 1+χ(a) = 0 for any χ ∈ PC−(m/f ). Therefore a ≡ −1
or m/2f + 1 (mod m/f ). But if a ≡ m/2f + 1 (mod m/f ), then

b ≡ −1 − a ≡ m/2f − 2 (mod m/f ) ,

and so d = 2, which is a contradiction. Therefore a ≡ −1 (mod m/f ). It follows that
a ∈ −〈p〉, say a ≡ −pi (mod m), then b ≡ pi − 1 (mod m). Hence α is of type (ii).
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Case 2-2. On the other hand, if p ≡ −1 (mod 4), then p ≡ m/f − 1 (mod 2m/f )

since m/f ≥ 4, and we have

〈p2〉 = {t ∈ (Z/mZ)× | t ≡ 1 (mod 2m/f ))} .

Note that
νp = (1, p)(1, p2, . . . , pf −2) .

It follows that χ(νp) = 0 for any χ ∈ C(m) such that cond(χ) > 2m/f . We have

τf (νpα) =



f

2
(1,m/f − 1){(1, a) + d(b′)} (if d < f ) ,

f (1, a) (if d ≥ f ) .

In the first case, since m/f − 1 ∈ U(2m/f ), we have 1 + χ(a) + dχ(b′) = 0 for any
χ ∈ PC−(2m/f ). This holds only when d = 2, a ≡ 1, b′ ≡ −1 (mod 2m/f ). It follows
that a ∈ 〈p〉 and b ∈ −2〈p〉. Hence α is of type (i).

In the second case, we have 1 + χ(a) = 0 for any χ ∈ PC−(2m/f ). Therefore
a ≡ −1 or m/f + 1 (mod 2m/f ). But if a ≡ m/f + 1 (mod 2m/f ), then

b ≡ −1 − a ≡ m/f − 2 (mod 2m/f ) ,

and so d = 2, which is a contradiction. Therefore a ≡ −1 (mod 2m/f ). It follows that
a ∈ −〈p〉, say a ≡ −pi (mod m), then b ≡ pi − 1 (mod m). Hence α is of type (ii). This
completes the proof. �

5. Evaluation of some character sums

For a power le(> 2) of a prime number l, we define two subgroups V1(l
e), V2(l

e) of
(Z/leZ)× as follows. If l is an odd prime number, let

V1(l
e) = {x ∈ (Z/leZ)× | x2 ≡ 1 (mod le)} ,

V2(l
e) = {x ∈ (Z/leZ)× | xn(le) ≡ ±1 (mod le)} ,

where

n(le) =
{
(l − 1)/2 (e = 1) ,

l (e > 1) .
(3)

If l = 2, let
V1(2e) = V2(2e) = {±1, 2e−1 ± 1} .

Let m = m0m1 · · ·mr be the prime power factorization of m, where m0 = 1, 3, 4 or 12, and
for i = 1, . . . , r mi = l

ei

i > 4 is a power of a prime number such that (mi,mj ) = 1 (i �= j).
Let

V1(m0) = V2(m0) = (Z/m0Z)×

and define the subgroups V1(m), V2(m) of (Z/mZ)× by

V1(m) = V1(m0) × V1(m1) × · · · × V1(l
er
r ) ,

V2(m) = V2(m0) × V2(l
e1
1 ) × · · · × V2(l

er
r ) .
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Let

E(m) =



{(ε1, . . . , εr ) | εi = ±1 (i = 1, . . . , r)} (if m0 = 1) ,

{(−1, ε1, . . . , εr ) | εi = ±1 (i = 1, . . . , r)} (if m0 = 3 or 4) ,

{(1, ε1, . . . , εr ) | εi = ±1 (i = 1, . . . , r)} (if m0 = 12)

and

E+(m) = {(ε0, ε1, . . . , εr ) | ε0ε1 · · · εr = 1} ,

E−(m) = {(ε0, ε1, . . . , εr ) | ε0ε1 · · · εr = −1} .

It is clear from the definition that #E(m) = 2r . If r > 0, then

#E+(m) = #E−(m) = 2r−1 .

If r = 0, then
E(m0) = E−(m0) = {−1}

for m0 = 3 or 4, and E(12) = E+(12) = {1}. For example, if l > 4 is a prime number and
m0 = 3 or 4, then E(m0l) = {(−1, 1)}.

For each e = (ε0, ε1, . . . , εr ) ∈ E(m) we define

PCe(m) = PCε0(m0) × PCε1(m1) × · · · × PCεr (mr) ,

where PCεi (mi) denotes PC+(mi) or PC−(mi) according as εi = 1 or −1. Then
PC−(m) �= ∅ if and only if m �= 12.

In the following, we assume that m �= m0. For a ∈ (Z/mZ)×, let

ξ(a) = 1

#E−(m)

∑
e∈E−(m)

1

#PCe(m)

∑
χ∈PCe(m)

χ(a) .

To give an explicit formula for ξ(a), we define some notations. Let

I1 = {i ∈ {1, . . . , r} | ei = 1} ,

I2 = {i ∈ {1, . . . , r} | ei > 1} .

For a ∈ V2(m), define subsets I (a) ⊂ I, I2(a) ⊂ J by

I1(a) = {i ∈ I | a �∈ V1(li)} ,

I2(a) = {i ∈ J | a ∈ V2(l
ei

i ) \ V1(l
ei

i )} .

Furthermore, let ã denote the unique element of V1(m) such that

ã ≡
{
a (mod mi) (i �∈ I1(a) ∪ I2(a))

ani (mod mi) (i ∈ I1(a) ∪ I2(a)) ,

where ni = n(mi) is the integer defined in (3). Put

δ(a) =
∏

i∈I1(a)

li .

Let c(a) = 1 or 2 according as m/δ(a) �= m0 or m/δ(a) = m0.
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THEOREM 5.1. For any a ∈ (Z/mZ)×, we have

ξ(a) =




c(a)χ0(ã)
∏

i∈I1(a)

−1

li − 3

∏
i∈I2(a)

−1

li − 1
(if a ∈ V2(m) and ã ∈ ±U(m/δ(a)))

0 (otherwise) ,

where χ0 is an arbitrary character in PC+(δ(a)) × PC−(m/δ(a)).

As for the special case r = 1, we have the following

COROLLARY 5.2. Let m = m0l, where m0 = 3 or 4 and l > 3 is a prime number.
Let κ = ±1 and assume that a ≡ κ (mod m0). Then

ξ(a) =



κ (if a ≡ ±1 (mod l)) ,

− 2κ

l − 3
(if a �≡ ±1 (mod l)) .

Proof. In this case, we have

δ(a) =
{

1 (if a ≡ ±1 (mod l)) ,

l (if a �≡ ±1 (mod l)) .

In the first case, we have c(a) = 1, a ∈ ±U(m), and χ0(a) = κ for any χ0 ∈ PC−(m).
Hence ξ(a) = κ . In the second case, we have c(a) = 2, ã ∈ ±U(m), and χ0(ã) = κ for
any χ0 ∈ PC−(m). Hence ξ(a) = − 2κ

l−3 . This proves the corollary. �

Before proving the theorem, we prove two lemmas.

LEMMA 5.3. Let le be a power of an odd prime number l or le = 4, and ε = ±.
Then the following assertions hold for any a ∈ (Z/leZ)×.

(i) If e = 1, then

1

#PCε(l)

∑
χ∈PCε(l)

χ(a) =




χ0(a) (if a ∈ V1(l)) ,

− 2

l − 3
(if a �∈ V1(l) and ε = +) ,

0 (if a �∈ V1(l) and ε = −) ,

where χ0 is an arbitrary element of PCε(l).
(ii) If e > 1, then

1

#PCε(le)

∑
χ∈PCε(le)

χ(a) =




χ0(a) (if a ∈ V1(l
e)) ,

−χ0(a
l)

l − 1
(if a ∈ V2(l

e) \ V1(l
e)) ,

0 (if a �∈ V2(l
e)) ,

where χ0 is an arbitrary element of PCε(le).

Proof. The assertion is trivially true if le = 3 or 4 since PC−(3) and PC−(4) consists
of one element. In the following, we assume that le > 4. The character group C(le) is a
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cyclic group. Fix a generator χ1 of C(le). Then

PC−(le) = {χk
1 | 0 < k < ϕ(le), (k, 2l) = 1} ,

PC+(le) = {χ2k
1 | 0 < k < ϕ(le)/2, (k, l) = 1} .

Put ζ = χ1(a).
First, suppose that e = 1. Then #PC−(l) = (l − 1)/2 and

1

#PC−(l)

∑
χ∈PC−(l)

χ(a) = 2

l − 1

∑
0<k<l−1
(k,2)=1

ζ k

= 2

l − 1


 ∑

0<k≤l−1

ζ k −
∑

0<i≤ϕ(l)/2

ζ 2k




=
{
ζ (if ζ = ±1) ,

0 (if ζ �= ±1) .

If l = 3, then PC+(3) = ∅. If l > 3, then #PC+(l) = (l − 3)/2 and

1

#PC+(l)

∑
χ∈PC+(l)

χ(a) = 2

l − 3

∑
0<k<(l−1)/2

ζ 2k

= 2

l − 3


 ∑

0<k≤(l−1)/2

ζ 2k − 1




=



1 (if ζ = ±1) ,

− 2

l − 3
(if ζ �= ±1) .

This proves (i).
Next, suppose that e > 1. Then #PC−(le) = ϕ(le)/2 and

1

#PC−(le)

∑
χ∈PC−(le)

χ(a) = 2

ϕ(le)

∑
0<i<ϕ(le)
(k,2l)=1

ζ k

= 2

le−1(l − 1)


 ∑

0<k≤ϕ(le)

ζ k −
∑

0<k≤ϕ(le)/2

ζ 2k −
∑

0<k≤ϕ(le)/ l

ζ lk +
∑

0<i≤ϕ(le)/2l

ζ 2lk




=




ζ (if ζ = ±1) ,

− ζ l

l − 1
(if ζ l = ±1, ζ �= ±1) ,

0 (if ζ l �= ±1) .
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On the other hand, we have #PC+(le) = le−2(l − 1)2/2 and

1

#PC+(le)

∑
χ∈PC+(le)

χ(a) = 2

le−2(l − 1)2

∑
0<k<ϕ(le)/2

(k,l)=1

ζ 2k

= 2

le−2(l − 1)2


 ∑

0<k≤ϕ(le)/2

ζ 2k −
∑

0<k≤ϕ(le)/2l

ζ 2lk




=




1 (if ζ = ±1) ,

− 1

l − 1
(if ζ l = ±1, ζ �= ±1) ,

0 (if ζ l �= ±1) .

This proves (ii). �

LEMMA 5.4. Let e > 2. Then the following assertion holds for any a ∈ (Z/2eZ)×.

1

#PCε(2e)

∑
χ∈PCε(2e)

χ(a) =
{
χ0(a) (if a ∈ V1(2e)) ,

0 (if a �∈ V1(2e)) ,

where χ0 is an arbitrary element of PCε(2e).

Proof. Since (Z/2eZ)× ∼= Z/2Z×Z/2e−2Z, there exist two characters χ1 ∈ C−(2e),

χ2 ∈ C+(2e) of order 2 and 2e−2, respectively. Then C(2e) is generated by χ1 and χ2, and

PC−(2e) = {χ1χ
k
2 | 0 < k < 2e−2, (k, 2) = 1} ,

PC+(2e) = {χk
1 | 0 < k < 2e−2, (k, 2) = 1} .

Hence #PC−(2e) = #PC+(2e) = 2e−3. Put χ1(a) = η and ζ = χ2(a). Then

1

#PC−(2e)

∑
χ∈PC−(2e)

χ(a) = 1

2e−3

∑
0<k<2e−2

(k,2)=1

ηζ k

= 1

2e−3


 ∑

0<k≤2e−2

ηζ k −
∑

0<k≤2e−3

ηζ 2k




=
{
ηζ (if ζ = ±1) ,

0 (if ζ �= ±1) .

On the other hand, as for PC+(2e) we have
1

#PC+(2e)

∑
χ∈PC+(2e)

χ(a) = 1

2e−3

∑
0<k<2e−2

(k,2)=1

ζ k

= 1

2e−3


 ∑

0<i≤2e−2

ζ k −
∑

0<i≤2e−3

ζ 2k




=
{
ζ (if ζ = ±1) ,

0 (if ζ �= ±1) .
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Note that ζ = ±1 if and only if a ∈ V1(2e), and that if a ∈ V1(2e), then χ(a) = ηζ for any
χ ∈ PC−(2e) and χ(a) = ζ for any χ ∈ PC+(2e). Therefore the lemma holds. �

Proof of Theorem 5.1. For each e ∈ E(m), define

ξ e(a) = 1

#PCe(m)

∑
χ∈PCe(m)

χ(a) .

Then ξ(a) is the average of ξ e(a) (e ∈ E−(m, a)), that is,

ξ(a) = 1

#E−(m)

∑
e∈E−(m)

ξ e(a) .

In order to calculate ξ e(a), let

E∗(m, a) = {(ε0, ε1, . . . , εr) ∈ E∗(m) | εi = +1 for any i ∈ I1(a)} ,

where ∗ denotes + or −. If m0 = 3 or 4, then E−(m, a) �= ∅ for any a, and if m0 = 1 or
12, then E−(m, a) = ∅ if and only if δ(a) = m′.

Let

χe =
r∏

i=1

χki
mi

∈ PCe(m) ,

where χmi is a generator of C(mi) and k = 1 if εi = −1 and ki = 2 if εi = +1. Then from
Lemma 5.3 and Lemma 5.4 it follows that

ξ e(a) =




χe(ã)
∏

i∈I1(a)

−2

li − 3

∏
i∈I2(a)

−1

li − 1
(if a ∈ V2(m) and ε ∈ E−(m, a)) ,

0 (otherwise) .

Therefore,

ξ(a) = 1

#E−(m)


 ∑

e∈E−(m,a)

χe
0(ã)


 ∏

i∈I1(a)

−2

li − 3

∏
i∈I2(a)

−1

li − 1
.

Now, suppose E−(m, a) �= ∅ and fix an element e0 ∈ E−(m, a). Then

E−(m, a) = e0E
+(m, a) .

If #E−(m, a) = 1, then E+(m, a) = {1}, where 1 = (1, . . . , 1). But this is equivalent to
the condition δ(a) = m′. On the other hand, if #E−(m, a) > 1, then write e = e0e′ with
e′ ∈ E+(m, a). Then

χe = χe0χe′
.

Hence
1

#E−(m, a)

∑
e∈E−(m,a)

χe(ã) = χe0(ã)

#E−(m, a)

∑
e′∈E+(m,a)

χe′
(ã)

=
{
χe0(ã) (if ã ≡ ±1 (mod m′/δ(a))) ,

0 (if ã �≡ ±1 (mod m′/δ(a))) .
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Note that
ã ≡ ±1 (mod m′/δ(a)) ⇐⇒ ã ∈ ±U(m/δ(a)) .

Moreover, if E−(m, a) �= ∅, then

#E−(m, a) =
{

#E−(m)/2#I1(a) (if m/δ(a) �= m0) ,

#E−(m)/2#I1(a)−1 (if m/δ(a) = m0) .

Therefore,

#E−(m, a) = c(a) · #E−(m)

2#I1(a)
,

and consequently

ξ(a) = c(a)χ0(ã)

2#I1(a)

∏
i∈I1(a)

−2

li − 3

∏
i∈I2(a)

−1

li − 1

= c(a)χ0(ã)
∏

i∈I1(a)

−1

li − 3

∏
i∈I2(a)

−1

li − 1
.

This completes the proof. �

6. A useful lemma in the case of m = m0l

In the following we consider the case of m = 3l or m = 4l with l being a prime
number > 3. We will always assume that pi �≡ −1 (mod m) for any integer i. Let H

be the subgroup of (Z/lZ)× generated by the class of p, and let H̃ be the subgroup of
(Z/mZ)× generated by the classes of −1 and p.

The lemma below will be useful in the following sections.

LEMMA 6.1. Let m = m0l, where m0 = 3 or 4, and l > 3 is a prime number.
Suppose that f is even and pf/2 �≡ −1 (mod m). Let a1, . . . , ar be r elements of (Z/mZ)×
such that

(a) aiH̃ �≡ aj H̃ (i �= j), and
(b) χ(νp(a1, . . . , ar )) = 0 for any χ ∈ PC−(m) .

Assume that pf/2 ∈ U(m). Then the following assertions hold.
(i) f = l−1

r
.

(ii) p ≡ 1 (mod m0) and a1 ≡ · · · ≡ ar (mod m0).
(iii) νp(a1, . . . , ar) = σ

(1)
l,1 ,

where σ
(1)
l,1 denotes the primitive part of σl,1.

Proof. Without loss of generality we may assume that a1 = 1. Note that the assump-
tion (a) implies that

r ≥ ((Z/mZ)× : H̃ ) .

Since V1(m) = {±1,±u} and pf/2 ∈ V1(m), we have |H̃ | = 2f , and hence

((Z/mZ)× : H̃ ) = 2(l − 1)

2f
.
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Therefore, f ≤ l−1
r

.
Let w denote u or v according as m = 4l or 3l, respectively. Since pf/2 �≡ ±1

(mod m), we have pf/2 ≡ ±w (mod m).
Since pf/2 ≡ w (mod m), we have νp = (1, w)ν′

p , where

ν′
p = (1, p, . . . , pf/2−1) .

It follows that χ(νpα) = 2χ(ν′
pα) for any χ ∈ PC−(m). Put

ν′′
p = (p, p2, . . . , pf/2−1) , α′ = (a2, . . . , ar ) .

Then
νpα = (1, w)((1) + ν′′

p + ν′
pα′) .

It follows that
2{1 + ξ(ν′′

p) + ξ(ν′
pα′))} = 0 . (4)

Since every component of ν′′
p and ν′

pα′ is in (Z/mZ)× \ V1(m), it follows from Theorem
5.1 that

|ξ(ν′′
p) + ξ(ν′

pα′)| ≤ 2

l − 3
·
{

f

2
− 1 + f

2
(r − 1)

}
= f r − 2

l − 3
. (5)

But ξ(ν′′
p) + ξ(ν′

pα′) = −1 by (4). Therefore, f r−2
l−3 ≥ 1 and so f ≥ l−1

r
. Hence f = l−1

r
.

But this holds if and only if the equality holds in (5). Therefore, Theorem 5.1 again implies
that p ≡ a1 ≡ · · · ≡ ar ≡ 1 (mod m0). This completes the proof. �

For each divisor n of l − 1, let χl be a generator of C(l) and put

η(a) = 2n

l − 1

∑
0<k<(l−1)/n

k:odd

χk
l (a) .

LEMMA 6.2. Notation being as above, we have

η(a) =



1 (an ≡ 1 (mod l)) ,

−1 (an ≡ −1 (mod l)) ,

0 (an �≡ ±1 (mod l)) .

In particular, if at least one of η(a) and η(b) is non-zero, then

η(ab) = η(a)η(b) .

Proof. Let χ be a generator of C(l) and put χ(a) = ζ . Then

η(a) = 2n

l − 1


 ∑

0<k≤(l−1)/n

ζ k −
∑

0<k≤(l−1)/2n

ζ 2k


 .

Here note that the first sum equals (l − 1)/n or 0 according as ζ = 1 or not, and the second
sum equals (l − 1)/2n or 0 according as ζ 2 = 1 or not. Therefore we have

η(a) =



1 (ζ = 1)

−1 (ζ = −1)

0 (ζ �= ±1) .
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Since ζ = 1 (resp. −1) if and only if an ≡ 1 (resp. −1) (mod l), this proves the lemma. �

7. The case N(α) = 3

For a primitive element α = (a1, a2, a3) ∈ Am, let

N(α) = #{i | (m, ai) = 1} .

If m = m0l with m0 = 3 or 4, then N(α) = 1, 2 or 3. In addition, if N(α) = 3, then m

must be odd, so m = 3l and

a1 ≡ a2 ≡ a3 ≡ 1 (mod 3) .

Recall that H is the subgroup of (Z/lZ)× generated by the class of p, and H̃ is the sub-
group of (Z/mZ)× generated by the classes of −1 and p.

THEOREM 7.1. Let m = 3l and assume that pi �≡ −1 (mod m) for any integer
i. Let α = (1, a, b) ∈ Am be such that (ab,m) = 1. Assume that νpα ∈ Bm. Then the
following statements hold.

(i) If pf/2 ≡ v (mod m), then l ≡ 1 (mod 3), and either f = l − 1 or f =
(l −1)/3. Moreover, {1, a, b} is a complete set of representative of (Z/mZ)×/H̃

if f = (l − 1)/3. In this case, we have

νpα =
{
σl,α − (l,−l)α (if f = l − 1) ,

σl,1 − (l,−l) (if f = (l − 1)/3) .

(ii) If pf/2 ≡ −v (mod m), then either
(1) 3 ∈ 〈p (mod l)〉 or
(2) {1, a, b}H = 〈a, p (mod l)〉 is the subgroup of (Z/lZ)× of order 3f/2 and

3 ∈ 〈a, p (mod l)〉.
In this case, we have

νpα = σ3,ν ′
pα − (3,−3)ν′

pα .

Proof. Case 1. Suppose pf/2 ≡ v (mod m). Then

νp = (1, v)ν′
p ,

where ν′
p = (1, p, . . . , pf/2−1).

Case 1-1. If {1, a, b} is a complete set of representative of (Z/mZ)×/H̃ , then
Lemma 6.1 implies that l ≡ 1 (mod 3), f = (l − 1)/3 and

νpα = σl,1 − (l,−l) ∈ Bm .

Case 1-2. Suppose {1, a, b} is not a complete set of representative of (Z/mZ)×/H̃ .
Then there are only two essentially distinct cases:

(i) a ∈ H̃ , b �∈ H̃ .
(ii) a, b ∈ H̃ .
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In the case of (i), a ∈ 〈p〉 or a ∈ −〈p〉. In the first case, we have

νpα = νp(1, 1, b) .

But since χ((1, 1, b)) �= 0 for any χ ∈ PC−(m), this implies that νp ∈ Bm. In the second
case, we have

νpα = νp(1,−1, b) .

This also implies that νp ∈ Bm. Consequently we have νp ∈ Bm in the both cases.
Now, write νp as

ν′
p = (1) + ν′′

p ,

where ν′′
p = (p, p2, . . . , pf/2−1). Then

0 = ξ(νp) = 1 + ξ(ν′′
p) .

Since pi �∈ V1(m) for any i = 1, . . . , f/2 − 1, it follows that

1 = |ξ(ν′′
p)| ≤ 2

l − 3
(f/2 − 1) = f − 2

l − 3
≤ 1 .

Therefore f = l − 1 and p ≡ 1 (mod 3). This implies that νp = σ
(1)
l,1 . If l ≡ 1 (mod 3),

then it follows that νp = σl,1 − (l,−l) and so

νpα = σl,α − (l,−l)α .

On the other hand, if l ≡ −1 (mod 3), then

νpα = σl,α − 2(−l)α .

But since (−l)α = (−l,−l,−l) �∈ Bm, this case does not occur.
Case 2. Suppose pf/2 ≡ −v (mod m). Then f/2 is odd and p ≡ −1 (mod 3). We

have
νp = (1,−v)ν′

p .

Since −v ≡ −1 (mod 3), we have

τl(νpα) = 3(1,−l−1)(1,−1)ν′
p ∈ D3 .

On the other hand, we have

τ3(νpα) = 2(1,−3−1)ν′
pα .

If 3 ∈ H , then (1,−3−1)ν′
p ∈ Dl , and so (1,−3−1)ν′

pα ∈ Dl . On the contrary, if 3 �∈ H ,
then

(1 − χ(3)−1)χ(α) = 0

for the character χ = χ
f/2
l ∈ PC−(l), where χl is a generator of C(l). Since 3 �∈ H , we

have χ(3) �= 1, hence χ(α) = 0. Then the order of a in (Z/lZ)×/H is 3, and

b ≡ a2pi (mod l)

for some i. Taking χ = χ3 = χ
3f/2
l ∈ PC−(l), we have

0 = χ ′(τ3(νpα)) = 3f (1 − χ ′(3)−1) .

Hence χ ′(3) = 1. This implies that 3 ∈ 〈a, p (mod l)〉.
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In order to get an explicit form of νpα, first suppose l ≡ 1 (mod 3). Then v = 2l − 1
and

(1,−v) = σ3,1 − (2l + 1,−3) .

Since 3 ∈ {1, a, b}H = 〈a, p (mod l)〉, we have (2l + 1,−3)ν′
pα = (3,−3)ν′

pα ∈ Dm.
Therefore

νpα = σ3,ν ′
pα − (3,−3)ν′

pα ∈ Bm .

Next suppose l ≡ 2 (mod 3). Then v = l − 1 and

(1,−v) = σ3,1 − (l + 1,−3) .

Since 3 ∈ 〈a, p (mod l)〉, we have (l + 1,−3)ν′
pα = (3,−3)ν′

pα ∈ Dm. Therefore

νpα = σ3,ν ′
pα − (3,−3)ν′

pα ∈ Bm

This completes the proof. �

8. The case N(α) = 2

In this section we consider the case where N(α) = 2. For this we begin with the
following

PROPOSITION 8.1. Let x be an element of (Z/mZ)× of order 2. If pf/2 ≡ x

(mod m), then (1,−x, x − 1) belongs to Bm(p).

Proof. Let ν′
p = (1, p, . . . , pf/2−1). Then νp = (1, x)ν′

p. It follows that

νpα = (1, x)ν′
p(1,−x) + (1, x)ν′

p(x − 1)

= (1, x)(1,−x)ν′
p + (x − 1, 1 − x)ν′

p

= (1,−1)(1,−x)ν′
p + (1,−1)(x − 1)ν′

p

= (1,−1)(1,−x, x − 1)ν′
p

= (1,−1)αν′
p ∈ Dm .

Therefore α ∈ Bm(p). �

THEOREM 8.2. Let m = 3l, where l is a prime number greater than 3. Let α =
(1, a, b) be an element of ∈ Bm(p) such that (m, a) = 1 and (m, b) > 1. Assume that
pi �≡ −1 (mod m) for any integer i. Then one of the following statements holds.

(i) If pf/2 ≡ v (mod m), then α = (1,−pi, pi − 1), where i is an integer such that
0 < i < f and pi ≡ 1 (mod 3).

(ii) If pf/2 ≡ −v (mod m), then α = (1, v,−v − 1).
In the both cases, we have

νpα = (1,−1)αν′
p ∈ Dm .

Proof. Case 1. First consider the case pf/2 ≡ v (mod m).
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Case 1-1. Suppose a �∈ H̃ . Then Lemma 6.1 implies that f = (l − 1)/2, a ≡ 1
(mod 3) and {1, a} is a complete set of representative of (Z/lZ)×/H . In this case we have

νp(1, a) = σ
(1)
l,1 .

Since a �≡ −1 (mod 3), b �≡ 0 (mod 3) and so l|b. But in this case it follows that a ≡ −1
(mod l), which implies that a ∈ H̃ . This gives a contradiction. Hence this case cannot
occur.

Case 1-2. Suppose a ∈ H̃ . Then a ∈ H or a ∈ −H .
If a ∈ H , then

νpα = νp(1, 1, b) .

It follows that χ(νp) = 0 for any χ ∈ PC−(m). Then by Lemma 6.1 we have

f = l − 1 , p ≡ 1 (mod 3) , νp = σ
(1)
l,1 .

In this case, we have a ≡ 1 (mod 3) and so b �≡ 0 (mod 3). Consequently l|b. But in this
case, we have a ≡ −1 (mod l), which implies that a = v and b = −v − 1. Therefore

τl(νpα) = f {2(1,−l−1) + (l − 1)(−l−1)} .

It follows that
2(1,−l−1) + (l − 1)(−l−1) ∈ D3 .

But this is impossible.
If a ∈ −〈p (mod l)〉, then

νpα = νp(1,−1, b) .

It follows that (b)νp ∈ Bm.
If 3|b, then (b)νp ∈ Dm and

α = (1,−pi, pi − 1)

for some i such that pi ≡ 1 (mod 3).
If l|m, then a ≡ −1 (mod l). But since a ≡ −pi (mod m) for some i with 0 < i <

f , we have pi ≡ 1 (mod l), which is a contradiction.
Case 2. Next consider the case pf/2 ≡ −v (mod m). Then f/2 is odd and p ≡ −1

(mod 3). In this case, we have
νp = (1,−v)ν′

p .

Suppose l|b. Then a ≡ −1 (mod − 1). It follows that a = v and

νp(1, a) = (1,−v)(1, v)ν′
p = (1,−1)(1, v)ν′

p ∈ Dm .

Since p ≡ −1 (mod 3), we have (b)νp ∈ Dm, and consequently νpα ∈ Bm.
If 3|b, then a ≡ −1 (mod 3). In this case, we have

τ3(νpα) = 2ν′
p{(1,−3−1)(1, a) + 2(b′)} .

But one can show that the right hand side cannot belong to Dl , which is a contradiction.
This completes the proof. �
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THEOREM 8.3. Let m = 4l, where l is a prime number greater than 3. Let α =
(1, a, b) be an element of Bm(p) such that (m, a) = 1 and (m, b) > 1. Assume that
pi �≡ −1 (mod m) for any integer i.

(i) If pf/2 ≡ u (mod m), then p ≡ a ≡ 1 (mod 4) and f = l − 1 or (l − 1)/2.
(1) If f = l − 1, then l ≡ 1 (mod 4) and

νpα = σl,α − (l,−l)α .

(2) If f = (l − 1)/2, then l ≡ 1 (mod 4), {1, a} is a complete set of represen-
tatives of (Z/mZ)×/H̃ and

νpα = σl,(1,b) − (l,−l) − (lb,−lb) .

(ii) If pf/2 ≡ −u (mod m), then one of the following statements holds.
(1) α = (1,m/2 − 1,m/2) and

νpα = (1,−1)ν′
pα .

(2) a ≡ 1 (mod 4), 2 ∈ H , and

νpα = σ ′
2,ν ′

pα − (4,−4)ν′
pα .

Proof. Case 1. Suppose pf/2 ≡ u (mod m).
If l|b, then α = (1,m/2 − 1,m/2). By Lemma 6.1 one can easily see that α ∈ Bm(p)

if and only if f = l − 1 and l ≡ 1 (mod 4). Thus we may assume that l � b.
Case 1-1. Suppose a �∈ H̃ . Then a �≡ ±1 (mod l). In particular, 1+a �≡ 0 (mod l).

Therefore b �≡ 0 (mod l).
By Lemma 6.1, we have f = (l − 1)/2 and p ≡ a ≡ 1 (mod 4). Hence

τl(νpα) = (1,−l−1)νp(1, a) = 2f (1,−l−1) ∈ D4 .

This is possible only when l ≡ 1 (mod 4). Moreover we have

τ4(νpα) = (1,−2−1)νp{(1, a) + 2(b′)} ,

which belongs to Dl since pf/2 ≡ −1 (mod l). Hence

νpα = σl,1 − (l,−l) + νp(b) .

Here we note that νp(b) = (b,−b)ν′
p ∈ Dm.

Case 1-2. Suppose a ∈ H . Then a ∈ ±〈p〉.
If a ≡ pi (mod m) for some i, then we have νp(1, a) = 2νp. Therefore, χ(νp) = 0

for any χ ∈ PC−(m). Then Lemma 6.1 again shows that f = l − 1 and p ≡ 1 (mod 4).
Hence a ≡ 1 (mod 4) and 2‖b. Therefore

τ4(νpα) = (1,−2−1)νp{(1, a) + 2(b′)} .

This implies that b ≡ 2pi (mod m).
On the other hand, if a ≡ −pi (mod m) for some i, then one can easily see that α is

of type (ii) of Theorem 1.1.
Case 2. Suppose that pf/2 ≡ −u (mod m).
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If l|b, then α = (1,m/2 − 1,m/2). In this case, we see that

νpα = (1,−1)ν′
pα ∈ Dm .

Assume that l � b.
Case 2-1. Suppose a �∈ H̃ . In this case, since pf/2 ≡ −1 (mod 4), we have

τl(νpα) = (1,−l−1)νp(1, a) ∈ D4 .

Moreover

τ4(νpα) =
{
(1,−2−1)νp{(1, a) + 2(b′)} (if 2||b) ,

νp{(1,−2−1)(1, a) + 2(b′)} (if 4|b) .

Since a similar argument as above shows that the case 4|b cannot occur, we suppose that
2||b. In this case, we have a ≡ 1 (mod 4) since 1 + a ≡ 2 (mod 4). Letting χ = χf/2,
we have

(1 − χ(2−1))(1 + χ(a) + 2χ(b′)) = 0 .

If 1 + χ(a) + 2χ(b′) = 0, then χ(a) = 1 and χ(b′) = −1. But this implies that a ∈ H ,
which is a contradiction. Therefore, χ(2) = 1, which implies that 2n ≡ 1 (mod l), or
equivalently 2 ∈ 〈p (mod l)〉. Then the assertion follows since

νpα = σ ′
2,ν ′

pα − (4,−4)ν′
pα .

Case 2-2. Suppose a ∈ H . Then a ∈ ± (mod 〈p〉).
If a ≡ pi (mod m), then νp(1, a) = 2νp and

νpα = σ2,(1,a)ν ′
p

− σ2,(−2)(1,a)ν ′
p
+ 2σ2,(b)ν ′

p
+ (m/2 − 2, 4)ν′

p − 2(m/2 + b,−2b)ν′
p .

Therefore νp ∈ Bm if and only if

(m/2 − 2, 4)ν′
p − 2(m/2 + b,−2b)ν′

p ∈ Dm ,

and this holds if and only if 2 ∈ 〈p (mod l)〉.
On the other hand, if a ≡ −pi (mod m) for some i, then

νpα = (1,−1)νp ∈ Dm .

Therefore, νpα ∈ Bm if and only if (b)νp ∈ Bm. This holds if and only if α is the element
of type (ii) of Theorem 1.1. This completes the proof. �

9. The case N(α) = 1

In this section we prove the following

THEOREM 9.1. Let m = 4l and assume that pi �≡ −1 (mod m) for any integer i.
Let α = (1, a, b) be an element of Bm(p) such that 2|a, l|b. Then α = (1, 3l − 1, l) or
(1, l − 1, 3l), and the following assertions hold:

(i) If 2‖a, then 2 ∈ H .
(ii) If 4|a, then −2 ∈ H .
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Moreover, we have

νpα =
{

σ ′
2,(1,a)ν ′

p
− (4,−4)(1, a)ν′

p + (b,−b)ν′
p (if 2‖a),

σ ′
2,ν ′

p
+ (4,−4)ν′

p − (m/2 + 2,m/2 − 2)ν′
p − (l,−l)ν′

p (if 4|a).

Before proving this we remark that in the case of N(α) = 1 it suffices to consider the
case m = 4l.

LEMMA 9.2. If m = 3l and N(α) = 1. Then α cannot belong to Bm(p).

Proof. Suppose α ∈ Bm(p). We may assume that α = (1, a, b) with 3|a and l|b.
Then a ≡ −1 (mod l).

First, suppose pf/2 ≡ v (mod m). Then by Lemma 6.1, we have f = l − 1 and
νp = σ

(1)
l,1 . Hence

τl(νpα) = f {(1,−l−1) + (l − 1)(b′)} .

It follows that χ(τl(νpα)) �= 0 for any χ ∈ PC−(3) since l−1 > 2. This is a contradiction.
Next, suppose pf/2 ≡ −v (mod m). Then

τ3(νpα) = 2ν′
p{(1,−3−1) + 2(a′)} .

Therefore
1 − η(3) + 2η(a′) = 0 ,

which implies that η(3) = η(a′) = −1. This implies that η(a) = η(3a′) = 1. But this is a
contradiction since a ≡ −1 (mod l). �

Proof of Theorem 9.1. First note that a ≡ −1 (mod l) since 1 +a+b ≡ 0 (mod m)

and l|b. Hence either a = 3l − 1 or a = l − 1, and

α = (1, 3l − 1, l) or (1, l − 1, 3l) .

Moreover, we χ(νp) = 0 for any χ ∈ PC−(m).
Case 1. Suppose pf/2 ≡ u (mod m). Then by Lemma f = l − 1, p ≡ 1 (mod 4).

In this case, we have

τl(νpα) = f {(1,−l−1) + (l − 1)(b′)} .

But, since l − 1 ≥ 4, we have χ(τl(νpα)) �= 0 for the character χ ∈ PC−(4), which is a
contradiction.

Case 2. Next, suppose pf/2 ≡ −u (mod m). Then f/2 is odd and p ≡ −1
(mod 4). Therefore τl(νpα) ∈ Dl . On the other hand, since pf/2 ≡ 1 (mod l) and f/2 is
odd, we have pi �≡ −1 (mod l) for any i.

Case 2-1. If 2‖a, then

τ4(νpα) = 2ν′
p(1,−2−1)(1, a′, a′) .
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Since χ((1, a′, a′)) = 1 + 2χ(a′) �= 0 for any χ ∈ PC−(l), we have η(2) = 1. It follows
that 2 ∈ H . Then (m/2 − 2, 4)ν′

p ∈ Dm. On the other hand, we have

νp = (1,m/2 + 1)ν′
p

= (1,m/2 + 1,m/2 + 2,−4)ν′
p − (m/2 + 2,−4)ν′

p

= σ ′
2,ν ′

p
− (m/2 − 2, 4)ν′

p.

Moreover νp(b) = f (l,−l) ∈ Dm. Therefore

νpα = σ ′
2,ν ′

p
(1, a) − (m/2 − 2, 4)ν′

p(1, a) + νp(b) ∈ Bm .

Case 2-2. If 4|a, then

τ4(νpα) = 2ν′
p{(1,−2−1) + 2(a′)} .

In this case, we have
1 − η(2) + 2η(a′) = 0 .

This holds in the following two cases:
(i) η(2) = −1 and η(a′) = 0.

(ii) η(2) = η(a′) = −1.
Case (i) cannot occur. Indeed, in that case we have

η(a) = η(4a′) = 0 ,

which is a contradiction since a ≡ −1 (mod l).
In the case of (ii), we have −2 ∈ H and η(4a′) = −1. Hence η(a) = −1, and so

(1, a)νp = (1,−4)νp. Therefore

νp(1, a) = (1,m/2 + 1)(1,−4)ν′
p

= (1,m/2 + 1,−4,−4)ν′
p

= (1,m/2 + 1,m/2 + 2,−4)ν′
p + (−4,m/2 − 2)ν′

p − (m/2 + 2,m/2 − 2)ν′
p

∈ Bm

Consequently

νpα = σ ′
2,ν ′

p
+ (4,−4)ν′

p − (m/2 + 2,m/2 − 2)ν′
p − (l,−l)ν′

p .

This completes the proof. �
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