
COMMENTARII MATHEMATICI
UNIVERSITATIS SANCTI PAULI
Vol. 65, No. 2 2016

ed. RIKKYO UNIV/MATH
IKEBUKURO TOKYO
171–8501 JAPAN

Polytope Duality for Families of K3 Surfaces
Associated to Transpose Duality

by

Makiko MASE

(Received July 20, 2016)
(Revised October 9, 2016)

Abstract. We consider whether or not transpose-dual pairs, which is a Berglund–
Hübsch mirror studied by Ebeling and Ploog [3], extend to a polytope duality that has a
potential to be lattice dual.

1. Introduction

Isolated singularities in C3 are classified by Arnold [1] among which there are classes
called bimodal and unimodal. Our notation follows that of Arnold’s. Not only the classifi-
cation, Arnold also finds that there is a duality among unimodal singularities that is called
Arnold’s strange duality. The duality is also related to toric geometry and lattice theory.
Ebeling and Ploog [3] find an analogous duality concerning bimodal and other singularities,
which is actually a Berglund–Hübsch mirror.

Batyrev’s proposal [2] of polar duality of reflexive polytopes gives a breakthrough
in a construction of mirror partner for toric Calabi-Yau hypersurfaces and later complete
intersections.

Being origined in physics, there appear a numerical meanings of “mirror” such as
cohomological mirror, among which in this article we focus on a relation between Ebel-
ing and Ploog’s transpose duality and Batyrev’s polytope duality associating with bimodal
singularities in some manner.

In a series of recent studies, it is concluded that transpose-dual pairs (Q12, E18),
(Z1,0, E19), (E20, E20), (Q2,0, Z17), (E25, Z19), (Q18, E30) of singularities can extend
to a lattice duality by the author [6] following an extension to polytope duality by the author
and Ueda [5]. However, those pairs in the list (∗) below fail to extend to a lattice duality in
spite of the fact that they are polytope dual.

(∗)
(Z13, J3,0), (Z1,0, Z1,0), (Z17, Q2,0), (U1,0, U1,0), (U16, U16),

(Q17, Z2,0), (W1,0, W1,0), (W17, S1,0), (W18, W18), (S17, X2,0) .

More precisely, for each pair one obtains in [5] reflexive polytopes �[MU ] and �′[MU ] sat-
isfying that the polar dual of �[MU ] is isomorphic to �′[MU ] and that �[MU ] and �′[MU ]
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respectively contains the Newton polytope of a compactification polynomial of the defining
polynomial of singularities. Despite this fact it is concluded in [6] that the correspond-
ing pairs of families F�[MU] and F�′[MU] of K3 surfaces are not lattice dual, that is, the

Picard lattices Pic(�[MU ]) and Pic(�′[MU ]) of these families do not satisfy an isometry

Pic(�[MU ])⊥�K3
� U ⊕ Pic(�′[MU ]). Moreover, for these pairs we can observe that the

restriction map H 1,1(P̃�[MU], Z) → H 1,1(Z̃, Z) for the minimal model of any generic
member Z ∈ F�[MU] is not surjective.

The aim of the study is to consider the following problem arisen by Professor Ashik-
aga’s question:

PROBLEM. Let ((B, f ), (B ′, f ′)) be a transpose-dual pair in the list (∗) together
with their defining polynomials f and f ′. Determine whether or not it is possible to take
polynomials F and F ′ that are respectively compactifications of f and f ′, and a reflexive
polytope � such that the following condition (∗∗) holds:

(∗∗) �F ⊂ �, �F ′ ⊂ �∗, and L0(�) = 0 .

Here, �F and �F ′ denote respectively the Newton polytopes of F and of F ′, and �∗ is the
polar dual polytope of �.

The main theorem of this paper is stated as follows:

MAIN THEOREM (Theorem 3.1). For each of the following pairs

(Z1,0, Z1,0), (U1,0, U1,0), (Q17, Z2,0), (W1,0, W1,0) ,

there exist compactifications F, F ′ and reflexive polytopes � and �′ such that

(∗∗) �∗ � �′, �F ⊂ �, �F ′ ⊂ �′, and rank L0(�) = 0

hold. Moreover, ρ(�) + ρ(�′) = 20.

It can be conjectured that there do not exist reflexive polytopes for pairs (Z13, J3,0),
(Z17, Q2,0), (U16, U16), (W17, S1,0), (W18, W18), (S17, X2,0) of singularities satisfying
the condition (∗∗). We leave the judgement about this conjecture to a further study in the
furure.

Section 2 is devoted to recall some facts as to a polytope duality associated to singu-
larities. The proof of the main theorem is given in Theorem 3.1 in section 3, where we
explicitely give compactifications and reflexive polytopes for these pairs.

Acknowledgment. The author would be grateful to Professor T. Ashikaga for his
question of the problem that motivated this article after publication of [6], to Professor N.
Aoki who was reading through the first draft carefully and making many helpful sugges-
tions, and to Professor M. Kobayashi for his comments and encouragement.



Polytope Duality for Families of K3 Surfaces Associated to Transpose Duality 133

2. Preliminary

Recall that a Gorenstein K3 surface is a compact complex connected 2-dimensional
algebraic variety S with at most ADE singularities satisfying KS ∼ 0 and H 1(S, OS) = 0.
If a Gorenstein K3 surface is nonsingular, we simply call it a K3 surface.

Let M � Z3 be a 3-dimensional lattice and N = HomZ(M, Z) � Z3 the dual of M

with a natural pairing 〈 , 〉 : N × M → Z. Let � be a 3-dimensional polytope, that is, � is
a convex hull of finitely-many points in M ⊗Z R. The associated toric 3-fold is denoted by
P�. The polar dual �∗ of � is defined by

�∗ = {y ∈ N ⊗Z R | 〈y, x〉 ≥ −1 for all x ∈ �} .

Let us recall a toric description of weighted projective spaces. Let a = (a0, a1, a2, a3)

be a well-posed quadruple of natural numbers and d = a0 + a1 + a2 + a3. Define a
3-dimensional lattice M̃ by

M̃ := {
(i, j, k, l) ∈ Z4 | a0i + a1j + a2k + a3l ≡ 0 mod d

} � Z3 .

Note that the lattice M̃ is one-to-one corresponding to the set of monomials of weighted
degree d: indeed, for each (i, j, k, l) ∈ M̃ , a monomial Xi

0X
j

1Xk
2X

l
3 is of weighted degree

d . Here, the weight of Xi is ai for i = 0, 1, 2, 3. Besides, by letting �a be a convex hull
of all primitive lattice vectors in M̃ , the associated projective toric 3-fold is the weighted
projective space of weight a.

The introduction of reflexive polytope in [2] is motivated by mirror symmetry.

DEFINITION 2.1 ([2]). Let � be an integral polytope that contains the origin in its
interior. The polytope � is called reflexive if its polar dual �∗ is also integral.

Not only in a context of mirror, this notion is basically friendly with K3 surfaces as
follows:

THEOREM 2.1 ([2]). Let � be a 3-dimensional polytope.
(1) The followings are equivalent:

(i) The polytope � is reflexive.
(ii) The toric 3-fold P� is Fano, in particular, general anticanonical members of P�

are Gorenstein K3.

(2) General anticanonical members of P� are simultaneously resolved by a toric (crepant)
desingularization of P� to be K3 surfaces.

Denote for a reflexive polytope � by F� a family of (Gorenstein) K3 surfaces
parametrised by the complete anticanonical linear system |−KP�

|. For a member Z in
F�, denote by Z̃ and P̃� the minimal models in a cause of the simultaneous resolution.

In the article, we define that a member Z ∈ F� is generic if the following two condi-
tions are satisfied:

(1) Z is �-regular. (See [2] for detail)
(2) The Picard group of Z̃ is generated by irreducible components of the restrictions

of the generator of the Picard group of P̃�.
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It is proved in [2] that �-regularity is a general condition. The condition (2) is also
a general condition. Note that all Picard lattices of the minimal models of any generic
members are isometric.

DEFINITION 2.2. (1) The Picard lattice Pic(�) of the family F� is the Picard lat-
tice of the minimal model of a generic member.
(2) ρ(�) := rank Pic(�) is called the Picard number of the family F�.
(3) Let r : H 1,1(P̃�, Z) → H 1,1(Z̃, Z) be the restriction mapping of the cohomology
group. The cokernel of r is denoted by L0(�).

In [5], a notion of transpose duality [3] for singularities is extended to a polytope
duality in the sense of the following theorem :

THEOREM 2.2 ([5]). Let ((B, f ), (B ′, f ′)) be a transpose-dual pair together with
their defining polynomials f and f ′ that are respectively compactified to polynomials F

and F ′. Then, there exist reflexive polytopes �[MU ] and �′[MU ] such that

�∗[MU ] � �′[MU ], �F ⊂ �[MU ], and �F ′ ⊂ �′[MU ] .
However, it depends on the pairs that whether or not rank L0(�[MU ]) = 0 holds. In

section 3, we shall show that some pairs in the list (∗) do have this property.
We end this section by giving formulas that are needed in the proof of the main theo-

rem. See [4] for details. For a 3-dimensional reflexive polytope �, denote by �[1] the set
of all edges of �, and for an edge � ∈ �[1], the dual edge in the polar dual polytope �∗
is denoted by �∗. The number of lattice points on an edge � is denoted by l(�), whilst
l(�) − 2 by l∗(�). We have

rank L0(�) =
∑

�∈�[1]
l∗(�)l∗(�∗) .(1)

ρ(�) =
∑

�∈�[1]
l(�∗) − 3 .(2)

Note that rank L0(�) = rank L0(�
∗) by the formula.

3. Main result

The chief aim of this section is to prove the following statements.

THEOREM 3.1. For pairs (B, B ′) of singularities, if one takes compactifications
F, F ′ as in Table 1, and polytopes �, �′ as in Table 2, then,

(i) � and �′ are reflexive,
(ii) �∗ is isomorphic to �′ up to lattice isometry of Z3,

(iii) �F ⊂ �, and �F ′ ⊂ �′ hold, and
(iv) rank L0(�) = 0.

Moreover, ρ(�) + ρ(�′) = 20.

Proof. Z1,0 case. The defining polynomials of singularities B = Z1,0 and B ′ = Z1,0

are the same f = f ′ = x5y + xy3 + z2.
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TABLE 1. Compactifications of singularities

B F F ′ B ′

Z1,0 X5Y + XY 3 + Z2 + W 10X2 X5Y + XY 3 + Z2 + W 14 Z1,0

U1,0 X3Y + Y 2Z + Z3 + WX4 XZ3 + X2Y + Y 3 + W 9 U1,0

Z2,0 X5Z + XY 3 + Z2 + W 7Y X5Y + WY 3 + XZ2 + W 7 Q17

W1,0 X6 + Y 2Z + Z2 + W 6Z X6 + Y 2Z + Z2 + W 12 W1,0

TABLE 2. Polytopes that make the pairs polytope dual

B vertices of � vertices of �′ B ′

Z1,0

⎧⎪⎪⎨
⎪⎪⎩

(−1, 0, 1), (−1, 0, 0),

(0, 1,−1), (2, 3,−1),

(2, 2,−1), (1,−1,−1),

(0,−1,−1)

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

(0, 2,−1), (−1, 1,−1),

(−1,−1,−1), (5,−1,−1),

(4, 0,−1), (1, 0, 0),

(−1,−1, 1)

⎫⎪⎪⎬
⎪⎪⎭ Z1,0

U1,0

⎧⎨
⎩

(−1, 0, 2), (0, 1, 0),

(1, 2,−1), (1, 1,−1),

(0,−1, 0), (0,−1,−1)

⎫⎬
⎭

⎧⎪⎪⎨
⎪⎪⎩

(1, 0,−1), (0,−1,−1),

(−1,−1,−1), (−1, 2,−1),

(1, 2,−1), (1, 0, 1),

(0,−1, 2), (−1,−1, 2)

⎫⎪⎪⎬
⎪⎪⎭ U1,0

Z2,0

⎧⎨
⎩

(−1,−1, 2), (0,−1, 0),

(1,−1, 0), (1,−1, 1),

(1, 2,−3), (0, 0,−1)

⎫⎬
⎭

⎧⎨
⎩

(−1, 2,−1), (−1,−1, 1),

(−1,−1,−1), (6,−1,−1),

(2, 1,−1), (0,−1, 1)

⎫⎬
⎭ Q17

W1,0

⎧⎨
⎩

(−1, 0, 1), (−1, 0, 0),

(1, 2,−1), (2, 3,−1),

(0,−1, 0)

⎫⎬
⎭

⎧⎨
⎩

(−1,−1,−1), (5,−1,−1),

(1, 3,−1), (−1, 3,−1),

(−1,−1, 1)

⎫⎬
⎭ W1,0

Take a compactification of f as F = W 10X2 + X5Y + XY 3 + Z2 in the weighted
projective space P(1, 2, 4, 7). Note that F is a different compactification from the one
in [3].

Take a compactification of f ′ as F ′ = W 14 + X5Y + XY 3 + Z2 in the weighted
projective space P(1, 2, 4, 7). Note that F ′ is the same compactification as in [3].

The polytope � contains the Newton polytope of F : indeed, by taking a basis e1 =
(−6, 1, 1, 0), e2 = (2, 1,−1, 0), e3 = (−7, 0, 0, 1) for R3, one can see that monomials
W 10X2, X5Y, XY 3, Z2 are respectively corresponding to vertices

(0, 1,−1), (2, 2,−1), (1,−1,−1), (−1, 0, 1) .

The polytope �′ contains the Newton polytope of F ′: indeed, by taking a standard
basis e′

1 = (−2, 1, 0, 0), e′
2 = (−4, 0, 1, 0), e′

3 = (−7, 0, 0, 1) for R3, one can see that
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monomials W 14, X5Y , XY 3, Z2 are respectively corresponding to vertices

(−1,−1,−1), (4, 0,−1), (0, 2,−1), (−1,−1, 1) .

The dual polytope �′∗ of �′ is a convex hull of vertices

(0, 0, 1), (−1,−2,−3), (−1,−3,−5), (1,−1,−1), (1, 0, 0), (0, 1, 0), (−1,−1,−3)

that is mapped to isomorphically from � by a transformation of R3 by the matrix

M :=
⎛
⎝ 1 2 3

0 −1 −1
1 2 4

⎞
⎠

that is, (x, y, z)M = (x ′, y ′, z′) for (x, y, z) ∈ � and (x ′, y ′, z′) ∈ �′.
Therefore, � and �′ are reflexive and the pair is polytope dual.
By the formula (1), one gets rank L0(�) = rank L0(�

∗) = 0 because for all edges
in � satisfy l∗(�)l∗(�∗) = 0. In fact, at least either � or �∗ has no lattice points in its
interior.

By the formula (2), one can compute that

ρ(�) = 17 − 3 = 14, ρ(�∗) = 9 − 3 = 6

thus one has
ρ(�) + ρ(�∗) = 20 .

U1,0 case. The defining polynomials of singularities B = U1,0 and B ′ = U1,0 are
f = x3y + y2z + z3, f ′ = x ′z′3 + x ′2y ′ + y ′3, respectively.

Take a compactification of f as F = WX4 + X3Y + Y 2Z + Z3 in the weighted
projective space P(1, 2, 3, 3). Note that F is a different compactification from the one
in [3].

Take a compactification of f ′ as F ′ = W ′9 + X′Z′3 + X′2Y ′ + Y ′3 in the weighted
projective space P(1, 3, 3, 2). Note that F ′ is the same compactification as in [3].

The polytope � contains the Newton polytope of F : indeed, by taking a basis e1 =
(−5, 1, 1, 0), e2 = (1, 1,−1, 0), e3 = (−3, 0, 0, 1) for R3, one can see that monomials
WX4, X3Y , Y 2Z, Z3 are respectively corresponding to vertices

(1, 2,−1), (1, 1,−1), (0,−1, 0), (−1, 0, 2) .

The polytope �′ contains the Newton polytope of F ′: indeed, by taking a standard
basis e′

1 = (−3, 1, 0, 0), e′
2 = (−3, 0, 1, 0), e′

3 = (−2, 0, 0, 1) for R3, one can see that
monomials W ′9, X′Z′3, X′2Y ′, Y ′3 are respectively corresponding to vertices

(−1,−1,−1), (0,−1, 2), (1, 0,−1), (−1, 2,−1) .

The dual polytope �′∗ of �′ is a convex hull of vertices

(0, 0, 1), (−1, 0, 0), (−1, 1, 0), (0, 1, 0), (1, 0, 0), (0,−1,−1)

that is mapped to isomorphically from � by a transformation of R3 by the matrix

M =
⎛
⎝ 2 2 1

−1 0 0
1 1 1

⎞
⎠
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that is, (x, y, z)M = (x ′, y ′, z′) for (x, y, z) ∈ � and (x ′, y ′, z′) ∈ �′.
Therefore, � and �′ are reflexive and the pair is polytope dual.
By the formula (1), one gets rank L0(�) = rank L0(�

∗) = 0 because for all edges
in � satisfy l∗(�)l∗(�∗) = 0. In fact, at least either � or �∗ has no lattice points in its
interior.

By the formula (2), one can compute that

ρ(�) = 20 − 3 = 17, ρ(�∗) = 6 − 3 = 3

thus one has
ρ(�) + ρ(�∗) = 20 .

Z2,0 and Q17 case. The defining polynomials of singularities B = Z2,0 and B ′ = Q17

are f = x5z + xy3 + z2, f ′ = x5y + y3 + xz2, respectively.
Take a compactification of f as F = W 7Y + X5Z + XY 3 + Z2 in the weighted

projective space P(1, 1, 3, 5). Note that F is the same compactification as in [3].
Take a compactification of f ′ as F ′ = W 7 + X5Y + WY 3 + XZ2 in the weighted

projective space P(1, 1, 2, 3). Note that F ′ is the same compactification as in [3].
The polytope � contains the Newton polytope of F : indeed, by taking a basis e1 =

(−3, 3, 0, 0), e2 = (−8, 0, 1, 1), e3 = (−6, 1, 0, 1) for R3, one can see that monomials
W 7Y , X5Z, XY 3, Z2 are respectively corresponding to vertices

(0, 0,−1), (1,−1, 1), (1, 2,−3), (−1,−1, 2) .

The polytope �′ contains the Newton polytope of F ′: indeed, by taking a standard
basis e′

1 = (−1, 1, 0, 0), e′
2 = (−2, 0, 1, 0), e′

3 = (−3, 0, 0, 1) for R3, one can see that
monomials W 7, X5Y, WY 3, XZ2 are respectively corresponding to vertices

(−1,−1,−1), (4, 0,−1), (−1, 2,−1), (0,−1, 1) .

The dual polytope �′∗ of �′ is a convex hull of vertices

(−1,−3,−4), (0,−2,−3), (0, 1, 0), (1, 0, 0), (0, 0, 1), (−1,−2,−3)

that is mapped to isomorphically from � by a transformation of R3 by the matrix

M :=
⎛
⎝ 1 1 1

1 3 4
1 2 3

⎞
⎠

that is, M(x, y, z) = (x ′, y ′, z′) for (x, y, z) ∈ � and (x ′, y ′, z′) ∈ �′.
Therefore, � and �′ are reflexive and the pair is polytope dual.
By the formula (1), one gets rank L0(�) = rank L0(�

∗) = 0 because for all edges
in � satisfy l∗(�)l∗(�∗) = 0. In fact, at least either � or �∗ has no lattice points in its
interior.

By the formula (2), one can compute that

ρ(�) = 18 − 3 = 15, ρ(�∗) = 8 − 3 = 5

thus one has
ρ(�) + ρ(�∗) = 20 .
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W1,0 case. The defining polynomials of singularities B = B ′ = W1,0 are the same
f = f ′ = x6 + y2z + z2.

Take a compactification of f as F = X6+Y 2Z+Z2+W 6Z in the weighted projective
space P(1, 2, 3, 6). Note that F is a different compactification from the one in [3].

Take a compactification of f ′ as F ′ = X′6 + Y ′2Z′ + Z′2 + W ′12 in the weighted
projective space P(1, 2, 3, 6). Note that F ′ is the same compactification as in [3].

The polytope � contains the Newton polytope of F : indeed, by taking a basis e1 =
(−5, 1, 1, 0), e2 = (1, 1,−1, 0), e3 = (−6, 0, 0, 1) for R3, one can see that monomials
X6, Y 2Z, Z2, W 6Z are respectively corresponding to vertices

(2, 3,−1), (0,−1, 0), (−1, 0, 1), (−1, 0, 0) .

The polytope �′ contains the Newton polytope of F ′: indeed, by taking a standard
basis e′

1 = (−2, 1, 0, 0), e′
2 = (−3, 0, 1, 0), e′

3 = (−6, 0, 0, 1) for R3, one can see that
monomials X′6, Y ′2Z′, Z′2, W ′12 are respectively corresponding to vertices

(5,−1,−1), (−1, 1, 0), (−1,−1, 1), (−1,−1,−1) .

The dual polytope �′∗ of �′ is a convex hull of vertices

(0, 1, 0), (−1,−1,−3), (0,−1,−2), (1, 0, 0), (0, 0, 1)

that is mapped to isomorphically from � by a transformation of R3 by the matrix

M :=
⎛
⎝ 1 1 3

0 0 −1
1 2 3

⎞
⎠

that is, M(x, y, z) = (x ′, y ′, z′) for (x, y, z) ∈ � and (x ′, y ′, z′) ∈ �′.
Therefore, � and �′ are reflexive polytopes and the pair is polytope dual.
By the formula (1), one gets rank L0(�) = rank L0(�

∗) = 0 because for all edges
in � satisfy l∗(�)l∗(�∗) = 0. In fact, at least either � or �∗ has no lattice points in its
interior.

By the formula (2), one can compute that

ρ(�) = 21 − 3 = 18, ρ(�∗) = 5 − 3 = 2

thus one has
ρ(�) + ρ(�∗) = 20 .

�
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