
COMMENTARII MATHEMATICI
UNIVERSITATIS SANCTI PAULI
Vol. 64, No. 2 2015

ed. RIKKYO UNIV/MATH
IKEBUKURO TOKYO
171–8501 JAPAN

Continued Fraction Expansions with Even Period and Primary
Symmetric Parts with Extremely Large End

by

Fuminori KAWAMOTO, Yasuhiro KISHI and Koshi TOMITA

(Received June 15, 2015)
(Revised October 30, 2015)

Abstract. For a non-square positive integer d with 4 � d , put ω(d) := (1 + √
d)/2

if d is congruent to 1 modulo 4 and ω(d) := √
d otherwise. Let a1, a2, . . . , a�−1 be

the symmetric part of the simple continued fraction expansion of ω(d). We say that the
sequence a1, a2, . . . , a[�/2] is the primary symmetric part of the simple continued fraction
expansion of ω(d). The main purposes of this article are to introduce a notion of “extremely
large end (ELE)” for a finite sequence, and to study properties for a non-square positive
integer d such that the primary symmetric part of the simple continued fraction expansion
of

√
d with even period is of ELE type.

Introduction

Let d be a non-square positive integer and put α = √
d or α = (1 + √

d)/2. Then it is
known that the simple continued fraction expansion is of the form

α = [a0, a1, a2, . . . , a�] (the periodic part begins with a1) ,

an = a�−n (1 ≤ n ≤ � − 1) (the symmetric property holds) .

Here, � is the minimal period. Then we say that the sequence a1, a2, . . . , a�−1 is the sym-
metric part of the simple continued fraction expansion of α. Moreover, putting L := [�/2],
we say that the sequence a1, a2, . . . , aL is the primary symmetric part of the simple con-
tinued fraction expansion of α, where [x] denotes the largest integer ≤ x for a real number
x. For a non-square positive integer d with 4 � d , put ω(d) := (1+√

d)/2 if d is congruent
to 1 modulo 4 and ω(d) := √

d otherwise. Then the canonical integral basis of a real qua-
dratic field Q(

√
d) is given by {1, ω(d)} when d is square-free. In this paper, we examine

primary symmetric parts of the simple continued fraction expansions of ω(d).
The class number one problem for real quadratic fields is a mysterious classical prob-

lem. The class number is closely related to the fundamental unit. For instance, by Siegel’s
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Theorem, the fundamental units of real quadratic fields with class number 1 are relatively
large. It is known that there exist only finitely many real quadratic fields of extended
Richaud–Degert type (call simply ERD type; see Mollin [18, Definition 3.2.2] for the def-
inition) with class number 1 and they are determined (see also [18, Theorem 5.4.3]) with
one more possible exception. We easily see that the fundamental units of real quadratic
fields Q(

√
d) of ERD type are < d , namely, they are small, by using their explicit form.

Moreover the minimal periods of ω(d) are ≤ 12 (cf. [18, Section 3.2]). According to re-
sults of Sasaki [21] and Lachaud [15], for any positive integers � and h, there exist at most
finitely many real quadratic fields with period � of class number h. Yamamoto [23], Halter-
Koch [5, 6], Williams [22] and others examined a construction of infinite families of real
quadratic fields with large fundamental units (see [22] for the history). We can observe
that these infinite families consist of real quadratic fields with various periods. Mollin [19],
McLaughlin [17], and [12] examined a construction of infinite families of real quadratic
fields with a given even period. However the fundamental unit of them is relatively small.

In [11], on the other hand, it was proved that there exist exactly 51 real quadratic fields
of class number 1 that are not of minimal type (we give the definition later), with one more
possible exception. This was shown by using the fact that if a real quadratic field Q(

√
d) is

not of minimal type then the Yokoi invariant md of d (see Remark 1.4 (2) for the definition)
is ≤ 3 (see [11, Proposition 4.2] and [13, Proposition 4.2]). Hence a real quadratic field
with large fundamental unit is of minimal type. Thus we have to examine a construction
of real quadratic fields with non-fixed period � of minimal type in order to find many real
quadratic fields of class number 1.

Here, let d� be the smallest integer d such that the minimal periods of the simple
continued fraction expansions of ω(d) are equal to a fixed positive integer � where d runs
through square-free positive integers with d ≡ 2, 3 (mod 4). Then the following hold
for each even positive integer � with 8 ≤ � ≤ 73478; i) the class number of Q(

√
d�) is

equal to 1, ii) Q(
√

d�) is of minimal type, iii) the primary symmetric part of the simple
continued fraction expansion of ω(d�) is of ELE type (see Section 6 for more detail). In the
next section, we introduce a notion of “extremely large end (ELE)” for a finite sequence of
positive integers.

From now on, we shall state the definition of “minimal type”. For a symmetric se-
quence of �− 1 positive integers a1, a2, . . . , a�−1, we define nonnegative integers qn, rn by
using an (1 ≤ n ≤ � − 1):

(0.1)

{
q0 = 0, q1 = 1, qn = an−1qn−1 + qn−2 (2 ≤ n ≤ �) ,

r0 = 1, r1 = 0, rn = an−1rn−1 + rn−2 (2 ≤ n ≤ �) .

For brevity, we put
A := q�, B := q�−1, C := r�−1 ,

and define linear polynomials g(x), h(x) and a quadratic polynomial f (x) by

g(x) = Ax − (−1)�BC, h(x) = Bx − (−1)�C2, f (x) = g(x)2 + 4h(x) .

Furthermore, let s0 be the least integer x for which g(x) > 0.
We consider three cases separately:

(I) A ≡ 1 (mod 2), (II) (A,C) ≡ (0, 0) (mod 2), (III) (A,C) ≡ (0, 1) (mod 2) .
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The following theorem was shown in [11, Theorem 3.1] which is an improvement of results
of Friesen [1, Theorem] and of Halter-Koch [7, Theorem 1A, Corollary 1A].

THEOREM 0.1. Let � ≥ 2 be a fixed positive integer and a1, . . . , a�−1 any symmet-
ric sequence of � − 1 positive integers.

When Case (I) or Case (II) occurs, we let s be any integer with s ≥ s0, and put
d := f (s)/4 and a0 := g(s)/2. Here, we choose an even integer s in Case (I), and assume
that

(0.2) g(s) > a1, . . . , a�−1 .

Then, d and a0 are positive integers, d is non-square, a0 = [√d] and the simple continued
fraction expansion of

√
d is

(0.3)
√

d = [a0, a1, . . . , a�−1, 2a0]
with minimal period �. Also, in Case (III), there is no positive integer d such that (0.3) is
the simple continued fraction expansion of

√
d.

When Case (I) or Case (III) occurs, we let s be any integer with s ≥ s0, and put d :=
f (s) and a0 := (g(s) + 1)/2. Here, we choose an odd integer s in Case (I), and assume
that (0.2) holds. Then, d and a0 are positive integers, d is non-square, d ≡ 1 (mod 4),
a0 = [(1 + √

d)/2] and the simple continued fraction expansion of (1 + √
d)/2 is

(0.4)
1 + √

d

2
= [a0, a1, . . . , a�−1, 2a0 − 1]

with minimal period �. Also, in Case (II), there is no positive integer d such that d ≡
1 (mod 4) and (0.4) is the simple continued fraction expansion of (1 + √

d)/2.
Conversely, we let d be any non-square positive integer. By using a quadratic poly-

nomial f (x) and an integer s0 obtained as above from the symmetric part of the simple
continued fraction expansion of

√
d , d can be written uniquely as d = f (s)/4 with some

integer s ≥ s0, and (0.2) holds. If d ≡ 1 (mod 4) in addition then the same thing is true
for (1 + √

d)/2.

DEFINITION 0.1 ([11, Definition 3.1]). Let d be a non-square positive integer. By
Theorem 0.1, d can be written uniquely as d = f (s)/4 with some integer s ≥ s0, where
f (x) and s0 are obtained as above from the symmetric part a1, a2, . . . , a�−1 of the simple
continued fraction expansion of

√
d and � is the minimal period. If s = s0, that is, d =

f (s0)/4 holds, then we say that d is a positive integer with period � of minimal type for (the
simple continued fraction expansion of)

√
d. When d ≡ 1 (mod 4) in addition, d can be

written uniquely as d = f (s) with some integer s ≥ s0, where f (x) and s0 are obtained as
above from the symmetric part a1, a2, . . . , a�−1 of the simple continued fraction expansion
of (1 + √

d)/2 and � is the minimal period. If s = s0, that is, d = f (s0) holds, then we say
that d is a positive integer with period � of minimal type for (the simple continued fraction
expansion of) (1 + √

d)/2.
Furthermore, for a square-free positive integer d > 1, we say that Q(

√
d) is a real

quadratic field with period � of minimal type, if d is a positive integer with period � of
minimal type for

√
d when d ≡ 2, 3 (mod 4), and if d is a positive integer with period � of

minimal type for (1 + √
d)/2 when d ≡ 1 (mod 4).
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In [10], following [11], [12] and [14], we calculated s0, g(s0), h(s0). By using this
result, we construct a real quadratic field Q(

√
d) of minimal type such that the primary

symmetric part of the simple continued fraction expansion of ω(d) is of ELE type.

1. Introduction to sequences of ELE type and main results

In this section, we introduce a notion of “extremely large end” for a finite sequence
of positive integers and describe our main theorems (Theorems 1, 2). Theorem 1 contains
great pioneering works of Golubeva [3, 4] (see Remark 1.2). We let d be a non-square
positive integer and assume that the simple continued fraction expansion of

√
d is√

d = [a0, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2a0]
with minimal even period 2L (≥ 4). Then it is known by a classical result (see Perron [20,
Satz 3.14]) that both

an <
2a0

3
(1 ≤ ∀n ≤ L − 1) ,

and

aL = a0, aL = a0 − 1 or aL ≤ 2a0

3
hold. When the condition

(1.1) aL = a0 or aL = a0 − 1

holds, we see that the value of aL is relatively larger than that of the former partial quotients
an (1 ≤ n ≤ L − 1). We will give new conditions which are equivalent to the condition
(1.1). For this, we consider the conditions

(1.2) “aL ≥ 2 and μ = aL” or “aL ≥ 4 and μ = aL + 2” .

Here we define an integer μ ≥ 0 as follows by using the results of [10]. From the primary
symmetric part a1, . . . , aL, we calculate nonnegative integers qn, rn (1 ≤ n ≤ L + 1) by
using (0.1), and define integers u1, u2, w, v1, v2, z, δ by

(r2
L − (−1)L)(rL+1 + rL−1) = qLv1 + u1 (0 ≤ u1 < qL),(1.3)

(−1)L(rL − qL−1)rL = qLz + w (0 ≤ w < qL),(1.4)

(−1)L(qL − rL+1) + z = qLv2 + u2 (0 ≤ u2 < qL) ,(1.5)

δ =
{

0 if u1 ≤ u2 ,

1 if u1 > u2 .

We put

γ := qL(δqL + u2 − u1) + w,(1.6)

μ := 1

qL

{γ (qL+1 + qL−1) + 2(qL−1 − rL)}(1.7)
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which is the first term of the right hand-side of (2.16) in Section 2. We determine quadratic
irrationals ωn (0 ≤ n ≤ 2L) such that

ω0 := √
d , ωn = an + 1

ωn+1
, an = [ωn] ,

where an = an−L (L + 1 ≤ n ≤ 2L − 1) and a2L = 2a0. Then we can write uniquely
ωn = (Pn + √

d)/Qn with some positive integers Pn, Qn for each n ≥ 1 (cf. [11, Section
2]).

THEOREM 1. Under the above setting, assume that L ≥ 3 and d �= 19. Then the
following four conditions are equivalent:

(i) d is of minimal type for
√

d and the condition (1.2) holds;
(ii) d is of minimal type for

√
d , and either

rL = 2qL−1, aL ≡ (−1)L−1qL−1rL−1 (mod qL) and aL ≥ 2

or

rL = 2qL−1 − qL, aL ≡ (−1)L−1qL−1(qL−1 + rL−1) (mod qL) and aL ≥ 4

holds;
(iii) QL = 2;
(iv) aL = a0 or aL = a0 − 1.

In particular, Theorem 1 leads to the following corollary which gives a family of real
quadratic fields of minimal type.

COROLLARY 1. Let p be a prime number with p ≡ 3 (mod 4). Then if the minimal
period of the simple continued fraction expansion of

√
p is less than or equal to 4, then

Q(
√

p) is not of minimal type. On the other hand, if it is greater than or equal to 6 then
Q(

√
p) is of minimal type.

REMARK 1.1. Let d = 19. Then,
√

d = [4, 2, 1, 3, 1, 2, 8], L = 3, aL = a0 − 1 =
3, QL = 2, and we have the following table:

n 0 1 2 3 4
qn 0 1 2 3 11
rn 1 0 1 1 4

We easily see that u1 = 1, v1 = 3; w = 1, z = 0; u2 = 1, v2 = 0; δ = 0, γ = 1,
μ = aL + 2 = 5; rL = 2qL−1 − qL = 1, and aL ≡ (−1)L−1qL−1(qL−1 + rL−1) (mod qL).
Moreover d = 19 is of minimal type for

√
d because of s = s0 = 2. Thus all conditions of

Theorem 1 hold with one exception “aL ≥ 4”.

REMARK 1.2. Golubeva proved that (iii) yields the equation and the congruence
in (ii) when d is a prime number congruent to 3 modulo 4 ([4, Theorem 1]). However
her ingenious proof also works for any non-square positive integer d as in Theorem 1 (cf.
Section 4.4). The implication (iii) ⇒ (iv) is shown in the proof of [20, Satz 3.14] or [4,
p.1279].

Now we see by Theorem 1 that the condition (1.2) is a necessary condition for the
condition (1.1) under some conditions. So we define the following notion.
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DEFINITION 1.1. Let L ≥ 2 and let a1, a2, . . . , aL be a sequence of positive inte-
gers. If the above condition (1.2) holds, we say that a1, a2, . . . , aL is a sequence with ex-
tremely large end (we also write that a1, a2, . . . , aL is of ELE type).Specially a1, a2, . . . , aL

is said to be of ELE1 type (resp. ELE2 type) if aL ≥ 2 and μ = aL (resp. aL ≥ 4 and
μ = aL + 2) hold.

REMARK 1.3. We consider a sequence a1, a2. Using the calculation results in [10,
Example 1], we have

μ =
{

0 if a1 | a2,

(a1 − r)(a1a2 + 2) if a1 � a2,

where r is the remainder of the division of a2 by a1. We see that if a1 | a2,

μ = 0 < a2 < a2 + 2

and if a1 � a2,
μ = (a1 − r)(a1a2 + 2) ≥ a1a2 + 2 > a2 + 2 > a2

because of a1 > 1. Hence we obtain μ �= a2 and μ �= a2 + 2. Therefore, there is no
sequence of ELE type with length 2.

Theorem 2 (2) stated below gives a way of constructing every positive integer d satis-
fying the condition (i) of Theorem 1, namely, a positive integer d of minimal type such that
the primary symmetric part of the simple continued fraction expansion of

√
d with even

period is of ELE type (see the proof of the implication (i) ⇒ (iv) in Section 4.2).

THEOREM 2. Assume that a sequence a1, a2, . . . , aL (L ≥ 3) is of ELE type. In
addition, we assume

2aL > a1, a2, . . . , aL−1(1.8)

(resp. 2aL + 2 > a1, a2, . . . , aL−1),(1.9)

and put ε := 0 (resp. ε := 1) if a1, a2, . . . , aL is of ELE1 type (resp. ELE2 type).
(1) There does not exist a positive integer d, d ≡ 1 (mod 4), with period 2L of

minimal type for (1+√
d)/2 whose simple continued fraction expansion has the symmetric

part a1, . . . , aL−1, aL, aL−1, . . . , a1.
(2) Put a0 := g(s0)/2, d := f (s0)/4. Then a0 and d are positive integers with

a0 = aL + ε and d = (aL + ε)2 + 2rL+1 + εrL

qL

≡
{

2 (mod 4) if aL is even,

3 (mod 4) if aL is odd.

Furthermore, the simple continued fraction expansion of
√

d is√
d = [aL + ε, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2aL + 2ε]

and d is a positive integer with period 2L of minimal type for
√

d .
(3) Let d be as in (2). Then we have

(1.10) (−1)nQn = −2rL+1 + εrL

qL

q2
n + 2(aL + ε)qnrn + r2

n (1 ≤ n ≤ 2L − 1) .
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In particular, we have

QL = 2 ,

QL−1 = 1

2

(
2rL+1 + εrL

qL

+ ε(2aL + 1)

)
,

Q1 = 2rL+1 + εrL

qL

.

Moreover, let md be the Yokoi invariant of d defined below. Then we have md = 2q2
L if L

is even, and md = 2q2
L − 1 if L is odd.

REMARK 1.4. (1) The values of Qn are related to the class number one problem
(cf. Louboutin [16]). They will be studied on another occasion.

(2) Let d be a non-square positive integer with d ≡ 2, 3 (mod 4). We let d = d1d
2
2 be

a factorization of d into positive integers with d1 square-free, and consider a real quadratic
field K = Q(

√
d1). Let Od2 be the order of conductor d2 in K , that is, the subring of

the ring OK of integers in K , containing 1, with finite index (OK : Od2) = d2. By [13,
Lemma 2.3], the discriminant of Od2 is 4d . Thus we consider the real quadratic order of
discriminant 4d (cf. [13, Remark 2.4]). We denote by Ed > 1 the fundamental unit of
Od2 . Then we can write uniquely Ed = (T + U

√
d)/2 with positive integers T ,U . We

define an integer md (≥ 0) by md = [U2/T ] and call it the Yokoi invariant of d ([13,
Definition 2.1]). By a theorem of Yokoi ([13, Theorem 2.1 [B]]) for a non-square positive
integer, it holds that mdd < Ed < (md + 1)d if d > 13. Thus the quantity md gives a size
of the fundamental unit Ed for d . The value of md gives a rough size of Ed instead of the
regulator log Ed .

This paper is organized as follows. After preparations in Section 2, we prove Theo-
rem 2 in Section 3. By using Theorem 2, we prove Theorem 1 in Section 4. In Section 5,
we prove Corollary 1. In Section 6, we state motives which came to consider the notion of
“ELE”, and then give numerical examples.

In [9], we will examine a construction of sequences of ELE type.

2. Preparations

We let d be a non-square positive integer and assume that the simple continued fraction
expansion of

√
d is

√
d = [a0, a1, . . . , a�−1, 2a0] with minimal period � (≥ 2). In order to

prove our theorems, we collect the facts on the simple continued fraction expansions with
even period. For basic properties of continued fractions, we refer the reader to an excellent
book of Halter-Koch [8]. From the symmetric part a1, . . . , a�−1, we define nonnegative
integers qn, rn by (0.1) and define positive integers pn by a recurrence equation:

(2.1) p0 = 1, p1 = a0, pn = an−1pn−1 + pn−2 (2 ≤ n ≤ �) .

Then the following hold (not necessary the condition “� even”).

LEMMA 2.1. Let the notation be as above. For 0 ≤ n ≤ � − 1, the following hold:
qn+1rn − qnrn+1 = (−1)n,(2.2)
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pn = a0qn + rn,(2.3)

Pn+1 = P�−n, Qn = Q�−n,(2.4)

Pn+1 + Pn = anQn,(2.5)

d = P 2
n+1 + QnQn+1,(2.6)

0 < Pn+1 ≤ a0 <
√

d, 0 < Qn+1 < 2
√

d,(2.7)

Qn > 1 (n �= 0),(2.8)

p2
n − dq2

n = (−1)nQn.(2.9)

Proof. For (2.2), see for example [12, (2.3)]; For (2.3), see [12, (2.4)]; For (2.4), see
[12, (3.7)]; For (2.5), see [12, (2.16)]; For (2.6), see [12, (2.18)]; For (2.7), see [11, p.871];
For (2.8), see [11, Lemma 2.2]; For (2.9), see [12, Lemma 2.7]. �

From now on, we suppose that � is even. We write � = 2L with some integer L and
define Q and R by

Q := qL+1 + qL−1(= aLqL + 2qL−1) ,

R := rL+1 + rL−1(= aLrL + 2rL−1) ,

respectively, for convenience.

LEMMA 2.2. Let the notation be as above. Then we have

A = q� = QqL ,(2.10)

B = q�−1 = QrL − (−1)L ,(2.11)

C = r�−1 = RrL ,(2.12)

p� = pLqL+1 + pL−1qL ,(2.13)

pL = QLQ

2
,(2.14)

QrL − qLR = (−1)L2 ,(2.15)

g(s0) = 1

qL

{γQ + 2(qL−1 − rL)} + aL ,(2.16)

qLs0 = rLC − (−1)LrL−1 + (δqL + u2 − u1 − z) .(2.17)

Proof. For (2.10), (2.11) and (2.12), see [12, Lemma 2.2 (i)]; For (2.13), see [12,
(2.12)]; For (2.14), see [12, (3.5)]; For (2.15), see [10, (2.14)]; For (2.16), see [10, (2.6)];
For (2.17), see [10, (2.19)]. �
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3. Proof of Theorem 2

In this section, we will prove Theorem 2 which gives positive integers d of minimal
type for

√
d such that the primary symmetric parts of the simple continued fraction expan-

sions of
√

d are of ELE type. For this, we first analyze the value of μ defined by (1.7):

μ := 1

qL

{γ (qL+1 + qL−1) + 2(qL−1 − rL)} ,

where γ is as in (1.6).

PROPOSITION 3.1. Let L ≥ 2. For a sequence a1, a2, . . . , aL, the following hold.
(1) Assume u1 = u2 and w = 1. Then we have

μ = aL ⇐⇒ rL = 2qL−1 ,

μ = aL + 2 ⇐⇒ rL = 2qL−1 − qL .

(2) If qL > 1, aL ≥ 2 and μ = aL, then rL = 2qL−1, u1 = u2, w = 1, 2 � qL,
qL | rL+1 and z = (−1)LrL−1.

(3) If qL > 1, aL ≥ 4 and μ = aL + 2, then rL = 2qL−1 − qL, u1 = u2, w = 1,
2 � qL, qL | (2rL+1 + rL) and z = (−1)L(rL−1 − rL).

Before proving this, we will show the following lemma.

LEMMA 3.1. (1) If rL ≡2qL−1 (mod qL), then u1 ≡ (−1)L(rL+1+rL−1) (mod qL).
(2) If rL = 2qL−1, then w = 1 and z = (−1)LrL−1. If rL = 2qL−1 − qL, then w = 1

and z = (−1)L(rL−1 − rL).
(3) We have u2 ≡ (−1)L−1rL+1 + z (mod qL).

Proof. First we remark that the relation

(3.1) qLrL−1 − qL−1rL = (−1)L−1

holds by (2.2), which yields the congruence

(3.2) qL−1rL ≡ (−1)L (mod qL) .

(1) We assume rL ≡ 2qL−1 (mod qL). Then by (3.2), we have

qL−1r
2
L ≡ (−1)L2qL−1 (mod qL) .

Since gcd(qL, qL−1) = 1, we get r2
L ≡ (−1)L2 (mod qL). From this together with (1.3),

we have

u1 ≡ (r2
L − (−1)L)(rL+1 + rL−1) ≡ (−1)L(rL+1 + rL−1) (mod qL) .

(2) If rL = 2qL−1, then by (3.1) we have

(−1)L(rL−qL−1)rL = (−1)LqL−1rL = (−1)L(qLrL−1−(−1)L−1) = (−1)LrL−1·qL+1 .

Hence we get w = 1 and z = (−1)LrL−1 by (1.4).
If rL = 2qL−1 − qL, then by (3.1) we have

(−1)L(rL − qL−1)rL = (−1)L(qL−1 − qL)rL = (−1)L(rL−1 − rL) · qL + 1 .

Hence we get w = 1 and z = (−1)L(rL−1 − rL) by (1.4).
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(3) This congruence is given by (1.5) immediately. �
Proof of Proposition 3.1. Since aLqL = qL+1 − qL−1, it follows from (1.7) that we

have

(3.3) μ − aL = 1

qL

{(qL+1 + qL−1)(γ − 1) + 2(2qL−1 − rL)}
and

(3.4) μ − aL − 2 = 1

qL

{(qL+1 + qL−1)(γ − 1) + 2(2qL−1 − qL − rL)} .

Here we recall (1.6):

γ =
{

qL(u2 − u1) + w if u1 ≤ u2 ,

qL(qL + u2 − u1) + w if u1 > u2 .

In the case u1 = u2, we easily see γ = w. In the case u1 �= u2 and qL > 1, we have

γ ≥ qL + w > 1,

because of −qL < u2 − u1 . Thus we have

γ = 1 ⇐⇒ u1 = u2, w = 1

under the condition qL > 1.
(1) Assume u1 = u2 and w = 1. Then we have γ = 1. Hence by (3.3) and (3.4), we

have

μ − aL = 2

qL

(2qL−1 − rL)

and

μ − aL − 2 = 2

qL

(2qL−1 − qL − rL) ,

respectively. Thus we obtain

μ = aL ⇐⇒ rL = 2qL−1 ,

μ = aL + 2 ⇐⇒ rL = 2qL−1 − qL .

(2) Assume qL > 1, aL ≥ 2 and μ = aL. Since aL ≥ 2 and L ≥ 2, we have

qL+1 + qL−1 − 2(2qL−1 − rL) = aLqL − 2qL−1 + 2rL ≥ 2(qL − qL−1 + rL) > 0 ,

(3.5)

qL+1 + qL−1 + 2(2qL−1 − rL) = aLqL − 2rL + 6qL−1 ≥ 2(qL − rL + 3qL−1) > 0 .

(3.6)

Suppose that u1 �= u2. Since qL > 1, we have γ > 1. Then by (3.3) and (3.6) we
get μ > aL, which contradicts the assumption μ = aL. Hence we have u1 = u2. Then
we have γ = w. If w ≥ 2, then we also have γ > 1 and hence μ > aL. If w = 0, then
by (3.3) and (3.5) we have μ < aL. Therefore, it must hold that w = 1. Then by (1) of
this proposition, we have rL = 2qL−1. Hence by Lemma 3.1 (2), we have z = (−1)LrL−1.
From this together with Lemma 3.1 (3), we have

u2 ≡ (−1)L−1rL+1 + z = (−1)L(−rL+1 + rL−1) (mod qL) .
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On the other hand, by Lemma 3.1 (1), we have

u1 ≡ (−1)L(rL+1 + rL−1) (mod qL) .

Then by u1 = u2, we obtain 2rL+1 ≡ 0 (mod qL). Since rL is even and qLrL−1−qL−1rL =
(−1)L−1, qL is odd. This implies to qL | rL+1.

(3) Assume qL > 1, aL ≥ 4 and μ = aL + 2. Since aL ≥ 4 and L ≥ 2, we have

qL+1+qL−1−2(2qL−1−qL−rL)=(aL + 2)qL−2qL−1 + 2rL ≥ 2(qL − qL−1+rL)>0 ,

(3.7)

qL+1+qL−1+2(2qL−1−qL − rL)=(aL − 2)qL−2rL+6qL−1 ≥2(qL−rL + 3qL−1)>0 .

(3.8)

Suppose that u1 �= u2. Since qL > 1, we have γ > 1. Then by (3.4) and (3.8) we get
μ > aL + 2, which contradicts the assumption μ = aL + 2. Hence we have u1 = u2. Then
we have γ = w. If w ≥ 2, then we also have γ > 1 and hence μ > aL + 2. If w = 0,
then by (3.4) and (3.7) we have μ < aL + 2. Therefore, it must hold that w = 1. Then
by (1) of this proposition, we have rL = 2qL−1 − qL. Hence by Lemma 3.1 (2), we have
z = (−1)L(rL−1 − rL). From this together with Lemma 3.1 (3), we have

u2 ≡ (−1)L−1rL+1 + z = (−1)L(−rL+1 + rL−1 − rL) (mod qL) .

On the other hand, by Lemma 3.1 (1), we have

u1 ≡ (−1)L(rL+1 + rL−1) (mod qL) .

Then by u1 = u2, we obtain 2rL+1 + rL ≡ 0 (mod qL). Finally, since

(−1)L−1 = qLrL−1−qL−1rL = qLrL−1−qL−1(2qL−1−qL) = qL(rL−1+qL−1)−2q2
L−1,

we see that qL is odd. The proof is completed. �
From now on, we assume L ≥ 3, because there is no sequence of ELE type with

length 2, as we have seen in Remark 1.3.

PROPOSITION 3.2. Under the above setting, we assume that u1 = u2. Then the
following hold:

s0 = 1

q2
L

{qLr2
L(rL+1 + rL−1) − (−1)Lr2

L + w + 1} ,(3.9)

f (s0) = w + 1

q2
L

{(w + 1)(qL+1 + qL−1)
2 − (−1)L4} .(3.10)

Proof. We recall Q = qL+1 + qL−1, R = rL+1 + rL−1. By the assumption u1 = u2,
we have δ = 0. Then by (2.17), (2.12), (1.4) and (3.1), we have

q2
Ls0 = qL(rLC − (−1)LrL−1 − z)

= qLr2
LR − (−1)LqLrL−1 − {(−1)L(rL − qL−1)rL − w}

= qLr2
LR − (−1)L(qLrL−1 + r2

L − qL−1rL) + w

= qLr2
LR − (−1)L(r2

L + (−1)L−1) + w

= qLr2
LR − (−1)Lr2

L + 1 + w .
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This gives (3.9).
By [10, Proposition], we have f (x) = f1(x)f2(x), where

f1(x) := q2
Lx − r2

L(qLR − (−1)L) ,

f2(x) := Q2x − R2(QrL + (−1)L) .

It follows from (3.9) and (2.15) that

f1(s0) = qLr2
LR − (−1)Lr2

L + w + 1 − r2
L(qLR − (−1)L)

= w + 1 ,

f2(s0) = Q2 · 1

q2
L

(qLr2
LR − (−1)Lr2

L + w + 1) − R2(QrL + (−1)L)

= 1

q2
L

{qLQ2r2
LR − (−1)LQ2r2

L + (w + 1)Q2 − q2
LQrLR2 − (−1)Lq2

LR2}

= 1

q2
L

{(w + 1)Q2 + qLQrLR(QrL − qLR) − (−1)L(Q2r2
L + q2

LR2)}

= 1

q2
L

{(w + 1)Q2 + qLQrLR · 2(−1)L − (−1)L(Q2r2
L + q2

LR2)}

= 1

q2
L

{(w + 1)Q2 − (−1)L(QrL − qLR)2}

= 1

q2
L

{(w + 1)Q2 − (−1)L4} .

Therefore we obtain (3.10). �
Proof of Theorem 2. It follows from L ≥ 3 that qL > 1. Moreover we have aL ≥ 2

(resp. aL ≥ 4) by the definition of ELE type if a1, a2, . . . , aL is of ELE1 type (resp. ELE2
type). Then by Proposition 3.1 (2), (3), we have

rL = 2qL−1 − εqL, u1 = u2, w = 1 2 � qL, qL | (2rL+1 + εrL) .

(1) When aL is even, we see from [12, Lemma 2.2 (ii)] that Case (II) occurs for
a1, . . . , aL. When aL is odd, since qL is also odd, we see from [12, Lemma 2.2 (iii)] that
Case (I) occurs for a1, . . . , aL. Furthermore, since u1 = u2, w = 1, it follows from (3.9)
that

s0 = 1

q2
L

{qLr2
L(rL+1 + rL−1) − (−1)Lr2

L + 2} .

Since qL is odd, we have

s0 ≡ rL(rL+1 + rL−1) + rL = rL(aLrL + 2rL−1) + rL ≡ aLrL + rL (mod 2) .

Thus s0 is even if aL is odd. Therefore only “Case (I) and s0 even” or Case (II) occurs for
a1, . . . , aL with our assumptions. By Theorem 0.1, therefore, there is no positive integer d ,
d ≡ 1 (mod 4), with period 2L of minimal type for (1+√

d)/2 so that the primary symmet-
ric part of the simple continued fraction expansion of (1 + √

d)/2 is such a1, a2, . . . , aL.
(2) We recall

μ = aL + 2ε
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by the definition of ELE type. By (2.16), it holds that g(s0) = μ + aL. Then we get

(3.11) g(s0) = 2aL + 2ε ,

and hence, we have

(3.12) a0 = g(s0)

2
= aL + ε ∈ Z .

It follows from w = 1, 2 � qL, f (s0) ∈ Z and (3.10) that f (s0) is divisible by 4, that is,

d = f (s0)

4
∈ Z .

(This also follows from the assertion (1) and Theorem 0.1.) By w = 1 and (3.10), we have

(3.13) d = f (s0)

4
= 1

q2
L

{(qL+1 + qL−1)
2 − (−1)L2} .

Since qL is odd, we have

d ≡ (qL+1 + qL−1)
2 − (−1)L2 = (aLqL + 2qL−1)

2 − (−1)L2

≡ a2
L + 2 ≡

{
2 (mod 4) if aL is even,

3 (mod 4) if aL is odd.

Now by recalling Q = qL+1 + qL−1, we have

(3.14) aLqL + εqL = (qL+1 − qL−1) + (2qL−1 − rL) = Q − rL ,

and hence

q2
L(aL + ε)2 + qL(2rL+1 + εrL) = (aLqL + εqL)2 + 2qLrL+1 + εqLrL

= (Q − rL)2 + 2qLrL+1 + (2qL−1 − rL)rL

= Q2 − 2QrL + 2qLrL+1 + 2qL−1rL

= Q2 − 2qL+1rL + 2qLrL+1

= Q2 − 2(qL+1rL − qLrL+1)

= Q2 − (−1)L2 .

From this together with (3.13), we have

d = (aL + ε)2 + 2rL+1 + εrL

qL

.

Now we see from (3.11) that the assumption (0.2) of Theorem 0.1 holds:

g(s0) = 2aL + 2ε > a1, . . . , aL−1, aL .

By Theorem 0.1, therefore, we get the desired simple continued fraction expansion of
√

d.
(3) For brevity, we put � := 2L. From the above integer a0 = aL+ε and the symmetric

sequence of � − 1 positive integers a1, . . . , aL−1, aL, aL−1, . . . , a1, we define nonnegative
integers qn, rn, pn (0 ≤ n ≤ �) by using the recurrence equations (0.1) and (2.1).

Let 1 ≤ n ≤ 2L − 1. By (2.9) and (2.3), we have

(−1)nQn = p2
n − dq2

n = (a2
0 − d)q2

n + 2a0qnrn + r2
n
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and hence by (2) of this theorem, we obtain (1.10).
Substituting n = L into (1.10) and using εqL = 2qL−1 − rL and (3.1), we have

(−1)LQL = −2qLrL+1 − εqLrL + 2(aLrL)qL + 2εqLrL + r2
L

= −2qLrL+1 + εqLrL + 2(rL+1 − rL−1)qL + r2
L

= (εqL)rL − 2qLrL−1 + r2
L

= (2qL−1 − rL)rL − 2qLrL−1 + r2
L

= 2(qL−1rL − qLrL−1)

= −(−1)L−12 .

Therefore, we get QL = 2. Similarly, QL−1 and Q1 can be calculated.
Next we consider the Yokoi invariant. Since d ≡ 2, 3 (mod 4), it follows from [13,

Proposition 3.3] that the Yokoi invariant md of d is

md =
[

2q�
2

p�

]
.

Now by using (2.3), (3.12) and rL = 2qL−1 − εqL, we have

pL =a0qL + rL =(aL + ε)qL + 2qL−1 − εqL = aLqL + 2qL−1 = qL+1 + qL−1 = Q,

pL−1 = a0qL−1 + rL−1 = (aL + ε)qL−1 + rL−1 .

By substituting them into (2.13) and by using (3.14) and (3.1), we have

p� = QqL+1 + {(aL + ε)qL−1 + rL−1}qL

= QqL+1 + (Q − rL)qL−1 + qLrL−1

= Q(qL+1 + qL−1) + qLrL−1 − qL−1rL

= Q2 − (−1)L .

From this together with (2.10), we have

2q�
2

p�

= 2Q2q2
L

p�

= 2(p� + (−1)L)q2
L

p�

= 2q2
L + (−1)L2q2

L

p�

.

Here, we note that aL ≥ 2. Then we have qL+1 = aLqL + qL−1 > 2qL, and hence
p� > 2q2

L. Then we get inequalities

0 <
2q2

L

p�

< 1 and 0 < 1 − 2q2
L

p�

< 1 .

Therefore, we obtain

md =
[

2q�
2

p�

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
2q2

L + 2q2
L

p�

]
= 2q2

L if L is even,

[
2q2

L − 1 +
(

1 − 2q2
L

p�

)]
= 2q2

L − 1 if L is odd.

Theorem 2 is now proved. �
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4. Proof of Theorem 1

As we have stated in Remark 1.2, the implication (iii) ⇒ (iv) was shown. In this
section, we will prove (iv) ⇒ (iii), (i) ⇒ (iv), (i) ⇔ (ii), and (iii) ⇒ (ii).

4.1. Proof of the implication (iv) ⇒ (iii)
Proof of the implication (iv) ⇒ (iii). We easily see that if the simple continued frac-

tion expansions of
√

d with even period 2L satisfies a0 ≤ 3, that is, d ≤ 15, then L ≤ 2.
Hence, when L ≥ 3, we have a0 ≥ 4. Assume that aL = a0, or aL = a0 − 1. Then,
aL ≥ a0 − 1. Now it follows from (2.4) that PL+1 = PL. Then by (2.5) we have

(4.1) 2PL = aLQL.

From this together with (2.7) and a0 ≥ 4, we have

QL = 2PL

aL

≤ 2a0

aL

≤ 2a0

a0 − 1
= 2 + 2

a0 − 1
< 3 .

On the other hand, we have QL > 1 from (2.8). Therefore, QL = 2. The proof is
completed. �
4.2. Proof of the implication (i) ⇒ (iv)

Proof of the implication (i) ⇒ (iv). Let d be a non-square positive integer such that
the simple continued fraction expansion of

√
d is

√
d = [a0, a1, . . . , aL−1,

aL, aL−1, . . . , a1, 2a0] with even period 2L (≥ 6). Assume that d is of minimal type for√
d and the primary symmetric part a1, . . . , aL is of ELE type. Then, since the inequality

(0.2) holds by Theorem 0.1, the inequality (1.8) or (1.9) of Theorem 2 holds, because these
conditions are equivalent to each other as we have seen in the proof of Theorem 2. There-
fore we see that d is obtained as in Theorem 2 (2). Hence the assertion (iv) follows. (When
(i) holds, the assertion (iii) also follows from Theorem 2 (3).) �
4.3. Proof of the equivalence (i) ⇔ (ii)

The equivalence (i) ⇔ (ii) follows from Proposition 4.1.

PROPOSITION 4.1. Let L ≥ 3. Then it is a sufficient and necessary condition for a
sequence a1, a2, . . . , aL to be of ELE1 type (resp. ELE2 type) that three conditions

rL = 2qL−1, aL ≡ (−1)L−1qL−1rL−1 (mod qL) and aL ≥ 2(4.2)

(resp. rL = 2qL−1 − qL, aL ≡ (−1)L−1qL−1(qL−1 + rL−1) (mod qL) and aL ≥ 4)

(4.3)

hold.

Proof. It follows from L ≥ 3 that qL > 1. Suppose that (4.2) (resp. (4.3)) holds. Then
by Lemma 3.1 (2), we have w = 1 and z = (−1)LrL−1 (resp. z = (−1)L(rL−1 − rL) ≡
(−1)L(rL−1 − 2qL−1) (mod qL)), and by (3.2), we have

aLrL ≡ (−1)L−1qL−1rLrL−1 ≡ −rL−1 (mod qL)

(resp. aLrL ≡ (−1)L−1qL−1rL(qL−1 + rL−1) ≡ −qL−1 − rL−1 (mod qL)) .
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Then by rL+1 = aLrL + rL−1 and Lemma 3.1 (1), (3), we have

u1 ≡ (−1)L(aLrL + 2rL−1) ≡ (−1)LrL−1 (mod qL) ,

u2 ≡ (−1)L−1(aLrL + rL−1) + z ≡ z = (−1)LrL−1 (mod qL)

(resp. u1 ≡(−1)L(aLrL + 2rL−1) ≡ (−1)L(−qL−1 + rL−1) (mod qL) ,

u2 ≡(−1)L−1(aLrL+rL−1)+z≡(−1)LqL−1+z≡(−1)L(−qL−1+rL−1) (mod qL)) .

Then we have u1 ≡ u2 (mod qL) and so u1 = u2. Hence by u1 = u2, w = 1, rL = 2qL−1
(resp. rL = 2qL−1 − qL) and Proposition 3.1 (1), we have μ = aL (resp. μ = aL + 2), that
is, a1, a2, . . . , aL is of ELE1 type (resp. ELE2 type).

Conversely, we assume that a1, a2, . . . , aL is of ELE1 type (resp. ELE2 type) and put
ε := 0 (resp. ε := 1). Then by Proposition 3.1 (2), (3) , we have rL = 2qL−1 − εqL.
Moreover, u1 = u2, 2 � qL and z = (−1)L(rL−1 − εrL) hold. It follows from z =
(−1)L(rL−1 − εrL) and Lemma 3.1 (3) that

u2 ≡ (−1)L−1rL+1 + (−1)L(rL−1 − εrL) = (−1)L(−rL+1 + rL−1 − εrL) (mod qL) .

Then by Lemma 3.1 (1) and u1 = u2, we have 2rL+1 ≡ −εrL (mod qL). Since rL =
2qL−1−εqL and 2 � qL, we have rL+1 ≡ −εqL−1 (mod qL). Then by rL+1 = aLrL+rL−1,
we have aLrL ≡ −εqL−1 − rL−1 (mod qL). By (3.2), therefore, we obtain

aL ≡ (−1)LaLqL−1rL ≡ (−1)L−1qL−1(εqL−1 + rL−1) (mod qL)

as desired. The inequality aL ≥ 2 (resp. aL ≥ 4) follows from the definition of ELE type.
�

4.4. Proof of the implication (iii) ⇒ (ii)
The argument of this subsection depends heavily on that of the proof of Golubeva [4,

Theorem 1], in which Golubeva [3, Theorem 1] is utilized. Since we can prove that Theo-
rem 0.1 leads to [3, Theorem 1], we use Theorem 0.1 in behalf of [3, Theorem 1].

Let d be a non-square positive integer such that the simple continued fraction expan-
sion of

√
d is

√
d = [a0, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2a0] with even period 2L (≥ 4).

Then it follows from Theorem 0.1 that Case (I) or Case (II) occurs for this symmetric part
and d can be written uniquely as d = f (s)/4 and a0 = g(s)/2 with some integer s ≥ s0.
Furthermore, when Case (I) occurs, s must be even.

LEMMA 4.1 (cf. [3, Theorem 1, Lemma 4]). Under the above setting, we have the
following relations:

(1) QL = q2
Ls − qLRr2

L + (−1)Lr2
L.

(2) QLqL+1qL−1 − QL−1q
2
L = (−1)L.

Proof. By (2.9), we have

(4.4) p2
L − dq2

L = (−1)LQL.

(1) It follows from (2.3) that

(4.5) pL = a0qL + rL = g(s)

2
· qL + rL .
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Moreover we see from the definition of f (x) that

(4.6) d = f (s)

4
= g(s)2

4
+ h(s) .

Substituting (4.5) and (4.6) into (4.4), we get

(g(s)rL − h(s)qL)qL + r2
L = (−1)LQL .

By using (2.10), (2.11), (2.12) and (2.15), it follows from the definition of g(x), h(x) that

g(s)rL − h(s)qL = (As − BC)rL − (Bs − C2)qL

= (ArL − BqL)s − (BrL − CqL)C

= (QqLrL − QqLrL + (−1)LqL)s − (Qr2
L − (−1)LrL − RqLrL)RrL

= (−1)LqLs − ((QrL − qLR)rL − (−1)LrL)RrL

= (−1)LqLs − ((−1)L · 2rL − (−1)LrL)RrL

= (−1)LqLs − (−1)LRr2
L .

Hence we obtain

(−1)Lq2
Ls − (−1)LqLRr2

L + r2
L = (−1)LQL ,

which gives the desired equation.
(2) By (2.6) and (4.1), we have

(4.7) d = P 2
L + QL−1QL =

(
aLQL

2

)2

+ QL−1QL .

Substituting (2.14) and (4.7) into (4.4), we get

QL(Q2 − a2
Lq2

L) − 4QL−1q
2
L = (−1)L4 .

Since

Q2 − a2
Lq2

L = (aLqL + 2qL−1)
2 − a2

Lq2
L = 4(aLqL + qL−1)qL−1 = 4qL+1qL−1,

we obtain QLqL+1qL−1 − QL−1q
2
L = (−1)L. The lemma is proved. �

PROPOSITION 4.2 ([4, pp.1279–1280]). Under the above setting, assume that QL=
2. Then 2 � qL and either rL = 2qL−1 or rL = 2qL−1 − qL hold. Furthermore we have the
following.

(1) If rL = 2qL−1, then aL ≡ (−1)L−1qL−1rL−1 (mod qL).
(2) If rL = 2qL−1 − qL, then aL ≡ (−1)L−1qL−1(qL−1 + rL−1) (mod qL).

Proof. Put α := (−1)L−1(qLs − Rr2
L). Then by the assumption and Lemma 4.1 (1),

we have
2 = QL = q2

Ls − qLRr2
L + (−1)Lr2

L = (−1)L−1(qLα − r2
L) ,

and hence

(4.8) qLα − r2
L = (−1)L−12 .

Here we assume 2 | qL. Then by (4.8), rL is even. This is a contradiction to gcd(qL, rL) =
1. Hence we have 2 � qL.



148 F. KAWAMOTO, Y. KISHI and K. TOMITA

Now it follows from (3.1) that

(4.9) qL · 2rL−1 − rL · 2qL−1 = (−1)L−12 .

Two equations (4.8) and (4.9) yield that

(4.10) qL(α − 2rL−1) = rL(rL − 2qL−1) .

Since gcd(qL, rL) = 1, there is some integer ε such that

(4.11) rL − 2qL−1 = −εqL .

First we assume ε ≤ −1. Then (4.11) implies that

rL = 2qL−1 − εqL ≥ 2qL−1 + qL > qL

because of qL−1 > 0 when L ≥ 2. This contradicts that rL ≤ qL. Next we assume ε ≥ 2.
Then (4.11) implies that

rL = 2qL−1 − εqL ≤ 2qL−1 − 2qL .

Since it follows from L ≥ 2 that 0 < rL, we have qL < qL−1 and this is a contradiction.
Thus we have ε = 0 or 1, so, rL = 2qL−1 or rL = 2qL−1 − qL holds.

(1) Assume that rL = 2qL−1. Then by the assumption and (3.1), we have

QLqL+1qL−1 = 2qL+1qL−1 = qL+1rL

= aLqLrL + qL−1rL = aLqLrL + qLrL−1 + (−1)L .

Substituting this into the equation in Lemma 4.1 (2), we get

aLrL − QL−1qL = −rL−1

and hence
rL((−1)L−1aL) − qL((−1)L−1QL−1) = (−1)LrL−1 .

On the other hand, by (3.1), we have

rL(qL−1rL−1) − qL(r2
L−1) = (−1)LrL−1 .

These two equations yield that

rL((−1)L−1aL − qL−1rL−1) = qL((−1)L−1QL−1 − r2
L−1) .

Since gcd(qL, rL) = 1, we obtain aL ≡ (−1)L−1qL−1rL−1 (mod qL).
(2) Assume that rL = 2qL−1 − qL. Then by the assumption and (3.1), we have

QLqL+1qL−1 = 2qL+1qL−1 = qL+1(qL + rL)

= qL+1qL + qL+1rL = qL+1qL + qLrL+1 + (−1)L .

Substituting this into the equation in Lemma 4.1 (2), we get

qL+1 + rL+1 − QL−1qL = 0 .

Note that qL+1 = aLqL + qL−1 and rL+1 = aLrL + rL−1 = 2aLqL−1 − aLqL + rL−1.
Then we have

(2aL + 1)qL−1 − QL−1qL = −rL−1

and hence

qL−1{(−1)L−1(2aL + 1)} − qL((−1)L−1QL−1) = (−1)LrL−1 .
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On the other hand, by (3.1), we have

qL−1(rLrL−1) − qL(r2
L−1) = (−1)LrL−1 .

These two equations yield that

qL−1{(−1)L−1(2aL + 1) − rLrL−1} = qL((−1)L−1QL−1 − r2
L−1) .

Since gcd(qL−1, qL) = 1, we obtain

2aL + 1 ≡ (−1)L−1rLrL−1 (mod qL) .

Now, rL ≡ 2qL−1 (mod qL) and qL−1rL ≡ (−1)L (mod qL) hold by (3.1). Therefore we
have

(−1)L−12qL−1(qL−1 + rL−1) ≡ (−1)L−1rL(qL−1 + rL−1)

= −1 + (−1)L−1rLrL−1

≡ 2aL (mod qL) .

As 2 � qL, we obtain aL ≡ (−1)L−1qL−1(qL−1 + rL−1) (mod qL). This completes the
proof. �

Proof of the implication (iii) ⇒ (ii). Assume that L ≥ 3, QL = 2 and d �= 19.
First we consider the case d < 25. In this case, we easily see that L ≥ 3 and QL = 2

hold only for d = 22. Then,
√

22 = [4, 1, 2, 4, 2, 1, 8], L = 3, aL = 4 ≥ 2, QL = 2 and
we have the following table:

n 0 1 2 3 4
qn 0 1 1 3 13
rn 1 0 1 2 9

Therefore, rL = 2qL−1 = 2 and aL ≡ (−1)L−1qL−1rL−1 (mod qL) hold. Moreover
d = 22 is of minimal type for

√
d because of s = s0 = 14. Thus the assertion (ii) holds for

d = 22.
Next we assume d ≥ 25. Then we see from the implication (iii) ⇒ (iv) of Theorem 1

that
aL = a0 or aL = a0 − 1 ,

and hence
aL ≥ a0 − 1 = [√d] − 1 ≥ 5 − 1 = 4 .

It follows from the assumption QL = 2 that either

rL = 2qL−1, aL ≡ (−1)L−1qL−1rL−1 (mod qL)

or
rL = 2qL−1 − qL, aL ≡ (−1)L−1qL−1(qL−1 + rL−1) (mod qL)

holds by Proposition 4.2. Then by Lemma 3.1 (2), we have w = 1. By (3.9) in Proposi-
tion 3.2, therefore, we obtain

(4.12) q2
Ls0 = qLRr2

L − (−1)Lr2
L + 2 .

Now we see from (4.10) and (4.11) that

α = 2rL−1 − εrL .
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Then by the definition of α, we have

(4.13) qLs = Rr2
L + (−1)L−1α = Rr2

L + (−1)L−1(2rL−1 − εrL) .

By (4.13), (3.1) and (4.12), we have

q2
Ls = qLRr2

L + (−1)L−12qLrL−1 − (−1)L−1εqLrL

= qLRr2
L + (−1)L−12(qL−1rL + (−1)L−1) − (−1)L−1εqLrL

= qLRr2
L + (−1)L−12qL−1rL + 2 − (−1)L−1εqLrL

= q2
Ls0 + (−1)Lr2

L + (−1)L−12qL−1rL − (−1)L−1εqLrL

= q2
Ls0 + (−1)LrL(rL − 2qL−1 + εqL)

= q2
Ls0

and hence we obtain s = s0. Therefore d is of minimal type for
√

d . Thus the proof is
completely proved. �

REMARK 4.1. Let d be a non-square positive integer such that the simple continued
fraction expansion of

√
d is

√
d = [a0, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2a0] with even

period 2L (≥ 4). If we assume QL = 2 then, by Proposition 4.2, we have rL = 2qL−1
(resp. rL = 2qL−1 −qL). Hence by putting ε := 0 (resp. ε := 1), rL = 2qL−1 −εqL holds.
Then we claim that aL = a0 − ε holds. As QL = 2, we see by Proposition 4.2 that 2 � qL.
Since

p2
L − dq2

L = (−1)LQL ≡ 0 (mod 2)

from (2.9), we have pL ≡ d (mod 2). Since pL = a0qL + rL from (2.3), we obtain

(4.14) d ≡ a0 + rL (mod 2) .

Moreover, since d = a2
L + 2QL−1 from (4.7), we have

(4.15) d ≡ aL (mod 2) .

By (4.11) and 2 � qL, we have
rL ≡ −ε (mod 2) .

From this, together with (4.14) and (4.15), we obtain aL ≡ a0 − ε (mod 2). On the other
hand, it follows from the implication (iii) ⇒ (iv) of Theorem 1 that

aL = a0 or aL = a0 − 1 .

Since ε = 0 or 1, the equality aL = a0 − ε must hold. This proves our claim.

5. Proof of Corollary 1

Let p be a prime number with p ≡ 3 (mod 4) and � the minimal period of simple
continued fraction expansion of

√
p. Then it is known that � is even, which is shown by

using (2.9)n=�. We write � = 2L. First, we claim that QL = 2. Since this is true for p = 3,
we may assume p ≥ 4. By (4.7), we have

(5.1) 4p = QL(a2
LQL + 4QL−1) ,
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and hence QL ∈ {1, 2, 4, p, 2p, 4p}. Since 1 < QL < 2
√

p by (2.7), (2.8) and p ≥ 4,
it must hold that QL = 2 or 4. If QL = 4, then p = 4a2

L + 4QL−1 so that 4 | p. This
contradicts that p is a prime number. Hence we obtain QL = 2 (cf. [3, p.2071]). Thus our
claim is true.

Assume that � ≥ 6. Since QL = 2, the implication (iii) ⇒ (i) of Theorem 1 and
Remark 1.1 yield that p is of minimal type for

√
p. Hence, Q(

√
p) is of minimal type.

Assume that � ≤ 4. In the case � = 2, Q(
√

p) is not of minimal type by [11, Example
3.5]. So we consider the case � = 4 and write the simple continued fraction expansion of√

p by √
p = [a0, a1, a2, a1, 2a0] .

From the symmetric part a1, a2, a1, we calculate linear polynomials g(x), h(x), the qua-
dratic polynomial f (x) and the integer s0 by using the following table:

n 0 1 2 3 4
qn 0 1 a1 a1a2 + 1 a2

1a2 + 2a1
rn 1 0 1 a2 a1a2 + 1

By Theorem 0.1, there exists uniquely an integer s with s ≥ s0 such that p = f (s)/4 and
a0 = g(s)/2. Since Q2 = 2, we see by Proposition 4.2 that either r2 = 2q1 or r2 = 2q1−q2
holds. Since r2 = 1, the latter equation must hold, and hence a1 = 1. For brevity, we put
t := a2. Then we obtain

g(x) = (t + 2)x − (−1)4t (t + 1) = (t + 2)x − t (t + 1) ,

h(x) = (t + 1)x − (−1)4t2 = (t + 1)x − t2

by the above table. Therefore, on the one hand, we have

g(t − 1) = (t + 2)(t − 1) − t (t + 1) = −2 < 0 ,

g(t) = (t + 2)t − t (t + 1) = t > 0 ,

and hence s0 = t . On the other hand, by Lemma 4.1 (1), we have

2 = Q2 = q2
2s − q2(r3 + r1)r

2
2 + (−1)2r2

2 = s − t + 1 ,

and hence s = t + 1. Thus we obtain s > s0, which gives that Q(
√

p) is not of minimal
type. Corollary 1 is now proved.

REMARK 5.1. We give several remarks on interesting properties of a prime number
p with p ≡ 3 (mod 4).

(1) Let
√

p = [a0, a1, . . . , aL−1, aL, aL−1, . . . , a1, 2a0] be the simple continued frac-
tion expansion of

√
p. From the symmetric part, we calculate linear polynomials g(x), h(x),

the quadratic polynomial f (x) and the integer s0 by using (0.1). Then by Theorem 0.1,
there exists uniquely an integer s with s ≥ s0 such that p = f (s)/4 and a0 = g(s)/2.
Under the situation of Corollary 1, since p = a2

L +2QL−1 from (5.1), aL is odd. Therefore
it follows from [12, Lemma 2.2] and Theorem 0.1 that Case (I) occurs for this symmetric
part and s must be even.

We see by QL = 2 and Remark 4.1 that aL = a0 − ε holds. Since aL is odd, hence,
according to whether a0 is even or odd, we have rL = 2qL−1 − qL or rL = 2qL−1.
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(2) In the case � = 4, as we have seen in the above proof, s = t + 1 holds, where
t = a2 is an odd integer. Then we have

g(s) = (t + 2)(t + 1) − t (t + 1) = 2(t + 1) ,

h(s) = (t + 1)2 − t2 = 2t + 1 .

Hence the prime number p such that the minimal period of the simple continued fraction
expansion of

√
p is 4, is of the form

p = f (s)/4 = (g(s)/2)2 + h(s) = (t + 1)2 + 2t + 1 = t2 + 4t + 2 ,

and then √
p = [t + 1, 1, t, 1, 2t + 2] .

The form of p is already found in Golubeva [2, Theorem]. (See the set P4 in that theorem.)

6. Numerical examples

In this section, we explain the source of the notion of “ELE” by using some graphs.
Let d be a non-square positive integer with 4 � d and put

ω(d) :=
{

(1 + √
d)/2 if d ≡ 1 (mod 4) ,√

d if d ≡ 2, 3 (mod 4) .

For a positive integer �, we define

CF� :=
{
d ∈ N

∣∣∣∣ d is not a square, 4 � d , the minimal period of the

simple continued fraction expansion of ω(d) is �

}
.

We denote the smallest element of CF� by d� and arrange all elements of CF� in order of
size:

d� = d
(0)
� < d

(1)
� < · · · < d

(i)
� < · · · .

Moreover, we denote the simple continued fraction expansion of ω(d
(i)
� ) by

ω(d
(i)
� ) = [a(i)

0 , a
(i)
1 , . . . , a

(i)
� ] .

Here we plot (x, y, z) = (i, j, a
(i)
j ) for 0 ≤ i ≤ n − 1, 1 ≤ j ≤ [�/2] in three di-

mensional space and connect them for each i. The figures (a)-(d) are the cases when
� = 100, 101, 102, 103 and n = 100.

We can observe that the graphs of even cases are characteristic. Our motivation is to
investigate why the ends of graphs are extremely large. Dividing the graph in (c) into the
case of ELE type and the case of not ELE type (see Figs. (e) and (f)), we expect that “ELE
type” has caught the graphs whose ends are extremely large.

Secondly, we have the following numerical results. For δ ∈ {1, 2, 3}, we define

CF�,δ := {d ∈ CF� | d ≡ δ (mod 4)} .

Then we have
CF� = CF�,1 ∪ CF�,2 ∪ CF�,3 .
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By Theorem 0.1, we can prove CF�,δ �= ∅ for each δ and � (cf. [13, Proposition 4.3]). Here
we assume that � is even if δ = 3. Now we consider the smallest element d� of CF� for
each positive integer � with 1 ≤ � ≤ 69868. Then the following hold:

(A) d� is square-free except for � = 1032. (We have d1032 = 366961 = 7489 · 72.)
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(B) The class number of (the maximal order in) Q(
√

d�) is equal to 1 except for
� = 7, 11, 49, 225, 299, 1032. (For � = 7, 11, 49, 225, 299, the class num-
ber of Q(

√
d�) is equal to 2. The class number of the order of conductor 7 in

Q(
√

d1032) = Q(
√

7489) is equal to 1.)
(C) Q(

√
d�) is a real quadratic field with period � of minimal type except for � =

1, 2, 3, 4, 7, 1032.

Thus, as the first step of getting real quadratic fields of class number 1, we will have to
know how to get the smallest element d�, and so we study a real quadratic field of minimal
type. Furthermore, we consider the smallest element d ′

� of CF�,2 ∪ CF�,3 for each even
positive integer � with 8 ≤ � ≤ 73478, because of Theorem 2 (1), (2). Then the following
hold without exception:

(D) d ′
� is square-free.

(E) The class number of Q(
√
d ′
�) is equal to 1.

(F) Q(
√
d ′
�) is a real quadratic field with period � of minimal type.

(G) The primary symmetric part of the simple continued fraction expansion of Q(
√
d ′
�)

is of ELE type.

(As we have seen in Remark 1.1, the property (G) does not hold for d
(0)
6 = 19, but it holds

for d
(1)
6 = 22.) From these, primary symmetric parts of ELE type should be investigated in

order to find many real quadratic fields of class number 1.
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