Strong Koszulness of the Toric Ring Associated to a Cut Ideal

by
Kazuki Shibata

(Received October 2, 2014)
(Revised October 17, 2014)

Abstract

A cut ideal of a graph was introduced by Sturmfels and Sullivant. In this paper, we give a necessary and sufficient condition for toric rings associated to the cut ideal to be strongly Koszul.

Introduction

Let G be a finite simple graph on the vertex set $V(G)=[n]=\{1, \ldots, n\}$ with the edge set $E(G)$. For two subsets A and B of $[n]$ such that $A \cap B=\emptyset$ and $A \cup B=[n]$, the $(0,1)$-vector $\delta_{A \mid B}(G) \in \mathbb{Z}^{|E(G)|}$ is defined as

$$
\delta_{A \mid B}(G)_{i j}= \begin{cases}1 & \text { if }|A \cap\{i, j\}|=1 \\ 0 & \text { otherwise }\end{cases}
$$

where $i j$ is an edge of G. Let

$$
X_{G}=\left\{\binom{\delta_{A_{1} \mid B_{1}}(G)}{1}, \ldots,\binom{\delta_{A_{N} \mid B_{N}}(G)}{1}\right\} \subset \mathbb{Z}^{|E(G)|+1} \quad\left(N=2^{n-1}\right)
$$

As necessary, we consider X_{G} as the collection of vectors or as the matrix. Let K be a field and

$$
\begin{aligned}
K[q] & =K\left[q_{A_{1} \mid B_{1}}, \ldots, q_{A_{N} \mid B_{N}}\right] \\
K[s, T] & =K\left[s, t_{i j} \mid i j \in E(G)\right]
\end{aligned}
$$

be two polynomial rings over K. Then the ring homomorphism is defined as follows:

$$
\pi_{G}: K[q] \rightarrow K[s, T], \quad q_{A_{l} \mid B_{l}} \mapsto s \cdot \prod_{\substack{\left|A_{l} \cap\{i, j\}\right|=1 \\ i j \in E(G)}} t_{i j}
$$

for $1 \leq l \leq N$. The cut ideal I_{G} of G is the kernel of π_{G} and the toric ring R_{G} of X_{G} is the image of π_{G}. We put $u_{A \mid B}=\pi_{G}\left(q_{A \mid B}\right)$.

In [9], Sturmfels and Sullivant introduced a cut ideal and posed the problem of relating properties of cut ideals to the class of graphs.

[^0]Let R be a semigroup ring and I be the defining ideal of R. We say that R is compressed if the initial ideal of I is squarefree with respect to any reverse lexicographic order. For the toric ring R_{G} and the cut ideal I_{G}, the following results are known:

Theorem 0.1 ([9]). The toric ring R_{G} is compressed if and only if G has no K_{5} minor and every induced cycle in G has length 3 or 4 .

ThEOREM 0.2 ([1]). The cut ideal I_{G} is generated by quadratic binomials if and only if G has no K_{4}-minor.

Nagel and Petrović showed that the cut ideal I_{G} associated with ring graphs has a quadratic Gröbner basis [4]. However we do not know generally when the cut ideal I_{G} has a quadratic Gröbner basis and when R_{G} is Koszul except for trivial cases.

On the other hand, the notion of strongly Koszul algebras was introduced by Herzog, Hibi and Restuccia [2]. A strongly Koszul algebra is a stronger notion of Koszulness. In general, it is known that, for a semigroup ring R,

The defining ideal of R has a quadratic Gröbner basis, or R is strongly Koszul

\quad| \Downarrow |
| :---: |
| R |
| is Koszul |
| \Downarrow |

The defining ideal of R is generated by quadratic binomials.
We do not know whether the defining ideal of a strongly Koszul semigroup ring has a quadratic Gröbner basis. In [7], Restuccia and Rinaldo gave a sufficient condition for toric rings to be strongly Koszul. In [3], Matsuda and Ohsugi proved that any squarefree strongly Koszul toric ring is compressed.

In this paper, we give a sufficient condition for cut ideals to have a quadratic Gröbner basis and we characterize the class of graphs such that R_{G} is strongly Koszul.

The outline of this paper is as follows. In Section 1, we show that the set of graphs such that R_{G} is strongly Koszul is closed under contracting edges, induced subgraphs and 0 -sums. In Section 2, we compute a Gröbner basis for the cut ideal without (K_{4}, C_{5})-minor. In Section 3, by using results of Section 1 and Section 2, we prove that the toric ring R_{G} is strongly Koszul if and only if G has no (K_{4}, C_{5})-minor.

1. Clique sums and strongly Koszul algebras

In this paper, we introduce the equivalent condition as the definition of the strongly Koszul algebra.

Let R be a semigroup ring generated by u_{1}, \ldots, u_{n}. We say that a semigroup ring R is strongly Koszul if the ideals $\left(u_{i}\right) \cap\left(u_{j}\right)$ are generated in degree 2 for all $i \neq j$ [2, Proposition 1.4].

Proposition 1.1 ([2, Proposition 2.3]). Let R and P be semigroup rings over same field, and Q be the tensor product or the Segre product of R and P. Then Q is strongly Koszul if and only if both R and P are strongly Koszul.

Recall that a graph H is a minor of a graph G if H can be obtained by deleting and contracting edges of G. We say that a subgraph H is an induced subgraph of a graph G if H contains all the edges $i j \in E(G)$ with $i, j \in V(H)$.

Proposition 1.2. Let G be a finite simple connected graph. Assume that R_{G} is strongly Koszul. Then
(1) If H_{1} is an induced subgraph of G, then $R_{H_{1}}$ is strongly Koszul.
(2) If H_{2} is obtained by contracting an edge of G, then $R_{H_{2}}$ is strongly Koszul.

Proof. By [5] and [9], $R_{H_{1}}$ and $R_{H_{2}}$ are combinatorial pure subrings of R_{G}. Therefore, by [6, Corollary 1.6], $R_{H_{1}}$ and $R_{H_{2}}$ are strongly Koszul.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be simple graphs such that $V_{1} \cap V_{2}$ is a clique of both graphs. The new graph $G=G_{1} \# G_{2}$ with the vertex set $V_{1} \cup V_{2}$ and the edge set $E_{1} \cup E_{2}$ is called the clique sum of G_{1} and G_{2} along $V_{1} \cap V_{2}$. If the cardinality of $V_{1} \cap V_{2}$ is $k+1$, then this operation is called a k-sum of the graphs. It is clear that if $R_{G_{1} \# G_{2}}$ is strongly Koszul, then both $R_{G_{1}}$ and $R_{G_{2}}$ are strongly Koszul because G_{1} and G_{2} are induced subgraphs of $G_{1} \# G_{2}$.

Proposition 1.3. The set of graphs G such that R_{G} is strongly Koszul is closed under the 0 -sum.

Proof. Let G_{1} and G_{2} be finite simple connected graphs and assume that $R_{G_{1}}$ and $R_{G_{2}}$ are strongly Koszul. Then the toric ring $R_{G_{1} \# G_{2}}$, where $G_{1} \# G_{2}$ is the 0 -sum of G_{1} and G_{2}, is the usual Segre product of $R_{G_{1}}$ and $R_{G_{2}}$. Thus it follows by Proposition 1.1.

However the set of graphs G such that R_{G} is strongly Kosuzl is not always closed under the 1-sum.

Let K_{n} denote the complete graph on n vertices, C_{n} denote the cycle of length n and $K_{l_{1}, \ldots, l_{m}}$ denote the complete m-partite graph on the vertex set $V_{1} \cup \cdots \cup V_{m}$, where $\left|V_{i}\right|=l_{i}$ for $1 \leq i \leq m$ and $V_{i} \cap V_{j}=\emptyset$ for $i \neq j$.

EXAMPLE 1.4. Let $G_{1}=C_{3} \# C_{3}\left(=K_{4} \backslash e\right), G_{2}=C_{4} \# C_{3}$ and $G_{3}=\left(K_{4} \backslash e\right) \# C_{3}$ be graphs shown in Figures 1-3. All of $R_{C_{3}}, R_{C_{4}}$ and $R_{G_{1}}$ are strongly Koszul because $R_{C_{3}}$ is isomorphic to the polynomial ring and $I_{C_{4}}$ and $I_{G_{1}}$ have quadratic Gröbner bases with respect to any reverse lexicographic order, respectively (see [7, 9]). However neither $R_{G_{2}}$ nor $R_{G_{3}}$ is strongly Koszul since $\left(u_{\emptyset \mid[5]}\right) \cap\left(u_{\{1,3,4\} \mid\{2,5\}}\right)$ is not generated in degree 2 .

2. A Gröbner basis for the cut ideal

In this section, we compute a Gröbner basis of I_{G} such that G has no (K_{4}, C_{5})-minor.
LEMMA 2.1. Let G be a simple 2-connected graph on the vertex set $V(G)$. Then G has no (K_{4}, C_{5})-minor if and only if G is $K_{3}, K_{2, n-2}$ or $K_{1,1, n-2}$ for $n \geq 4$.

Proof. Since G is 2-connected, G contains a cycle. Let C be the longest cycle in G. It follows that $|V(C)| \leq 4$ because G has no C_{5}-minor. If $|V(C)|=3$, then $G=K_{3}$ since G is 2-connected. Suppose that $|V(C)|=4$. If $|V(G)|=|V(C)|$, then G is either $K_{2,2}$

Figure 1. $C_{3} \# C_{3}$

Figure 2. $C_{4} \# C_{3}$

Figure 3. $\left(K_{4} \backslash e\right) \# C_{3}$
or $K_{1,1,2}$. Next, we assume that $|V(G)|>|V(C)|=4$. Consider $v \in V(G) \backslash V(C)$. Let P and Q be two paths each with one end in v and another end in $V(C)$, disjoint except for their common end in v and having no internal vertices in C. Such paths exist since G is 2-connected. If $|V(P)|>2$, or $|V(Q)|>2$, or the ends of P and Q in C are consecutive in C, then $P \cup Q$ together with a subpath of C form a cycle of length longer than C. Hence every vertex $v \notin V(C)$ has exactly two neighbors in $V(C)$, which are not consecutive. Moreover, if some two vertices $v_{1}, v_{2} \in V(G) \backslash V(C)$ are adjacent to different pairs of vertices in C, then a cycle of length six is induced in G by $\left\{v_{1}, v_{2}\right\} \cup V(C)$. Therefore there exist $u_{1}, u_{2} \in V(C)$, which are both adjacent to all vertices in $V(G) \backslash\left\{u_{1}, u_{2}\right\}$. If two vertices in $V(G) \backslash\left\{u_{1}, u_{2}\right\}$ are adjacent, then together with $\left\{u_{1}, u_{2}\right\}$ and any other vertex they induce a cycle in G of length five. Therefore G is either $K_{2, n-2}$ or $K_{1,1, n-2}$. It is easy to see that all of $K_{3}, K_{2, n-2}$ and $K_{1,1, n-2}$ have no (K_{4}, C_{5})-minor.

It is already known that the cut ideal $I_{K_{1, n-2}}$ for $n \geq 4$ has a quadratic Gröbner basis since $K_{1, n-2}$ is 0 -sums of K_{2} and $I_{K_{2}}=\langle 0\rangle$ [9, Theorem 2.1]. In this paper, to prove Theorem 2.3, we compute the reduced Gröbner basis of $I_{K_{1, n-2}}$. Let $<$ be a reverse lexicographic order on $K[q]$ which satisfies $q_{A \mid B}<q_{C \mid D}$ with $\min \{|A|,|B|\}<\min \{|C|,|D|\}$.

Lemma 2.2. Let $G=K_{1, n-2}$ be the complete bipartite graph on the vertex set $V_{1} \cup V_{2}$, where $V_{1}=\{1\}$ and $V_{2}=\{3, \ldots, n\}$ for $n \geq 4$. Then the reduced Gröbner basis of I_{G} with respect to $<$ consists of

$$
q_{A \mid B} q_{C \mid D}-q_{A \cap C \mid B \cup D} q_{A \cup C \mid B \cap D}(1 \in A \cap C, A \not \subset C, C \not \subset A)
$$

The initial monomial of each binomial is the first monomial.

Proof. Let \mathcal{G} be the set of all binomials above. It is easy to see that $\mathcal{G} \subset I_{G}$. Let $\operatorname{in}(\mathcal{G})=\left\langle\mathrm{in}_{<}(g) \mid g \in \mathcal{G}\right\rangle$. Let u and v be monomials that do not belong to in (\mathcal{G}) :

$$
u=\prod_{l=1}^{m}\left(q_{\{1\} \cup A_{l} \mid B_{l}}\right)^{p_{l}}, \quad v=\prod_{l=1}^{m^{\prime}}\left(q_{\{1\} \cup C_{l} \mid D_{l}}\right)^{p_{l}^{\prime}},
$$

where $0<p_{l}, p_{l}^{\prime} \in \mathbb{Z}$ for any l. Since neither u nor v is divided by $q_{A \mid B} q_{C \mid D}$, it follows that

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{m}, \quad C_{1} \subset C_{2} \subset \cdots \subset C_{m^{\prime}}
$$

Let

$$
\begin{aligned}
A_{l} & =A_{l-1} \cup\left\{b_{1}^{l-1}, \ldots, b_{\beta_{l-1}}^{l-1}\right\}, B_{k}=\bigcup_{i=k}^{m}\left\{b_{1}^{i}, \ldots, b_{\beta_{i}}^{i}\right\} \\
C_{l} & =C_{l-1} \cup\left\{d_{1}^{l-1}, \ldots, d_{\delta_{l-1}}^{l-1}\right\}, D_{k}=\bigcup_{i=k}^{m^{\prime}}\left\{d_{1}^{i}, \ldots, d_{\delta_{i}}^{i}\right\}
\end{aligned}
$$

for $k \geq 1$ and $l \geq 2$, where $A_{1}=V_{2} \backslash B_{1}, C_{1}=V_{2} \backslash D_{1}$. We suppose that $\pi_{G}(u)=\pi_{G}(v)$:

$$
\pi_{G}(u)=s^{p} \prod_{l=1}^{m}\left(t_{1 b_{1}^{l}} \cdots t_{1 b_{\beta_{l}}^{l}}\right)^{\sum_{k=1}^{l} p_{k}}, \quad \pi_{G}(v)=s^{p^{\prime}} \prod_{l=1}^{m^{\prime}}\left(t_{1 d_{1}^{l}} \cdots t_{1 d_{\delta_{l}}^{l}}\right)^{\sum_{k=1}^{l} p_{k}^{\prime}} .
$$

Here we set $p=\sum_{l=1}^{m} p_{l}$ and $p^{\prime}=\sum_{l=1}^{m^{\prime}} p_{l}^{\prime}$. Assume that $A_{1} \neq C_{1}$. Then there exists $a \in A_{1}$ such that $a \notin C_{1}$. Hence, for some $l_{1} \in\left[m^{\prime}\right], a \in\left\{d_{1}^{l_{1}}, \ldots, d_{\delta_{l_{1}}}^{l_{1}}\right\}$. However, for any $l \in[m], a \notin\left\{b_{1}^{l}, \ldots, b_{\beta_{l}}^{l}\right\}$. This contradicts that $\pi_{G}(u)=\pi_{G}(v)$. Thus $A_{1}=C_{1}$ and $p_{1}=p_{1}^{\prime}$. By performing this operation repeatedly, it follows that $A_{l}=C_{l}, B_{l}=D_{l}$ and $p_{l}=p_{l}^{\prime}$ for any l. Since $u=v, \mathcal{G}$ is a Gröbner basis of I_{G}. It is trivial that \mathcal{G} is reduced.

Theorem 2.3. Let $G=K_{2, n-2}$ be the complete bipartite graph on the vertex set $V_{1} \cup V_{2}$, where $V_{1}=\{1,2\}$ and $V_{2}=\{3, \ldots, n\}$ for $n \geq 4$. Then a Gröbner basis of I_{G} consists of
(i) $q_{A \mid B} q_{E \mid F}-q_{\emptyset \mid[n]} q_{\{1,2\} \mid\{3, \ldots, n\}} \quad(1 \in A, 2 \in B)$,
(ii) $q_{A \mid B} q_{C \mid D}-q_{A \cap C \mid B \cup D} q_{A \cup C \mid B \cap D}(1 \in A \cap C, 2 \in B \cap D, A \not \subset C, C \not \subset A)$,
(iii) $q_{A \mid B} q_{C \mid D}-q_{A \cap C \mid B \cup D} q_{A \cup C \mid B \cap D} \quad(1,2 \in A \cap C, A \not \subset C, C \not \subset A)$,
where $E=(B \cup\{1\}) \backslash\{2\}$ and $F=(A \cup\{2\}) \backslash\{1\}$. The initial monomial of each binomials is the first binomial.

Proof. Let \mathcal{G} be the set of all binomials above. It is easy to see that $\mathcal{G} \subset I_{G}$. Let u and v be monomials which do not belong to in (\mathcal{G}) :

$$
\begin{aligned}
u & =\prod_{l=1}^{m_{1}}\left(q_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}}\right)^{p_{l}} \prod_{l=1}^{m_{2}}\left(q_{\{1,2\} \cup C_{l} \mid D_{l}}\right)^{r_{l}}, \\
v & =\prod_{l=1}^{m_{1}^{\prime}}\left(q_{\{1\} \cup A_{l}^{\prime} \mid\{2\} \cup B_{l}^{\prime}} p^{p_{l}^{\prime}} \prod_{l=1}^{m_{2}^{\prime}}\left(q_{\{1,2\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}\right)^{r_{l}^{\prime}},\right.
\end{aligned}
$$

where $0<p_{l}, r_{l}, p_{l}^{\prime}, r_{l}^{\prime} \in \mathbb{Z}$ for any l. Since neither u nor v is divided by initial monomials of (ii) and (iii), it follows that

$$
\begin{aligned}
& A_{1} \subset \cdots \subset A_{m_{1}}, \quad C_{1} \subset \cdots \subset C_{m_{2}} \\
& A_{1}^{\prime} \subset \cdots \subset A_{m_{1}^{\prime}}^{\prime}, \quad C_{1}^{\prime} \subset \cdots \subset C_{m_{2}^{\prime}}^{\prime}
\end{aligned}
$$

Suppose that $\pi_{G}(u)=\pi_{G}(v)$:

$$
\begin{aligned}
\pi_{G}(u) & =\prod_{l=1}^{m_{1}}\left(u_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}}\right)^{p_{l}} \prod_{l=1}^{m_{2}}\left(u_{\{1,2\} \cup C_{l} \mid D_{l}}\right)^{r_{l}}, \\
\pi_{G}(v) & =\prod_{l=1}^{m_{1}^{\prime}}\left(u_{\{1\} \cup A_{l}^{\prime}\left\{\{2\} \cup B_{l}^{\prime}\right.}{ }^{p_{l}^{\prime}} \prod_{l=1}^{m_{2}^{\prime}}\left(u_{\{1,2\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}\right)^{r_{l}^{\prime}} .\right.
\end{aligned}
$$

Let Y be the matrix consisting of the first $n-2$ rows of $X_{K_{1, n-2}}$. Then X_{G} is the following matrix:

$$
\left(\begin{array}{cc}
Y & Y \\
Y & \mathbf{1}_{n-2,2^{n-2}}-Y \\
\mathbf{1} & \mathbf{1}
\end{array}\right),
$$

where $\mathbf{1}_{n-2,2^{n-2}}$ is the $(n-2) \times 2^{n-2}$ matrix such that each entry is all ones. Note that

$$
\begin{aligned}
\binom{Y}{Y} & =\left(\delta_{P_{1} \mid Q_{1}}\left(K_{2, n-2}\right) \cdots \delta_{P_{2^{n-2}} \mid Q_{2^{n-2}}}\left(K_{2, n-2}\right)\right) \\
\binom{Y}{\mathbf{1}_{n-2,2^{n-2}}-Y} & =\left(\delta_{R_{1} \mid S_{1}}\left(K_{2, n-2}\right) \cdots \delta_{R_{2^{n-2}} \mid S_{2^{n-2}}}\left(K_{2, n-2}\right)\right),
\end{aligned}
$$

where $1,2 \in P_{l}, 1 \in R_{l}$ and $2 \in S_{l}$ for $1 \leq l \leq 2^{n-2}$. By elementary row operations of X_{G}, we have

$$
X_{G}^{\prime}=\left(\begin{array}{cc}
2 Y-\mathbf{1}_{n-2,2^{n-2}} & O \\
O & 2 Y-\mathbf{1}_{n-2,2^{n-2}} \\
\mathbf{1} & \mathbf{1}
\end{array}\right)
$$

Each column vector of $2 Y-\mathbf{1}_{n-2,2^{n-2}}$ is the form ${ }^{t}\left(\varepsilon_{1}, \ldots, \varepsilon_{n-2}\right)$, where $\varepsilon_{i} \in\{1,-1\}$ for $1 \leq i \leq n-2$. Let $I_{X_{G}^{\prime}}$ denote the toric ideal of X_{G}^{\prime} (see [8]). Then $u-v \in I_{G}$ if and only if $u-v \in I_{X_{G}^{\prime}}$. Let $\mathbf{a}_{P \mid Q}$ denote the column vector of $2 Y-\mathbf{1}_{n-2,2^{n-2}}$ in X_{G}^{\prime} corresponding to the column vector $\delta_{P \mid Q}(G)$ of X_{G}. Then

$$
\sum_{l=1}^{m_{1}} p_{l}\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{a}_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}} \\
1
\end{array}\right)+\sum_{l=1}^{m_{2}} r_{l}\left(\begin{array}{c}
\mathbf{a}_{\{1,2\} \cup C_{l} \mid D_{l}} \\
\mathbf{0} \\
1
\end{array}\right)=\sum_{l=1}^{m_{1}^{\prime}} p_{l}^{\prime}\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{a}_{\{1\} \cup A_{l}^{\prime} \mid\{2\} \cup B_{l}^{\prime}} \\
1
\end{array}\right)+\sum_{l=1}^{m_{2}^{\prime}} r_{l}^{\prime}\binom{\mathbf{a}_{\{1,2\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}}{1} .
$$

In particular,

$$
\sum_{l=1}^{m_{1}} p_{l} \mathbf{a}_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}}=\sum_{l=1}^{m_{1}^{\prime}} p_{l}^{\prime} \mathbf{a}_{\{1\} \cup A_{l}^{\prime} \mid\{2\} \cup B_{l}^{\prime}}, \quad \sum_{l=1}^{m_{2}} r_{l} \mathbf{a}_{\{1,2\} \cup C_{l} \mid D_{l}}=\sum_{l=1}^{m_{2}^{\prime}} r_{l}^{\prime} \mathbf{a}_{\{1,2\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}
$$

hold. Let $p=\sum_{l=1}^{m_{1}} p_{l}, r=\sum_{l=1}^{m_{2}} r_{l}, p^{\prime}=\sum_{l=1}^{m_{1}^{\prime}} p_{l}^{\prime}$ and $r^{\prime}=\sum_{l=1}^{m_{2}^{\prime}} r_{l}^{\prime}$. Since neither u nor v is divided by initial monomials of (i), it follows that either $A_{1} \neq \emptyset$ or $A_{m_{1}} \neq[n] \backslash\{1,2\}$ (resp. $A_{1}^{\prime} \neq \emptyset$ or $\left.A_{m_{2}^{\prime}}^{\prime} \neq[n] \backslash\{1,2\}\right)$. If $A_{1} \neq \emptyset$, then there exists $i \in[n] \backslash\{1,2\}$ such that $i \in A_{l}$ for any $l \in\left[m_{1}\right]$. If $A_{m_{1}} \neq[n] \backslash\{1,2\}$, that is, $B_{m_{1}} \neq \emptyset$, then there exists $i \in[n] \backslash\{1,2\}$ such that $i \in B_{m_{1}}$, and $i \notin A_{l}$ for any $l \in\left[m_{1}\right]$. Thus either p or $-p$ appears in the entry of $\sum_{l=1}^{m_{1}} p_{l} \mathbf{a}_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}}$. Similarly, either p^{\prime} or $-p^{\prime}$ appears in the entry of $\sum_{l=1}^{m_{1}^{\prime}} p_{l}^{\prime} \mathbf{a}_{\{1\} \cup A_{l}^{\prime} \mid\{2\} \cup B_{l}^{\prime}}$. Therefore $p=p^{\prime}$. Hence

$$
\prod_{l=1}^{m_{1}}\left(u_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}}\right)^{p_{l}}=\prod_{l=1}^{m_{1}^{\prime}}\left(u_{\{1\} \cup A_{l}^{\prime} \mid\{2\} \cup B_{l}^{\prime}}{ }^{p_{l}^{\prime}}, \quad \prod_{l=1}^{m_{2}}\left(u_{\{1,2\} \cup C_{l} \mid D_{l}}\right)^{r_{l}}=\prod_{l=1}^{m_{2}^{\prime}}\left(u_{\{1,2\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}\right)^{r_{l}^{\prime}}\right.
$$

hold. Thus

$$
\begin{aligned}
& \prod_{l=1}^{m_{1}}\left(q_{\{1\} \cup A_{l} \mid\{2\} \cup B_{l}}\right)^{p_{l}}-\prod_{l=1}^{m_{1}^{\prime}}\left(q_{\{1\} \cup A_{l}^{\prime} \mid\{2\} \cup B_{l}^{\prime}}\right)^{p_{l}^{\prime}} \in I_{Z_{1}}, \\
& \prod_{l=1}^{m_{2}}\left(q_{\{1,2\} \cup C_{l} \mid D_{l}}\right)^{r_{l}}-\prod_{l=1}^{m_{2}^{\prime}}\left(q_{\{1,2\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}\right)^{r_{l}^{\prime}} \in I_{Z_{2}},
\end{aligned}
$$

where Z_{1} (resp. Z_{2}) is the matrix consisting of the first (resp. last) 2^{n-2} columns of X_{G}^{\prime}. Here $I_{Z_{1}}$ and $I_{Z_{2}}$ are toric ideals of Z_{1} and Z_{2}. By elementary row operations of Z_{1} (resp. Z_{2}), we have

$$
\prod_{l=1}^{m_{1}}\left(q_{\left.\{1] \cup A_{l} \mid B_{l}\right)^{p_{l}}}-\prod_{l=1}^{m_{1}^{\prime}}\left(q_{\left.\{1\} \cup A_{l}^{\prime} \mid B_{l}^{\prime}\right)^{p_{l}^{\prime}}}, \quad \prod_{l=1}^{m_{2}}\left(q_{\{1\} \cup C_{l} \mid D_{l}}\right)^{r_{l}}-\prod_{l=1}^{m_{2}^{\prime}}\left(q_{\{1\} \cup C_{l}^{\prime} \mid D_{l}^{\prime}}\right)^{r_{l}^{\prime}} \in I_{K_{1, n-2}}\right.\right.
$$

By Lemma 2.2, $u=v$ holds. Therefore \mathcal{G} is a Gröbner basis of I_{G}.
Corollary 2.4. If G has no (K_{4}, C_{5})-minor, then I_{G} has a quadratic Gröbner basis.

Proof. If G is not 2-connected, then there exist 2-connected components G_{1}, \ldots, G_{s} of G such that G is 0 -sums of G_{1}, \ldots, G_{s}. By [9] and Lemma 2.1, it is enough to show that, $I_{K_{2}}, I_{K_{3}}, I_{K_{2, n-2}}$ and $I_{K_{1,1, n-2}}$ have a quadratic Gröbner basis. It is trivial that $I_{K_{2}}$ and $I_{K_{3}}$ have a quadratic Gröbner basis because $I_{K_{2}}=\langle 0\rangle$ and $I_{K_{3}}=\langle 0\rangle$. Since $K_{1,1, n-2}$ is obtained by 1 -sums of $C_{3}, I_{K_{1,1, n-2}}$ has a quadratic Gröbner basis. Therefore, by Theorem 2.3, I_{G} has a quadratic Gröbner basis.

3. Strongly Koszul toric rings of cut ideals

In this section, we characterize the class of graphs whose toric rings associated to cut ideals are strongly Koszul.

Proposition 3.1. Let $G_{1}=K_{1,1, n-2}$ and $G_{2}=K_{2, n-2}$ for $n \geq 4$. Then $R_{G_{1}}$ and $R_{G_{2}}$ are strongly Koszul.

Proof. By elementary row operations of $X_{G_{1}}$, we have

$$
X_{G_{1}}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
Y & Y \\
Y & \mathbf{1}_{n-2,2^{n-2}}-Y \\
\mathbf{1} & \mathbf{1}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
Y & Y \\
Y & -Y \\
\mathbf{1} & \mathbf{1}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
Y & Y \\
Y & O \\
\mathbf{1} & \mathbf{1}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
O & Y \\
Y & O \\
\mathbf{1} & \mathbf{0}
\end{array}\right) .
$$

Hence $R_{G_{1}} \cong R_{K_{1, n-2}} \otimes_{K} R_{K_{1, n-2}}$. Since $R_{K_{1, n-2}}$ is Segre products of $R_{K_{2}}, R_{G_{1}}$ is strongly Koszul. Next, by the symmetry of $X_{G^{\prime}}$ in the proof of Theorem 2.3, it is enough to consider the following two cases:
(1) $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1\} \mid\{2, \ldots, n\}}\right)$,
(2) $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1,2\} \cup A \mid B}\right)$.

Since $q_{\varnothing \mid[n]}$ is the smallest variable and $q_{\{1| |\{2, \ldots, n\}}$ is the second smallest variable with respect to the reverse lexicographic order $<$, by [3] and Theorem 2.3, $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1\} \mid\{2, \ldots, n\}}\right)$ is generated in degree 2. Assume that $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1,2\} \cup A \mid B}\right)$ is not generated in degree 2 . Then there exists a monomial $u_{E_{1} \mid F_{1}} \cdots u_{E_{s} \mid F_{s}}$ belonging to a minimal generating set of $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1,2\} \cup A \mid B}\right)$ such that $s \geq 3$. Since $u_{E_{1} \mid F_{1}} \cdots u_{E_{s} \mid F_{s}}$ is in $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1,2\} \cup A \mid B}\right)$, it follows that
$q_{\{1,2\} \cup A \mid B} \prod_{l=1}^{\alpha} q_{\{1,2\} \cup A_{l} \mid B_{l}} \prod_{l=1}^{\beta} q_{\{1\} \cup C_{l} \mid\{2\} \cup D_{l}}-q_{\emptyset \mid[n]} \prod_{l=1}^{\gamma} q_{\{1,2\} \cup P_{l} \mid Q_{l}} \prod_{l=1}^{\delta} q_{\{1\} \cup R_{l} \mid\{2\} \cup S_{l}} \in I_{G_{2}}$.
If one of the monomials appearing in the above binomial is divided by initial monomials of (i) in Theorem 2.3, then $u_{E_{1} \mid F_{1}} \cdots u_{E_{s} \mid F_{s}}$ is divided by $u_{\emptyset \mid[n]} u_{\{1,2\} \mid\{3, \ldots, n\}}$. This contradicts that $u_{E_{1} \mid F_{1}} \cdots u_{E_{s} \mid F_{s}}$ belongs to a minimal generating set of $\left(u_{\emptyset \mid[n]}\right) \cap\left(u_{\{1,2\} \cup A \mid B}\right)$ since, for any $u_{A \mid B}$ and $u_{C \mid D}$ with $u_{A \mid B} \neq u_{C \mid D}, u_{\emptyset \mid[n]} u_{\{1,2\} \mid\{3, \ldots, n\}}$ belongs to a minimal generating set of $\left(u_{A \mid B}\right) \cap\left(u_{C \mid D}\right)$. If one of $\prod_{l=1}^{\beta} q_{\{1\} \cup C_{l} \mid\{2\} \cup D_{l}}$ and $\prod_{l=1}^{\delta} q_{\{1\} \cup R_{l} \mid\{2\} \cup S_{l}}$ is divided by initial monomials of (ii) in Theorem 2.3, the monomial is reduced to the monomial which is not divided by initial monomials of (ii) with respect to \mathcal{G}, where \mathcal{G} is a Gröbner basis of $I_{G_{2}}$. Thus we may assume that

$$
C_{1} \subset \cdots \subset C_{\beta}, \quad R_{1} \subset \cdots \subset R_{\delta} .
$$

Similar to what did in the proof of Theorem 2.3, we have

$$
\begin{aligned}
u_{\{1,2\} \cup A \mid B} \prod_{l=1}^{\alpha} u_{\{1,2\} \cup A_{l} \mid B_{l}} & =u_{\emptyset \mid[n]} \prod_{l=1}^{\gamma} u_{\{1,2\} \cup P_{l} \mid Q_{l}}, \\
\prod_{l=1}^{\beta} u_{\{1\} \cup C_{l} \mid\{2\} \cup D_{l}} & =\prod_{l=1}^{\delta} u_{\{1\} \cup R_{l} \mid\{2\} \cup S_{l}} .
\end{aligned}
$$

It follows that $\alpha=\gamma, \beta=\delta, C_{l}=R_{l}, D_{l}=S_{l}$ for any l, and

$$
q_{\{1\} \cup A \mid B} \prod_{l=1}^{\alpha} q_{\{1\} \cup A_{l} \mid B_{l}}-q_{\varnothing \mid[n \backslash \backslash\{2\}} \prod_{l=1}^{\alpha} q_{\{1\} \cup P_{l} \mid Q_{l}} \in I_{K_{1, n-2}} .
$$

Hence the ideal $\left(u_{\{1\} \cup A \mid B}\right) \cap\left(u_{\emptyset \mid[n] \backslash\{2\}}\right)$ of $R_{K_{1, n-2}}$ is not generated in degree 2 . However this contradicts that $R_{K_{1, n-2}}$ is strongly Koszul. Therefore $R_{G_{2}}$ is strongly Koszul.

Lemma 3.2. Let G be a finite simple 2 -connected graph with no K_{4}-minor. If G has C_{5}-minor, then by only contracting edges of G, we obtain one of C_{5}, the 1 -sum of C_{4} and C_{3}, and the 1-sum of $K_{4} \backslash e$ and C_{3}.

Proof. Let G be a graph with C_{5}-minor and C be a longest cycle in G. It follows that $|V(C)| \geq 5$. Then, by contracting edges of G, we obtain a graph G^{\prime} of five vertices such that C_{5} is a subgraph of G^{\prime}. Assume that $G^{\prime} \neq C_{5}$. Then there exist $u, v \in V\left(C_{5}\right)$ with $u v \notin E\left(C_{5}\right)$ such that $u v \in E\left(G^{\prime}\right)$. Since G has no K_{4}-minor, there do not exist $\alpha, \beta \in V\left(C_{5}\right) \backslash\{u, v\}$ such that $\alpha \beta \in E\left(G^{\prime}\right) \backslash E\left(C_{5}\right)$. Therefore we obtain one of the 1 -sum of C_{4} and C_{3}, and the 1 -sum of $K_{4} \backslash e$ and C_{3}.

Theorem 3.3. Let G be a finite simple connected graph. Then R_{G} is strongly Koszul if and only if G has no (K_{4}, C_{5})-minor.

Proof. Let G be a graph with no (K_{4}, C_{5})-minor. If G is not 2 -connected, then there exist 2 -connected components G_{1}, \ldots, G_{s} of G such that G is 0 -sums of G_{1}, \ldots, G_{s}. By Lemma 2.1, it is enough to show that $R_{K_{2}}, R_{K_{3}}, R_{K_{2, n-2}}$ and $R_{K_{1,1, n-2}}$ are strongly Koszul. It is clear that $R_{K_{2}}$ and $R_{K_{3}}$ are strongly Koszul. By Proposition 3.1, $R_{K_{2, n-2}}$ and $R_{K_{1,1, n-2}}$ are strongly Koszul. Next, we suppose that G has K_{4}-minor. Then the cut ideal I_{G} is not generated by quadratic binomials [1]. In particular, R_{G} is not strongly Koszul. Assume that G has no K_{4}-minor. If G has C_{5}-minor, then, by Lemma 3.2, we obtain one of $C_{5}, C_{4} \# C_{3}$ and ($\left.K_{4} \backslash e\right) \# C_{3}$ by contracting edges of G. By Example 1.4, neither $R_{C_{4} \# C_{3}}$ nor $R_{\left(K_{4} \backslash e\right) \# C_{3}}$ is strongly Koszul. By [9, Theorem 1.3], since $R_{C_{5}}$ is not compressed, $R_{C_{5}}$ is not strongly Koszul [3, Theorem 2.1]. Therefore, by Proposition 1.2, R_{G} is not strongly Koszul.
By using above results, we have
Corollary 3.4. The set of graphs G such that R_{G} is strongly Koszul is minor closed.

Corollary 3.5. If R_{G} is strongly Koszul, then I_{G} has a quadratic Gröbner basis.

Acknowledgement

The author would like to thank Hidefumi Ohsugi for useful comments and suggestions.

References

[1] A. Engström, Cut ideals of K_{4}-minor free graphs are generated by quadrics, Michigan Math. J., 60 (2011), no. 3, 705-714.
[2] J. Herzog, T. Hibi and G. Restuccia, Strongly Koszul algebras, Math. Scand., 86 (2000), 161-178.
[3] K. Matsuda and H. Ohsugi, Reverse lexicographic Gröbner bases and strongly Koszul toric rings, Math. Scand., to appear.
[4] U. Nagel and S. Petrović, Properties of cut ideals associated to ring graphs, J. Commutative Algebra 1 (2009), no. 3, 547-565.
[5] H. Ohsugi, A geometric definition of combinatorial pure subrings and Gröbner bases of toric ideals of positive roots, Comment. Math. Univ. St. Pauli 56 (2007), no. 1, 27-44.
[6] H. Ohsugi, J. Herzog and T. Hibi, Combinatorial pure subrings, Osaka J. Math. 37 (2000), no.3, 745-757.
[7] G. Restuccia and G. Rinaldo, On certain classes of degree reverse lexicographic Gröbner bases, Int. Math. Forum (2007), no. 22, 1053-1068.
[8] B. Sturmfels, "Gröbner bases and convex polytopes," Amer. Math. Soc., Providence, RI, 1996.
[9] B. Sturmfels and S. Sullivant, Toric geometry of cuts and splits, Michigan Math. J., 57 (2008), 689-709.
Department of Mathematics
College of Science, Rikkyo University
Toshima-ku, Tokyo 171-8501, Japan
E-mail: k-shibata@rikkyo.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 05E40.
 Key words and phrases. cut ideal, Gröbner basis, strongly Koszul algebra.
 The author is supported by JSPS Research Fellowship for Young Scientists.

