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Abstract. In this paper, we introduce a class Gλ
q (φ, b) of analytic functions which

is defined in terms of a quasi-subordination. The coefficient estimates including the clas-
sical Fekete-Szegö inequality of functions belonging to this class are then derived. We
also present certain improved results for the associated classes involving the subordination
and majorization. Relevances with known results and extensions of main results involving
convolution structures are briefly mentioned.

1. Introduction

Let A denotes a class of functions analytic in the open unit disk U = {z : |z| < 1} ,

normalized by the conditions f (0) = 0 = f ′(0) − 1.

For two analytic functions f, g such that f (0) = g(0), we say that f is subordinate to
g in U and write f (z) ≺ g(z), z ∈ U, if there exists a Schwarz function w(z) (analytic in U

with w(0) = 0, and |w(z)| ≤ |z| , z ∈ U) such that f (z) = g(w(z)) (z ∈ U) . Furthermore,
if the function g is univalent in U, then we have the following equivalence:

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (U) ⊂ g(U) .

The concept of subordination can be found in [8, p. 226].
Further, f is said to be quasi-subordinate to g in U and written as f (z) ≺q g(z), z ∈

U, if there exists an analytic function ϕ(z) with |ϕ(z)| ≤ 1 (z ∈ U) such that f (z)
ϕ(z)

is
analytic in U and

f (z)

ϕ(z)
≺ g(z) (z ∈ U) ,

that is there exists a Schwarz function w(z) such that f (z) = ϕ(z)g(w(z)), z ∈ U. This
definition of quasi-subordination is given by Robertson [20].
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It is observed that if ϕ(z) ≡ 1 (z ∈ U) , then the quasi-subordination ≺q becomes
the usual subordination ≺, and for the Schwarz function w(z) = z (z ∈ U) , the quasi-
subordination ≺q becomes the majorization ′ 
′ . In this case:

f (z) ≺q g(z) ⇒ f (z) = ϕ(z)g(z) ⇒ f (z) 
 g(z) , z ∈ U .

The concept of majorization is due to MacGregor [6].
Recently, Owa et al. [16] introduced and studied a Sakaguchi type class S∗ (α, b) of

functions f ∈ A which satisfies for b �= 1, |b| ≤ 1 and for some α (0 ≤ α < 1) , the
condition that


(

(1 − b) zf
′
(z)

f (z) − f (bz)

)
> α , z ∈ U . (1.1)

Obradovic [10] introduced a class of functions f ∈ A which for 0 < λ < 1 satisfies the
inequality that


{

f
′
(z)

(
z

f (z)

)1+λ
}

> 0 , z ∈ U , (1.2)

and he calls such functions as functions of non-Bazilevič type.
We also denote by P the class of functions φ analytic in U, such that φ(0) = 1 and

 (φ(z)) > 0, z ∈ U.

Ma and Minda [5] gave a unified presentation of the class of starlike functions by using
the method of subordination, and introduced a class S∗ [φ] which is defined by

S∗ [φ] =
{
h ∈ A : zh′(z)

h(z)
≺ φ(z) , z ∈ U

}
, (1.3)

where φ ∈ P and φ (U) is symmetrical about the real axis and φ′ (0) > 0. A function
f ∈ S∗ [φ] is thus called a Ma and Minda starlike function with respect to φ.

Following (1.3) and motivated by the works in [3, 5, 7, 29], we adopt the following
definition which defines and introduces a generalization of the above class conditions (1.1)
and (1.2) by invoking a quasi-subordination.

DEFINITION 1. Let φ ∈ P be univalent and φ (U) symmetrical about the real axis
and φ′ (0) > 0. For 1 �= b ∈ C, |b| ≤ 1 and for λ ≥ 0, a function f ∈ A is said to be in
the class Gλ

q (φ, b) if(
f

′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

− 1

)
≺q (φ (z) − 1) , z ∈ U , (1.4)

where powers are considered to be having only principal values.

From the above Definition 1, it follows that f ∈ Gλ
q (φ, b) if and only if there exists

an analytic function ϕ(z) with |ϕ(z)| ≤ 1 (z ∈ U) such that

f
′
(z)
(

(1−b)z
f (z)−f (bz)

)λ − 1

ϕ(z)
≺ (φ (z) − 1) (z ∈ U) . (1.5)
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If in the subordination condition (1.5), ϕ(z) ≡ 1 (z ∈ U) , then the class Gλ
q (φ, b) is de-

noted by Gλ (φ, b) and the functions therein satisfy the condition that

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

≺ φ (z) , z ∈ U .

Here, we note that the functions in the class G2 (φ, 0) if φ (z) = 1+z
1−z

, z ∈ U are univalent
[9]. However, Gλ (φ, b) is a Ma-Minda type class of close-to-convex functions if g(z) :=
z
(

f (z)−f (bz)
(1−b)z

)λ

(1 �= b ∈ C, |b| ≤ 1, λ ≥ 0) is starlike in U.

It may also be noted that the classes G1
q (φ, 0) = S∗

q (φ) and G0
q (φ, 0) = Rq (φ) were

earlier studied by Mohd. and Darus in [7]. Also, we note for real b and for λ = 1, the class
G1 (φ, b) was earlier studied by Goyal and Goswami in [3].

It is worth mentioning here that for φ (z) = 1+z
1−z

, the class G1 (φ,−1) = S∗
s is a class

of functions starlike with respect to symmetric points which was introduced by Sakaguchi
[21]. On the other hand, for φ (z) = 1+(1−2α)z

1−z (0 ≤ α < 1) , 0 < λ < 1, the class
G1+λ (φ, 0) was studied by Tuneski and Darus [29].

A typical problem in geometric function theory is to study a functional made up of
combinations of the coefficients of the original function. Initially, a sharp bound of the func-
tional

∣∣a3 − ca2
2

∣∣ for univalent functions f ∈ A of the form (2.1) with real c (0 ≤ c ≤ 1)

was obtained by Fekete and Szegö [2] in 1933. Since then, the problem of finding the sharp
bounds for this functional of any compact family of functions f ∈ A with any complex
c is generally known as the classical Fekete-Szegö problem or inequality. Fekete-Szegö
problem for several subclasses of A have been studied by many authors (see [5], [17]–[19],
[22]–[25] and [27]–[29]).

In this paper, we mainly concentrate ourselves in determining the coefficient esti-
mates including a Fekete-Szegö inequality of functions belonging to the classes Gλ

q (φ, b) ,

Gλ (φ, b) and the class involving majorization. Some consequences of the main results in-
volving real parameters are also given. It is also mentioned how a convolution structure can
be used to extend the main results.

2. Main Results

Let f ∈ A be of the form

f (z) = z +
∞∑

n=2

an zn , (2.1)

then (for 1 �= b ∈ C, |b| ≤ 1)

f (z) − f (bz)

1 − b
= z +

∞∑
n=2

μnan zn ,

where

μn = 1 − bn

1 − b
= 1 + b + b2 + · · · + bn−1 , n ∈ N . (2.2)
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Hence, for λ ≥ 0, we get(
(1 − b) z

f (z) − f (bz)

)λ

= 1 − λμ2a2 z + λ

{
(1 + λ)

2
μ2

2a
2
2 − μ3a3

}
z2 + · · · . (2.3)

Throughout the paper, we assume the values of λ and b are such that λμn �= n, and for real
b, λμn < n, n = 2, 3, ... .
Also, let the function φ ∈ P be of the form:

φ (z) = 1 + B1z + B2z
2 + · · · (B1 > 0) , (2.4)

and ϕ(z) analytic in U be of the form:

ϕ(z) = d0 + d1z + d2z
2 + · · · . (2.5)

In proving our results, we use an inequality of Keogh and Merkes [4, p. 10] which is given
in the following lemma.

LEMMA 1. Let the Schwarz function w(z) be given by

w (z) = w1z + w2z
2 + w3z

3 + · · · (z ∈ U) , (2.6)

then
|w1| ≤ 1,

∣∣∣w2 − tw2
1

∣∣∣ ≤ 1 + (|t| − 1) |w1|2 ≤ max {1, |t|} ,

where t ∈ C. The result is sharp for the function w (z) = z or w (z) = z2.

Our first main result is contained in the following:

THEOREM 1. Let f ∈ A of the form (2.1) belong to the class Gλ
q (φ, b) , then

|a2| ≤ B1

|2 − λμ2| , (2.7)

and for some c ∈ C :∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3| max

{
1,

∣∣∣∣B2

B1
− B1K

∣∣∣∣
}

, (2.8)

where

K = c (3 − λμ3)

(2 − λμ2)
2

−
λ
(

1 + 2−μ2
2−λμ2

)
μ2

2 (2 − λμ2)
(2.9)

and μn (n ∈ N) is given by (2.2). The result is sharp.

Proof. Let f ∈ Gλ
q (φ, b) , then for a Schwarz function w (z) given by (2.6) and for

an analytic function ϕ(z) given by (2.5), we have

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

− 1 = ϕ(z) (φ (w (z)) − 1) , z ∈ U . (2.10)

In view of (2.4), we obtain

ϕ(z) (φ (w (z)) − 1) =
(
d0 + d1z + d2z

2 + · · ·
) (

B1w1z +
(
B1w2 + B2w

2
1

)
z2 + · · ·

)
= d0B1w1z +

{
d0

(
B1w2 + B2w

2
1

)
+ d1B1w1

}
z2 + · · · . (2.11)
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Using the series expansion of f
′
(z) from (2.1), and the expansion given by (2.3), we get

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

− 1

= (2 − λμ2) a2z +
[
(3 − λμ3) a3 − λ

{
2 − (1 + λ)

2
μ2

}
μ2a

2
2

]
z2 + · · · . (2.12)

From the expansions (2.11) and (2.12), on equating the coefficients of z and z2 in (2.10),
we find that

(2 − λμ2) a2 = d0B1w1 , (2.13)

(3 − λμ3) a3 − λ

{
2 − (1 + λ)

2
μ2

}
μ2a

2
2

= d0

(
B1w2 + B2w

2
1

)
+ d1B1w1 . (2.14)

Now (2.13) gives

a2 = d0B1w1

2 − λμ2
, (2.15)

which in view of (2.14) yields that

(3 − λμ3) a3 = λ {4 − (1 + λ) μ2} μ2

2 (2 − λμ2)
2 d2

0B2
1w2

1 + d0

(
B1w2 + B2w

2
1

)
+ d1B1w1 ,

and therefore,

a3 = B1

3 − λμ3

⎡
⎣d1w1 + d0

⎧⎨
⎩w2 +

⎛
⎝d0λ

(
1 + 2−μ2

2−λμ2

)
μ2B1

2 (2 − λμ2)
+ B2

B1

⎞
⎠w2

1

⎫⎬
⎭
⎤
⎦ . (2.16)

For some c ∈ C, we obtain from (2.15) and (2.16):

a3 − ca2
2 = B1

3 − λμ3

[
d1w1 +

(
w2 + B2

B1
w2

1

)
d0 − B1Kw2

1d
2
0

]
, (2.17)

where K is given by (2.9). Since, ϕ(z) given by (2.5) is analytic and bounded in U, there-
fore, on using [8, p. 172], we have for some y (|y| ≤ 1):

|d0| ≤ 1 and d1 =
(

1 − d2
0

)
y . (2.18)

On putting the value of d1 from (2.18) into (2.17), we get

a3 − ca2
2 = B1

3 − λμ3

[
yw1 +

(
w2 + B2

B1
w2

1

)
d0 −

(
B1Kw2

1 + yw1

)
d2

0

]
. (2.19)

If d0 = 0 in (2.19), we at once get∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3| . (2.20)

But if d0 �= 0, let us then suppose that

F(d0) := yw1 +
(

w2 + B2

B1
w2

1

)
d0 −

(
B1Kw2

1 + yw1

)
d2

0 ,
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which is a polynomial in d0 and hence analytic in |d0| ≤ 1, and maximum of |F(d0)| is
attained at d0 = eiθ (0 ≤ θ < 2π) . We find that max

0≤θ<2π

∣∣F(eiθ )
∣∣ = |F(1)| and

∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3|
∣∣∣∣w2 −

(
B1K − B2

B1

)
w2

1

∣∣∣∣ , (2.21)

which on using Lemma 1 shows that∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3| max

{
1,

∣∣∣∣B1K − B2

B1

∣∣∣∣
}

,

and this last above inequality together with (2.20) thus establishes the result (2.8). Sharp-
ness of this result can be verified for the functions f (z) given by (for 1 �= b ∈ C, |b| ≤ 1,

λ ≥ 0 and z ∈ U)

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

= φ (z) or f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

= φ
(
z2
)

, (2.22)

or

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

− 1 = z (φ (z) − 1) .

This completes the proof of Theorem 1. �
For the case when b = 0, we set, respectively, λ = 1 and λ = 0 in Theorem 1 to

obtain the following sharp results for the known subclasses S∗
q (φ) and Rq (φ).

COROLLARY 1. Let f ∈ A of the form (2.1) belong to the class S∗
q (φ) , then

|a2| ≤ B1 ,

and for some c ∈ C :∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

2
max

{
1,

∣∣∣∣B2

B1
+ (1 − 2c)B1

∣∣∣∣
}

.

The result is sharp.

COROLLARY 2. Let f ∈ A of the form (2.1) belong to the class Rq (φ) , then

|a2| ≤ B1

2
,

and for c ∈ C :
∣∣∣a3 − ca2

2

∣∣∣ ≤ B1

3
max

{
1,

∣∣∣∣B2

B1
− 3c

4
B1

∣∣∣∣
}

,

The result is sharp.

REMARK 1. We note that the Fekete-Szegö inequality obtained above for the classes
S∗

q (φ) and Rq (φ) improve the results obtained earlier by Mohd. and Darus [7, Theorems
2.1 and 2.6].

We next mention the following result for the class Gλ (φ, b).
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THEOREM 2. Let f ∈ A of the form (2.1) belong to the class Gλ (φ, b) , then

|a2| ≤ B1

|2 − λμ2| ,

and for some c ∈ C :∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3| max

{
1,

∣∣∣∣B2

B1
− B1K

∣∣∣∣
}

,

where K is given by (2.9) and μn (n ∈ N) is given by (2.2). The result is sharp.

Proof. Let f ∈ Gλ (φ, b) . Similar to the proof of Theorem 1, if ϕ(z) ≡ 1, then (2.5)
evidently implies that d0 = 1 and dn = 0, n ∈ N, hence, in view of (2.15) and (2.17) and
Lemma 1, we obtain the desired result of Theorem 2. Sharpness can be verified for the
functions f (z) given by

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

= φ (z) or f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

= φ
(
z2
)

.

�
Our next result is devoted to the majorization and the result pertaining to it is contained

in the following.

THEOREM 3. Let 1 �= b ∈ C, |b| ≤ 1. If a function f ∈ A of the form (2.1) satisfies(
f

′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

− 1

)

 (φ (z) − 1) , z ∈ U , (2.23)

then

|a2| ≤ B1

|2 − λμ2| ,

and for some c ∈ C :∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3| max

{
1,

∣∣∣∣B2

B1
− B1K

∣∣∣∣
}

,

where μn (n ∈ N) is given by (2.2) and K is given by (2.9). The result is sharp.

Proof. Following the proof of Theorem 1, if w(z) ≡ z in (2.6), so that w1 = 1 and
wn = 0, n = 2, 3, .., then in view of (2.15) and (2.17), we get

|a2| ≤ B1

|2 − λμ2|
and

a3 − ca2
2 = B1

3 − λμ3

[
d1 + B2

B1
d0 − B1Kd2

0

]
. (2.24)

On putting the value of d1 from (2.18) in (2.24), we get

a3 − ca2
2 = B1

3 − λμ3

[
y + B2

B1
d0 − (B1K + y) d2

0

]
. (2.25)
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If d0 = 0 in (2.25), we get ∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3| , (2.26)

and if d0 �= 0, let

G(d0) := y + B2

B1
d0 − (B1K + y) d2

0 ,

which being a polynomial in d0 is analytic in |d0| ≤ 1, and maximum of |G(d0)| is attained
at d0 = eiθ (0 ≤ θ < 2π) . We thus find that max

0≤θ<2π

∣∣G(eiθ )
∣∣ = |G(1)| and consequently

∣∣∣a3 − ca2
2

∣∣∣ ≤ B1

|3 − λμ3|
∣∣∣∣B1K − B2

B1

∣∣∣∣
which together with (2.26) establishes the desired result of Theorem 3. Sharpness can be
verified for the function given by

f
′
(z)

(
(1 − b) z

f (z) − f (bz)

)λ

= φ (z) .

�
We turn our attention to obtain the bounds of the functional

∣∣a3 − ca2
2

∣∣ for real val-
ues of c and b. We obtain the following result for the class Gλ

q (φ, b) which involves a
quasi-subordination (by applying Theorem 1). Similar forms of results would arise from
Theorems 2 and 3. But we omit these considerations.

COROLLARY 3. Let f ∈ A of the form (2.1) belong to the class Gλ
q (φ, b) , then for

real values of c and b :

∣∣∣a3 − ca2
2

∣∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩

B1
3−λμ3

[
B1

(
λ{4−(1+λ)μ2}μ2−2c(3−λμ3)

2(2−λμ2)
2

)
+ B2

B1

]
if c ≤ ρ,

B1
3−λμ3

if ρ ≤ c ≤ ρ + 2σ,

B1
3−λμ3

[
B1

(
2c(3−λμ3)−λ{4−(1+λ)μ2}μ2

2(2−λμ2)
2

)
− B2

B1

]
if c ≥ ρ + 2σ,

(2.27)
where

ρ = λ {4 − (1 + λ) μ2}μ2

2 (3 − λμ3)
− (2 − λμ2)

2

3 − λμ3

(
1

B1
− B2

B2
1

)
, (2.28)

σ = (2 − λμ2)
2

(3 − λμ3)B1
, (2.29)

and μn (n ∈ N) is given by (2.2). The result is sharp.

Proof. For real values of c and b, we get from (2.8) the above bounds, respectively,
under the following cases:

B1K − B2

B1
≤ −1 , −1 ≤ B1K − B2

B1
≤ 1 and B1K − B2

B1
≥ 1 ,

where K is given by (2.9). This establishes the inequality (2.27).
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(1) For the extreme range of c, i.e. when c < ρ or c > ρ + 2σ , the equality holds if
and only if w (z) = z, or one of its rotations.

(2) For the middle range of c, i.e. when ρ < c < ρ + 2σ, the equality holds if and
only if w (z) = z2, or one of its rotations.

(3) Equality holds for c = ρ if and only if w (z) = z(z+ε)
1+εz (0 ≤ ε ≤ 1), or one of its

rotations, while for c = ρ + 2σ, the equality holds if and only if w (z) = − z(z+ε)
1+εz

(0 ≤ ε ≤ 1), or one of its rotations.

�
The bounds of the functional

∣∣a3 − ca2
2

∣∣ for real values of c and b for the middle range
of the parameter c can be improved further. This new form of the result is contained in the
following theorem.

THEOREM 4. Let f ∈ A of the form (2.1) belong to the class Gλ
q (φ, b) , then for

real values of c and b (when ρ < c < ρ + 2σ) :∣∣∣a3 − ca2
2

∣∣∣+ (c − ρ) |a2|2 ≤ B1

3 − λμ3
(ρ < c ≤ ρ + σ) (2.30)

and ∣∣∣a3 − ca2
2

∣∣∣+ (ρ + 2σ − c) |a2|2 ≤ B1

3 − λμ3
(ρ + σ < c < ρ + 2σ) , (2.31)

where ρ and σ are given, respectively, by (2.28) and (2.29) and μ3 is given by (2.2) (when
n = 3 therein).

Proof. For the real values of c and b, let f ∈ Gλ
q (φ, b) , then from (2.15) and (2.21)

(when ρ < c < ρ + 2σ), we get if ρ < c ≤ ρ + σ :

∣∣∣a3 − ca2
2

∣∣∣+ (c − ρ) |a2|2

≤ B1

3 − λμ3

[
|w2| − B1 (3 − λμ3)

(2 − λμ2)
2 (c − ρ − σ) |w1|2 +

B1 (3 − λμ3)

(2 − λμ2)
2 (c − ρ) |w1|2

]
.

Hence, by applying Lemma 1, we get∣∣∣a3 − ca2
2

∣∣∣+ (c − ρ) |a2|2 ≤ B1

3 − λμ3

[
1 − |w1|2 + |w1|2

]
,

which yields the estimate (2.30). If ρ +σ < c < ρ + 2σ, then again from (2.15) and (2.21)
by Lemma 1, we get

∣∣∣a3 − ca2
2

∣∣∣+ (ρ + 2σ − c) |a2|2
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≤ B1

3 − λμ3

[
|w2| + B1 (3 − λμ3)

(2 − λμ2)
2 (c − ρ − σ) |w1|2 +

B1 (3 − λμ3)

(2 − λμ2)
2 (ρ + 2σ − c) |w1|2

]

≤ B1

3 − λμ3

[
1 − |w1|2 + |w1|2

]
,

which gives the other estimate (2.31). �
REMARK 2. We observe that on choosing λ = 1, the inequality (2.27) and its subse-

quent improved result given by Theorem 4 coincide with the results of Goyal and Goswami
[3, Theorems 2.1, 2.2].

3. Concluding Remarks

Lastly, we make concluding remarks by observing that several differential as well as
integral linear operators for the class A defined in literature can be expressed by means of a
convolution structure, see (amongst others), the works in the papers of [11]–[15] and [26];
see also [1].

Since, the convolution of f ∈ A of the form (2.1) and h ∈ A of the form:

h(z) = z +
∞∑

n=2

hn zn , hn �= 0 , z ∈ U (3.1)

is defined by

(f ∗ h) (z) = z +
∞∑

n=2

anhn zn = (h ∗ f ) (z) ,

therefore, we can apply Theorems 1, 2 and 3 for the functions involved in the convolu-
tion (f ∗ h) (z), and obtain the associated results for such a convolution structure. These
considerations being quite straightforward, we omit mentioning of such results here.

Acknowledgment. The authors express their sincerest thanks to the referee for giv-
ing various useful suggestions.
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