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Abstract. A relation between the Goldstein-Petrich hierarchy for plane curves and
the Toda lattice hierarchy is investigated. A representation formula for plane curves is given
in terms of a special class of τ -functions of the Toda lattice hierarchy. A representation
formula for discretized plane curves is also discussed.

1. Introduction

Intimate connection between integrable systems and differential geometry of curves
and surfaces has been important topic of intense research [1, 23]. Goldstein and Petrich
introduced a hierarchy of commuting flows for plane curves that is related to the modified
Korteweg-de Vries (mKdV) hierarchy [6]. The second Goldstein-Petrich flow is defined by
the modified Korteweg-de Vries equation,

∂κ

∂t
= ∂3κ

∂x3 + 3

2
κ2 ∂κ

∂x
, (1.1)

where κ = κ(x, t) denotes the curvature and x is the arc-length. This result has been
extended and investigated from various viewpoints [3, 4, 5, 9, 10, 11, 16, 21, 22]. In [9,
10], a representation formula for curve motion in terms of the τ function with respect
to the second Goldstein-Petrich flow has been presented by means of the Hirota bilinear
formulation and determinant expression of solutions. The aim of this article is to generalize
the results in [9, 10] to the whole hierarchy. We will show how the Goldstein-Petrich
hierarchy is embedded in the Toda lattice hierarchy[24, 28]. We remark that the semi-
discrete case, discussed in [10], is not considered in this paper.

An advantage of infinite hierarchical formulation is its relation to integrable discretiza-
tion. Miwa showed that Hirota’s discrete Toda equation [7] can be obtained by applying a
change of coordinate to the KP hierarchy [12, 19, 24]. Using a generalization of Miwa’s
approach, we will show that Matsuura’s discretized curve motion [18] can be obtained
also from the Toda lattice hierarchy. Another merit of the KP theoretic formulation is
Lie algebraic aspect of the hierarchy [12, 20]. We will discuss a relationship between the
Goldstein-Petrich hierarchy and a real form of the affine Lie algebrâsl(2,C).

29
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2. Goldstein-Petrich flows for Euclidean plane curves

We assume that r(x) = t (X(x), Y (x)) is a curve in Euclidean plane R2, parameterized
by the arc-length x. Define the tangent vector t̂ and the unit normal n̂ by

t̂ = rx , n̂ =
[

0 −1
1 0

]

t̂ . (2.1)

Here the subscript x indicates differentiation. The Frenet equation for r is given by

t̂x = κ n̂ , n̂x = −κ t̂ , (2.2)

where κ is the curvature of the curve r. Goldstein and Petrich [6] considered dynamics of
a plane curve described by the equation of the form

∂r
∂tn

= f (n)n̂ + g(n) t̂ . (2.3)

The coefficients f (n) = f (n)(x, t), g(n) = g(n)(x, t) (t = (t1, t2, t3, . . .)) are differential
polynomials in κ . We remark that our choice of signature in (2.2) is different from that of
[6]. Following the discussion in [6], we choose f (n)(x, t), g(n)(x, t) as

f (1) = 0 , g(1) = 1 , f (2) = κx , g(2) = κ2/2 ,

g(n)x = κf (n) , f (n+1) =
(

f (n)x + κg(n)
)

x
.

(2.4)

We call as Goldstein-Petrich hierarchy the equations defined by (2.1), (2.2), (2.3) and (2.4).
Applying the condition (2.4) to (2.3), we obtain

∂ t̂
∂tn

=
(

f (n)x + κg(n)
)

n̂ ,
∂ n̂
∂tn

= −
(

f (n)x + κg(n)
)

t̂ . (2.5)

The compatibility condition for (2.2) and (2.5) is reduced to

∂κ

∂tn
=
(

f (n)x + κg(n)
)

x
= f (n+1) . (2.6)

The case n = 2 of (2.6) gives the mKdV equation (1.1). One finds that

f (n) = Ωf (n−1) , Ω = ∂2
x + κ2 + κx∂

−1
x ◦ κ . (2.7)

We remark that the operator Ω is the recursion operator for the modified KdV hierarchy
[2].

We now introduce complex coordinate via a map ρ : R2 → C given by

ρ(X, Y ) = X + √−1Y . (2.8)

and define Z, T , N as

Z = ρ(r) , T = ρ(t̂) , N = ρ(n̂) = √−1 T . (2.9)

Since |t̂| = |n̂| = 1, the complex variables T and N satisfy |T | = |N | = 1. The equations
(2.1), (2.2), (2.3) are rewritten as

T = Zx , Tx = √−1κT ,
∂Z

∂tn
=
(

g(n) + √−1 f (n)
)

T . (2.10)
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3. Toda lattice hierarchy

In this section, we briefly review the theory of Toda lattice hierarchy using the lan-
guage of difference operators [24, 28] (See also [13, 25, 26]). We denote as e∂s the
shift operator with respect to s: e∂s f (s) = f (s + 1). For a difference operator A(s) =
∑

−∞<j<+∞ aj (s)e
j∂s , we define the non-negative and negative part of A(s) as

(A(s))≥0 =
∑

0≤j<+∞
aj (s)e

j∂s , (A(s))<0 =
∑

−∞<j<0

aj (s)e
j∂s . (3.1)

Let L(∞)(s), L(0)(s) be difference operators of the form

L(∞)(s) = e∂s +
∑

−∞<j≤0

bj (s)e
j∂s , L(0)(s) =

∑

−1≤j<+∞
cj (s)e

j∂s , (3.2)

where we assume c−1(s) �= 0 for any s. We introduce two sets of infinitely many variables
x = (x1, x2, . . .), y = (y1, y2, . . .) and define the weight of the variables as

weight(xn) = n , weight(yn) = −n (n = 1, 2, . . .) . (3.3)

Each coefficient of L(∞)(s), L(0)(s) is a function of x, y, i.e. bj (s) = bj (s; x, y), cj (s) =
cj (s; x, y). The Toda lattice hierarchy is defined as the following set of differential equa-
tions of Lax-type:

∂L(∞)(s)

∂xn
=
[

Bn(s), L
(∞)(s)

]

,
∂L(0)(s)

∂xn
=
[

Bn(s), L
(0)(s)

]

,

Bn(s) =
(

L(∞)(s)n
)

≥0
(n = 1, 2, 3, . . . ) ,

(3.4)

∂L(∞)(s)

∂yn
=
[

Cn(s), L
(∞)(s)

]

,
∂L(0)(s)

∂yn
=
[

Cn(s), L
(0)(s)

]

,

Cn(s) =
(

L(0)(s)n
)

<0
(n = 1, 2, 3, . . . ) .

(3.5)

PROPOSITION 1 ([28], Proposition 1.4). Let L(∞), L(0) be difference operators of
the form (3.2) and satisfy the differential equations (3.4), (3.5). Then there exist difference
operators Ŵ (∞)(s), Ŵ (0)(s) of the form,

Ŵ (∞)(s) = 1 +
∞
∑

j=1

ŵ
(∞)
j (s)e−j∂s ,

Ŵ (0)(s) =
∞
∑

j=0

ŵ
(0)
j (s)ej∂s (ŵ

(0)
0 (s) �= 0) ,

(3.6)

satisfying the following equations:

L(∞)(s) = Ŵ (∞)(s)e∂s Ŵ (∞)(s)−1 ,

L(0)(s) = Ŵ (0)(s)e−∂s Ŵ (0)(s)−1 ,
(3.7)



32 K. KAJIWARA and S. KAKEI

∂Ŵ (∞)(s)

∂xn
= Bn(s)Ŵ

(∞)(s)− Ŵ (∞)(s)en∂s ,

∂Ŵ (∞)(s)

∂yn
= Cn(s)Ŵ

(∞)(s) ,

∂Ŵ (0)(s)

∂xn
= Bn(s)Ŵ

(0)(s) ,

∂Ŵ (0)(s)

∂yn
= Cn(s)Ŵ

(0)(s)− Ŵ (0)(s)e−n∂s .

(3.8)

PROPOSITION 2 ([28], (1.2.18)). The difference operators Ŵ (∞)(s), Ŵ (0)(s) in
Proposition 1 satisfy

Ŵ (∞)(s; x ′, y ′) exp

[ ∞
∑

n=1

(x ′
n − xn)e

n∂s

]

Ŵ (∞)(s; x, y)−1

= Ŵ (0)(s; x ′, y ′) exp

[ ∞
∑

n=1

(y ′
n − yn)e

−n∂s
]

Ŵ (0)(s; x, y)−1

(3.9)

for any x, x ′, y, y ′ and any integer s.

Define ŵ(∞)∗
j (s; x, y), ŵ(0)∗j (s; x, y) by expanding Ŵ (∞)(s; x, y)−1, Ŵ (0)(s; x, y)−1

with respect to e∂s :

Ŵ
(∞)
j (s; x, y)−1 =

∞
∑

j=0

e−j∂s ŵ(∞)∗
j (s + 1; x, y) ,

Ŵ (0)(s; x, y)−1 =
∞
∑

j=0

ej∂s ŵ
(0)∗
j (s + 1; x, y) .

(3.10)

From (3.6), (3.7) and (3.10), we obtain

b0(s) = ŵ
(∞)
1 (s)+ ŵ

(∞)∗
1 (s + 1) = ŵ

(∞)
1 (s)− ŵ

(∞)
1 (s + 1) ,

b−n(s) = ŵ
(∞)
n+1(s)+ ŵ

(∞)∗
n+1 (s + 1 − n)+

n
∑

j=1

ŵ
(∞)
j (s)ŵ

(∞)∗
n+1−j (s + 1 − n) (n ≥ 1) ,

cn(s) =
n+1
∑

j=0

ŵ
(0)
j (s)ŵ

(0)∗
n−j+1(s + n+ 1) (n ≥ −1) . (3.11)
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THEOREM 3 ([28], Theorem 1.7). There exists a function τ (s) = τ (s; x, y) satis-
fying

ŵ
(∞)
j (s; x, y) = pj (−∂̃x )τ (s; x, y)

τ (s; x, y) ,

ŵ
(0)
j (s; x, y) = pj (−∂̃y )τ (s + 1; x, y)

τ (s; x, y) ,

ŵ
(∞)∗
j (s; x, y) = pj (∂̃x)τ (s; x, y)

τ (s; x, y) ,

ŵ
(0)∗
j (s; x, y) = pj (∂̃y)τ (s − 1; x, y)

τ (s; x, y)

(3.12)

where ∂̃x = (

∂x1, ∂x2/2, ∂x3/3, . . .
)

, ∂̃y = (

∂y1, ∂y2/2, ∂y3/3, . . .
)

, and the polynomials
pn(t) (n = 0, 1, 2, . . .) are defined by

ξ(t, λ) = exp

⎡

⎣

∞
∑

j=1

tnλ
j

⎤

⎦ =
∞
∑

n=0

pn(t)λ
n , t = (t1, t2, . . .) . (3.13)

Furthermore, the τ -function τ (s; x, y) of the Toda lattice hierarchy is determined uniquely
by (3.12) up to a constant multiple factor.

It follows that

c−1(s) = ŵ
(0)
0 (s)ŵ

(0)∗
0 (s) = τ (s + 1)τ (s − 1)

τ (s)2
,

c0(s) = ŵ
(0)
0 (s)ŵ

(0)∗
1 (s + 1)+ ŵ

(0)
1 (s)ŵ

(0)∗
0 (s + 1) = ∂

∂y1
log

τ (s)

τ (s + 1)
.

(3.14)

THEOREM 4 ([28], Theorem 1.11). τ -functions of Toda lattice hierarchy satisfy the
following equation (bilinear identity):

∮

τ (s′; x ′ − [λ−1], y ′)τ (s; x + [λ−1], y)eξ(x ′−x,λ)λs ′−sdλ

=
∮

τ (s′ + 1; x ′, y ′ − [λ])τ (s − 1; x, y + [λ])eξ(y ′−y,λ−1)λs
′−sdλ ,

(3.15)

where [λ] = (λ, λ2/2, λ3/3, . . .
)

, and we have used the notation of formal residue,
∮

(

∑

n

anλ
n

)

dλ = 2π
√−1 a−1 . (3.16)

Conversely, if τ (s; x, y) solves the bilinear identity (3.15), then Ŵ (∞)(s; x, y) and
Ŵ (0)(s; x, y) defined by (3.6) and (3.12) satisfy (3.8).
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4. Time-flows with negative weight with 2-reduction condition

4.1. Reduction to Goldstein-Petrich hierarchy
We now impose the 2-reduction condition[28]

L(∞)(s)2 = e2∂s , L(0)(s)2 = e−2∂s , (4.1)

that implies

W(∞)(s + 2) = W(∞)(s) , W(0)(s + 2) = W(0)(s) , (4.2)

L(∞)(s + 2) = L(∞)(s) , L(0)(s + 2) = L(0)(s) . (4.3)

PROPOSITION 5 ([28], Proposition 1.13). Let L(∞)(s; x, y), L(0)(s; x, y) be solu-
tions to the Toda lattice hierarchy (3.4), (3.5), which satisfy the 2-reduction conditions
(4.1). Then one finds that

∂L(∞)

∂x2n
= ∂L(0)

∂x2n
= ∂L(∞)

∂y2n
= ∂L(0)

∂y2n
= 0 (4.4)

for n = 1, 2, . . . .

PROPOSITION 6 ([28], Corollary 1.14). SupposeL(∞)(s; x, y), L(0)(s; x, y) be so-
lutions to the Toda lattice hierarchy (3.4), (3.5), which satisfy the 2-reduction conditions
(4.1). Then there exist suitable difference operators Ŵ (∞)(s; x, y), Ŵ (0)(s; x, y) such that
the corresponding τ functions subject to the following conditions:

τ (s; x, y) = τ ′(s; x, y) exp

(

−
∞
∑

n=1

nxnyn

)

,

τ ′(s + 2; x, y) = τ ′(s; x, y) ,
∂τ ′(s; x, y)

∂x2n
= ∂τ ′(s; x, y)

∂y2n
= 0 (n = 1, 2, . . .) .

(4.5)

We consider the time-evolutions with respect to the variables with negative weight
y = (y1, y2, . . .) under the 2-reduction condition (4.1). In this case, one can write down
the difference operators Cn(s) (n = 1, 2, . . .) explicitly:

C2n(s) = e−2n∂s , C2n−1 =
2n−3
∑

j=−1

cj (s)e
(j−2n)∂s . (4.6)

Applying (4.6) to (3.5) and (3.8), we obtain the following equations (n = 0, 1, 2, . . .):

∂w1(s)

∂y2n+1
= c2n−1(s) (4.7)

∂c2n(s)

∂y1
= ∂c0(s)

∂y2n+1
= c−1(s)c2n+1(s + 1)− c−1(s + 1)c2n+1(s) , (4.8)

∂c−1(s)

∂y2n+1
= ∂c2n−1(s)

∂y1
= c−1(s) {c2n(s + 1)− c2n(s)} , (4.9)

where we have used the property cj (s + 2) = cj (s).
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PROPOSITION 7. For n = 0, 1, 2, . . . , the coefficients cn(s; x, y) can be repre-
sented by c−1(s; x, y). For example, c0(s; x, y) and c1(s; x, y) can be written as

c0(s) = − 1

2c−1(s)

∂c−1(s)

∂y1
= −1

2

∂

∂y1
log c−1(s) ,

c1(s) = −c−1(s)

2

{

c0(s)
2 + ∂c0(s)

∂y1

}

= −c−1(s)

8

[

{

∂

∂y1
log c−1(s)

}2

− 2
∂2

∂y2
1

log c−1(s)

]

.

(4.10)

Proof. From (3.2) and (4.1), we have

c−1(s)c−1(s − 1) = 1 , c0(s)+ c0(s − 1) = 0 ,

c−1(s)ck+1(s − 1)+ c−1(s + k + 1)ck+1(s)+
k
∑

j=0

cj (s)ck−j (s + j) = 0 .
(4.11)

The desired result can be obtained from (4.8), (4.9) and (4.11). �
REMARK. Under the 2-reduction conditions (4.1), the map

∑

n∈Z
an(s)e

n∂s �→
∑

n∈Z

[

an(0) 0
0 an(1)

] [

0 1
ζ 2 0

]n

(4.12)

gives an algebra isomorphism [28]. For example, the operatorsC1(s), C3(s) are mapped as
follows:

C1(s) �→
[

c−1(0) 0
0 c−1(1)

] [

0 ζ−2

1 0

]

=
[

0 c−1(0)ζ−2

1/c−1(0) 0

]

,

C3(s) �→
[

c0(0)ζ−2 c−1(0)ζ−4 + c1(0)ζ−2

ζ−2/c−1(0)+ c1(1) −c0(0)ζ−2

]

.

(4.13)

Applying this isomorphism to the equations (3.4), (3.5), one obtains the Lax equations of
2 × 2-matrix form.

For n = 0, 1, 2, . . . , define F (n)(s) and G(n)(s) as

F (n)(s) = 1

2
{c−1(s + 1)c2n−1(s)− c−1(s)c2n−1(s + 1)} ,

G(n)(s) = 1

2
{c−1(s + 1)c2n−1(s)+ c−1(s)c2n−1(s + 1)} .

(4.14)

From (4.7), (4.11) and (4.14), we have

∂w1(s)

∂y2n+1
= F (n)(s)+G(n)(s)

c−1(s + 1)
= c−1(s)

{

F (n)(s)+G(n)(s)
}

. (4.15)
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It is straightforward to show that

∂F (n)(s)

∂y1
= 2c0(s)G

(n)(s)+ c2n(s + 1)− c2n(s) ,

∂G(n)(s)

∂y1
= 2c0(s)F

(n)(s) .

(4.16)

Next we consider reality condition. Assume xj , yj ∈ R (j = 1, 2, . . .) and that the
τ -function τ (s; x, y) satisfies

τ (s; x, y) = τ (s + 1; x, y) , (4.17)

where · denotes complex conjugation. Under this condition, the following relations hold:

ŵ
(∞)
j (s) = ŵ

(∞)
j (s + 1) , ŵ

(0)
j (s) = ŵ

(0)
j (s + 1) ,

b−n(s) = b−n(s + 1) , cn(s) = cn(s + 1) ,

F (n)(s) = −F (n)(s) , G(n)(s) = G(n)(s) .

(4.18)

Furthermore, it follows from (3.14) that

c−1(s) c−1(s) = 1 , c0(s)+ c0(s) = 0 . (4.19)

THEOREM 8 (Representation formula in terms of the τ -functions). If we set

x = 2y1 , tn = 2y2n−1 (n = 1, 2, . . .) ,

Z = ŵ
(∞)
1 (s = 0; x, y) = − ∂

∂x1
log τ (0; x, y) ,

T = 1

2
c−1(s = 0; x, y) = τ (1; x, y)2

2τ (0; x, y)2 ,

κ = √−1 c0(s = 0; x, y) = √−1
∂

∂y1
log

τ (0; x, y)
τ (1; x, y) ,

f (n) = −√−1F (n−1)(s = 0) , g(n) = G(n−1)(s = 0) ,

(4.20)

then Z, T , κ, f (n), g(n) solve the equations (2.4), (2.10).

Proof. The first equation of (2.10) follows from (4.7). The second and the third are
obtained from (4.9), (4.15). The recurrence relations (2.4) follows from (4.8), (4.14) and
(4.16). �
4.2. Discrete mKdV flow on discrete curves

We recall a discrete analogue of the mKdV-flow of plane curve introduced by Matsuura
[18]. Let γmn : Z2 → C be a map describing the discrete motion of discrete plane curve
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with segment length an:
∣

∣

∣

∣

γmn+1 − γmn

an

∣

∣

∣

∣

= 1 ,

γ mn+1 − γmn

an
= e

√−1Km
n
γ mn − γmn−1

an−1
,

γ m+1
n − γmn

bn
= e

√−1Wm
n
γ mn+1 − γmn

an
.

(4.21)

The compatibility condition for (4.21) implies the existence of the function θmn defined by

Wm
n = θm+1

n − θmn+1

2
, Km

n = θmn+1 − θmn−1

2
. (4.22)

Then the isoperimetric condition (the first equation in (4.21)) implies that θmn satisfies the
discrete potential mKdV equation [8]

tan

(

θm+1
n+1 − θmn

2

)

= bm + an

bm − an
tan

(

θm+1
n − θmn+1

2

)

. (4.23)

In what follows, we will show that the equations (4.21) can be obtained from the Toda
lattice hierarchy. We introduce discrete variablesm,n ∈ Z and assume ỹk depends onm,n
as

ỹk(m, n) = −
n−1
∑

n′

ak
n′
k

−
m−1
∑

m′

bk
m′
k

(k = 1, 2, 3, . . .) , (4.24)

which is a non-autonomous version of Miwa transformation [30]. We remark that if an = a

and bm = b for any n,m then (4.24) is reduced to original Miwa transformation [19]:

ỹk(m, n) = −na
k

k
− mbk

k
(k = 1, 2, 3, . . .) . (4.25)

To consider the dependence on m,n, we use the following abbreviation:

Ŵ (∞)(s;m,n) = Ŵ (∞)(s; x, y = ỹ(m, n)),

Ŵ (0)(s;m,n) = Ŵ (0)(s; x, y = ỹ(m, n)) .
(4.26)

PROPOSITION 9. Ŵ (∞)(s;m,n) and Ŵ (0)(s;m,n) satisfy

Ŵ (∞)(s;m,n+ 1) =
{

1 − anũ(s;m,n)e−∂s
}

Ŵ (∞)(s;m,n) ,
Ŵ (0)(s;m,n+ 1)

(

1 − ane
−∂s
)

=
{

1 − anũ(s;m,n)e−∂s
}

Ŵ (0)(s;m,n) ,
Ŵ (∞)(s;m+ 1, n) =

{

1 − bmṽ(s;m,n)e−∂s
}

Ŵ (∞)(s;m,n) ,
Ŵ (0)(s;m+ 1, n)

(

1 − bme
−∂s
)

=
{

1 − bmṽ(s;m,n)e−∂s
}

Ŵ (0)(s;m,n) ,

(4.27)
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where

ũ(s;m,n) = ŵ
(0)
0 (s;m,n+ 1)

ŵ
(0)
0 (s − 1;m,n)

= τ (s − 1;m,n)τ(s + 1;m,n+ 1)

τ (s;m,n)τ(s;m,n+ 1)
,

ṽ(s;m,n) = ŵ
(0)
0 (s;m+ 1, n)

ŵ
(0)
0 (s − 1;m,n)

= τ (s − 1;m,n)τ(s + 1;m+ 1, n)

τ (s;m,n)τ(s;m+ 1, n)
.

(4.28)

Proof. Setting x ′
k = xk , y ′

k = ỹ(m, n+ 1), yk = ỹ(m, n) (k = 1, 2, . . .) in (3.9), we
have

Ŵ (∞)(s;m,n+ 1)Ŵ (∞)(s;m,n)−1

= Ŵ (0)(s;m,n+ 1)
(

1 − ane
−∂s
)

Ŵ (0)(s;m,n)−1 ,
(4.29)

where we have used the formula exp
(−∑∞

n=0 z
n/n
) = 1 − z. Since the left-hand side of

(4.29) is of non-positive order with respect to e∂s , it follows that it is of the form

(4.29) = c̃0(s;m,n)+ c̃−1(s;m,n)e−∂s . (4.30)

Inserting Ŵ (∞) and Ŵ (0) of (3.6) to (4.29) with (4.30), we obtain the first and the second
equation of (4.27). The third and the fourth can be obtained in the same fashion. �

REMARK. Tsujimoto [27] proposed and investigated the equations (4.27) as a dis-
crete analogue of (3.8). In our approach, the results in [27] can be obtained directly from
(3.9) with the Miwa transformation.

Hereafter in this section, we impose the 2-reduction condition τ (s + 2;m,n) =
τ (s;m,n). From the first and the third equations of (4.27), we obtain

ŵ
(∞)
1 (s;m,n+ 1) = ŵ

(∞)
1 (s;m,n)− anũ(s;m,n) ,

ŵ
(∞)
1 (s;m+ 1, n) = ŵ

(∞)
1 (s;m,n)− bmṽ(s;m,n) .

(4.31)

It follows that

ŵ
(∞)
1 (s;m,n+ 1)− ŵ

(∞)
1 (s;m,n)

an

= K(s;m,n)ŵ
(∞)
1 (s;m,n)− ŵ

(∞)
1 (s;m,n− 1)

an−1
,

ŵ
(∞)
1 (s;m+ 1, n)− ŵ

(∞)
1 (s;m,n)

bm

= W(s;m,n)ŵ
(∞)
1 (s;m,n+ 1)− ŵ

(∞)
1 (s;m,n)

an
,

(4.32)

with

K(s;m,n) = ũ(s;m,n)
ũ(s;m,n− 1)

= τ (s + 1;m,n+ 1)τ (s;m,n− 1)

τ (s;m,n+ 1)τ (s + 1;m,n− 1)
,

W(s;m,n) = ṽ(s;m,n)
ũ(s;m,n) = τ (s + 1;m+ 1, n)τ (s;m,n+ 1)

τ (s;m+ 1, n)τ (s + 1;m,n+ 1)
.

(4.33)
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If we introduceΘ(s;m,n) as

Θ(s;m,n) = τ (s + 1;m,n)/τ(s;m,n) , (4.34)

then K(s;m,n) and W(s;m,n) are written as

K(s;m,n) = Θ(s;m,n+ 1)

Θ(s;m,n− 1)
, W(s;m,n) = Θ(s;m+ 1, n)

Θ(s;m,n+ 1)
. (4.35)

We furthermore impose the reality condition (4.17). Under the condition, Θ(s;m,n)
satisfies |Θ(s;m,n)| = 1 and one can set

e
√−1θmn = Θ(s = 0;m,n) = τ (1;m,n)/τ(0;m,n) . (4.36)

THEOREM 10 (Representation formula for discrete curves in terms of the
τ -functions). If we set

γmn = ŵ
(∞)
1 (s = 0;m,n) = − ∂

∂x1
log τ (0;m,n) ,

θmn = 1√−1
logΘ(s = 0;m,n) = 1√−1

log
τ (1;m,n)
τ(0;m,n) ,

(4.37)

then γmn and θmn solve the equations (4.21) and (4.22).

Proof. From (4.31) and (4.28), it follows that
∣

∣

∣

∣

∣

ŵ
(∞)
1 (s;m,n+ 1)− ŵ

(∞)
1 (s;m,n)

an

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

τ (s − 1;m,n)τ(s + 1;m,n+ 1)

τ (s;m,n)τ(s;m,n+ 1)

∣

∣

∣

∣

= 1

(4.38)

under the condition (4.17). This is equivalent to the first equation of (4.21). The remaining
equations follow directly from (4.32), (4.35) and (4.36). �

5. Fermionic construction of τ -functions

In [25, 26], Takebe described τ -functions for the Toda hierarchy as expectation val-
ues of fermionic operators (See also [24]). We firstly recall the definition of charged free
fermions [12, 20].

Let A be an associative unital C-algebra generated by ψi , ψ∗
i (i ∈ Z) satisfying the

relations
ψiψ

∗
j + ψ∗

j ψi = δij , ψiψj + ψjψi = ψ∗
i ψ

∗
j + ψ∗

j ψ
∗
i = 0 . (5.1)

We consider a class of infinite matricesA = [aij
]

i,j∈Z that satisfies the following condition:

there exists N > 0 such that aij = 0 for all i, j with |i − j | > N . (5.2)

Define the Lie algebra gl(∞) as [12]

gl(∞) =
⎧

⎨

⎩

∑

i,j∈Z
aij :ψiψ∗

j :
∣

∣

∣

∣

A = [aij
]

i,j∈Z satisfies (5.2)

⎫

⎬

⎭

⊕ C (5.3)
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where : · : indicates the normal ordering

:ψiψ∗
j : =

{

ψiψ
∗
j if i �= j or i = j ≥ 0 ,

−ψ∗
j ψi if i = j < 0 .

(5.4)

We also define the group G corresponds to gl(∞) to be

G =
{

eX1eX2 . . . eXk
∣

∣ Xi ∈ gl(∞)
}

. (5.5)

Consider a left A-module with a cyclic vector |vac〉 satisfying

ψj |vac〉 = 0 (j < 0) , ψ∗
k |vac〉 = 0 (k ≥ 0) . (5.6)

The A-module A|vac〉 is called the fermion Fock space F , which we denote F . We also
consider a right A-module (the dual Fock space F∗) with a cyclic vector 〈vac| satisfying

〈vac|ψj = 0 (j ≥ 0) , 〈vac|ψ∗
k = 0 (k < 0) . (5.7)

We further define the generalized vacuum vectors |s〉, 〈s| (s ∈ Z) as

|s〉 =

⎧

⎪

⎨

⎪

⎩

ψ∗
s · · ·ψ∗−1|vac〉 for s < 0 ,

|vac〉 for s = 0 ,

ψs−1 · · ·ψ0|vac〉 for s > 0 ,

〈s| =

⎧

⎪

⎨

⎪

⎩

〈vac|ψ−1 · · ·ψs for s < 0 ,

〈vac| for s = 0 ,

〈vac|ψ∗
0 · · ·ψ∗

s−1 for s > 0 .

(5.8)

There exists a unique linear map (the vacuum expectation value) F∗ ⊗AF → C such
that 〈vac| ⊗ |vac〉 �→ 1. For a ∈ A we denote by 〈vac|a|vac〉 the vacuum expectation value
of the vector 〈vac|a ⊗ |vac〉 = 〈vac| ⊗ a|vac〉 in F∗ ⊗A F .

THEOREM 11 ([25] §2, [26] §2). For s ∈ Z and g ∈ G, define τg (s; x, y) as

τg (s; x, y) = 〈s|eH(x)ge−H̄ (y)|s〉 , (5.9)

where

H(x) =
∞
∑

n=1

xn
∑

j∈Z
ψjψ

∗
j+n , H̄ (y) =

∞
∑

n=1

yn
∑

j∈Z
ψj+nψ∗

j . (5.10)

Then τg(s; x, y) satisfies the bilinear identity (3.15).

We introduce an automorphism ιl of A by

ιl(ψi) = ψi−l , ιl(ψ
∗
i ) = ψ∗

i−l , (5.11)

which satisfies
〈s′|a|s〉 = 〈s′ − l|ιl(a)|s − l〉 (5.12)

for any s, s′, l and any a ∈ A.

PROPOSITION 12. If g ∈ G satisfies

ι1(g) = g , (5.13)

then the τ -function corresponds to g gives a solution of the Goldstein-Petrich hierarchy.
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Proof. From (5.12) and (5.13), it is clear that (4.17) holds. �
To construct soliton-type solutions, we choose g as

gN({cj }, {pj }, {qj }) =
N
∏

j=1

eciψ(pi)ψ
∗(qi) ,

ψ(p) =
∑

j∈Z
ψjp

j , ψ∗(q) =
∑

j∈Z
ψ∗
j q

−j .
(5.14)

We remark that the vacuum expectation value of ecψ(p)ψ
∗(q) makes sense even when X =

cψ(p)ψ∗(q) does not satisfy the condition (5.2):

〈s|ecψ(p)ψ∗(q)|s〉 = 〈s| {1 + cψ(p)ψ∗(q)
} |s〉 = 1 +

(

p

q

)s cq

p − q
. (5.15)

We consider the following two types of conditions for the parameters in (5.14):

A. (Soliton solutions)

cj ∈ √−1R, pj ∈ R, qj = −pj (j = 1, 2, . . . , N) , (5.16)

B. (Breather solutions)

N = 2M, c2k−1 = −c2k , p2k−1 = p2k (k = 1, 2, . . . ,M) ,

qj = −pj (j = 1, 2, . . . , N) .
(5.17)

A straightforward calculation shows that gN
({cj }, {pj }, {qj }

)

satisfies (5.13) under each of
the conditions (5.16), (5.17). The τ -functions under these conditions provide the solutions
given in [9, 10].

We now consider Lie algebraic meaning of the condition (5.13). We recall the facts
about a fermionic representation of the affine Lie algebra ̂sl(2,C). The affine Lie algebra
̂sl(2,C) is generated by the Chevalley generators {e0, e1, f0, f1, h0, h1} that satisfy

[

hi, hj
] = 0 ,

[

ei, fj
] = δij hi for all i, j ,

[

hi, ej
] =

{

2ej if i = j ,

−2ej if i �= j ,

[

hi, fj
] =

{

−2ej if i = j ,

2ej if i �= j ,
[

ei,
[

ei,
[

ei , ej
]]] = [fi,

[

fi,
[

fi, fj
]]] = 0 if i �= j .

(5.18)

Define a linear map π : ̂sl(2,C) → gl(∞) as

π
(

ej
) =

∑

n≡j mod 2

ψn−1ψ
∗
n , π

(

fj
) =

∑

n≡j mod 2

ψnψ
∗
n−1 ,

π
(

hj
) =

∑

n≡j mod 2

( :ψn−1ψ
∗
n−1 : − :ψnψ∗

n : )+ δj0 (j = 0, 1) .
(5.19)

THEOREM 13 ([12, 20]). (π,F) is a representation of ̂sl(2,C).

Note that ι1 works as an involutive automorphism:

ι1(e0) = e1 , ι1(f0) = f1 , ι1(e1) = e0 , ι1(f1) = f0 , (5.20)
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which defines a real form of ̂sl(2,C). Kobayashi [15] classified automorphisms of prime
order of the affine Lie algebra ̂sl(n,C). The involutive automorphism ι1 under consider-
ation is labeled as (1a’)-type ([15], Theorem 3). We remark that the same real form of
̂sl(2,C) appeared also in construction of solutions of a derivative nonlinear Schödinger
equation [14].

Appendix: Time-flows with positive weight

So far, we have used the time-evolutions with respect to the variables with negative
weight y = (y1, y2, . . .) to derive the Goldstein-Petrich hierarchy. In this appendix, we use
x = (x1, x2, . . .) and show that the mKdV hierarchy can be obtained under the 2-reduction
condition (4.1). Applying the condition (4.1), one can show that

B2n−1(s) = e(2n−1)∂s +
∑

−2(n−1)≤j≤0

bj (s)e
(2n−2+j)∂s ,

B2n(s) = e2n∂s (n = 1, 2, . . .) .

(A.1)

From (3.2) and (4.1), we obtain

b0(s + 1)+ b0(s) = 0,

b−k−1(s + 1)+ b−k−1(s)+
k
∑

j=0

b−j (s)bj−k(s − j) = 0 (k = 0, 1, 2, . . .) .
(A.2)

Applying (A.1) to (3.4), we obtain

∂b0(s)

∂x2n−1
= b−2n+1(s + 1)− b−2n+1(s) . (A.3)

Define L1(x, y), L2(x, y) by

L1(x, y) = 1

2

{

L(∞)(s = 0; x, y)− L(∞)(s = 1; x, y)
}

,

L2(x, y) = 1

2

{

L(∞)(s = 0; x, y)+ L(∞)(s = 1; x, y)
}

,

(A.4)

which have the following form:

L1(x, y) =
∞
∑

n=0

qn(x, y)e
−n∂s , L2(x, y) = e∂s +

∞
∑

n=1

rn(x, y)e
−n∂s ,

qn(x, y) = b−n(s = 0, x, y)− b−n(s = 1, x, y)

2
(n = 0, 1, 2, . . .) ,

rn(x, y) = b−n(s = 0, x, y)+ b−n(s = 1, x, y)

2
(n = 1, 2, 3, . . .) .

(A.5)

We remark that qn and rn are eigenfunctions of e∂s :

e∂s qn = −qn , e∂s rn = rn . (A.6)
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Applying the notation (A.5) to (A.3), we have

∂q0

∂x2n−1
= −2q2n−1 (A.7)

Since B1(0), B1(1) are of the form

B1(0) = e∂s + q0 , B1(1) = e∂s − q0 , (A.8)

it follows that
∂L1

∂x1
= −2L1e

∂s + [q0, L2
]

,
∂L2

∂x1
= [q0, L1

]

, (A.9)

and hence
∂q2n−1

∂x1
= −2q2n + 2q0r2n−1 ,

∂q2n

∂x1
= −2q2n+1 ,

∂r2n−1

∂x1
= 2q0q2n−1 ,

∂r2n

∂x1
= 0 .

(A.10)

From (A.7) and (A.10), we have

∂q0

∂x2n+1
=
(

1

4
∂2
x1

− q2
0 − ∂q0

∂x1
∂−1
x1

◦ q0

)

∂q0

∂x2n−1
. (A.11)

Especially for the case n = 1,

∂q0

∂x3
= 1

4

∂3q0

∂x3
1

− 3

2
q2

0
∂q0

∂x1
. (A.12)

After suitable scaling, the linear operator appeared in the right-hand side of (A.11) yields
the recursion operatorΩ in (2.7), and the equation (A.12) yields the mKdV equation (1.1).

We remark that another derivation of the recursion operator Ω in terms of bilinear
differential equations of Hirota-type was given in [29]. Here we briefly summarize the
approach in [29]. We use the Hirota differential operatorsDx , Dy , . . . , defined by

Dmx D
n
yf (x, y) · g(x, y) = (∂x − ∂x ′)m

(

∂y − ∂y ′
)n
f (x, y)g(x ′, y ′)

∣

∣

x ′=x,y ′=y . (A.13)

Setting s′ = 0, s = 1 y ′
n = yn, x ′

n = xn + an (n = 1, 2, . . .), the bilinear identity (3.15) is
reduced to
∮

τ (0; x ′ − [λ−1], y)τ (1; x + [λ−1], y)eξ(x ′−x,λ)λ−1dλ = τ (1; x ′, y)τ (0; x, y) , (A.14)

or, using the Hirota operators D̃ = (D1,D2/2,D3/3, . . .), Dj = Dxj (j = 1, 2, . . .), we
can write

∞
∑

j=0

pj (−2a)pj(D̃) exp

( ∞
∑

k=1

akDk

)

τ (0) · τ (1) = exp

( ∞
∑

k=1

akDk

)

τ (1) · τ (0) (A.15)

for any a = (a1, a2, . . .) (cf. [17]). Expanding (A.15) with respect to the variables a =
(a1, a2, . . .), we obtain

(

pm(D̃)−Dm

)

τ (1) · τ (0) = 0 (A.16)

from the coefficient of am, and
(

−2pm+k(D̃)+ pm(D̃)Dk + pk(D̃)Dm

)

τ (1) · τ (0) = 0 (A.17)
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from the coefficient of amak . Using (A.16) to eliminate the first term in (A.17), we have
(

−2Dm+k + pm(D̃)Dk + pk(D̃)Dm

)

τ (1) · τ (0) = 0 . (A.18)

Hereafter we impose the 2-reduction condition ∂x2nτ = 0 (n = 1, 2, . . .). Setting
k = 2, the bilinear equations (A.16), (A.18) yield

D2
1τ (1) · τ (0) = 0 ,

(

−4Dm+2 +D2
1Dm

)

τ (1) · τ (0) = 0 . (A.19)

If we set
ψ = log (τ (1)/τ (0)) , φ = log (τ (0)τ (1)) , (A.20)

it follows that

(∂1ψ)
2 + ∂2

1φ = 0 , −4∂m+2ψ + ∂2
1 ∂mψ + 2(∂1ψ)(∂1∂mφ) = 0 , (A.21)

from (A.19), where ∂n = ∂/∂xn. Setting

q0 = ∂1ψ = ∂1

(

log
τ (1)

τ (0)

)

, (A.22)

we have the recursion relation (A.11).
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