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1. Introduction

In this paper we consider stability of stationary solutions to an eikonal-curvature flow
equation

(1.1) V = C + K on Γt

for an evolving interface Γt in a domain Ω ⊂ R
N with a level set method, where C is a

nonnegative constant, and V , K = ∑N
j=1 κj and κj , respectively, is the normal velocity,

mean and principal curvature of Γt defined with the outer continuous unit normal vector
field n ∈ SN−1 of Γt ; we call n the orientation of the evolution. Note that “interface”
means the boundary of an open set called “interior” so that K is not positive for smooth
boundary of a convex open set. When Ω has smooth boundary ∂Ω , we impose the right
angle condition

Γt ⊥ ∂Ω(1.2)

between Γt and ∂Ω to (1.1).
A level set method, which is introduced by Osher and Sethian [30] in the numerical

analysis on evolving interfaces, describes the evolving interface Γt by

(1.3) Γt = {x ∈ Ω; u(t, x) = c}
with an auxiliary function u : [0,∞) ×Ω → R and a constant c ∈ R. The orientation of
the evolution is given as

n = − ∇u
|∇u|

by setting an interior of Γt as the superlevel set {x ∈ Ω; u(t, x) > c}, where ∇ =
(∂/∂x1, . . . , ∂/∂xN). Then we obtain the level set equation of (1.1) as

(1.4) ut − |∇u|
{

div
∇u
|∇u| + C

}

= 0 in (0, T )×Ω ,
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where

divP(x) =
N∑

j=1

∂pj

∂xj
(x)

for P(x) = (p1(x), . . . , pN (x)) ∈ R
N . The right angle condition (1.2) is represented as

the Neumann boundary condition of u;

(1.5) 〈	ν,∇u〉 = 0 in (0, T )× ∂Ω ,

where 	ν ∈ SN−1 is the outer unit normal vector field of ∂Ω . The system of equations (1.4)–
(1.5) in Ω is formally stronger than (1.1)–(1.2) since (1.4)–(1.5) imposes that all level sets
of u evolve with (1.1)–(1.2) although (1.1)–(1.2) holds only on Γt . See [16] for details.

A level set method is powerful to study the evolution of Γt including singularities,
i.e., vanishing of Γt in finite time, or collision with each other. It is well-known that the
evolving planer closed simple curve moved by (1.1) with C = 0 becomes convex in finite
time and converges to a single point; see [13, 20]. Although the first behavior does not hold
for closed compact hypersurface in R

3 (see [21]), the vanishing property is easily extended
to the evolving closed compact hypersurface in R

N by a level set method. Y.-H. R. Tsai,
Y. Giga and the author [29] extend the idea of the level set method to spiral curves on the
plane based on an adjusted level set method for spiral [28]. One can find in [29], moreover,
their formulation works well even if the topological change of the curves occurs during the
evolution of spirals.

However, this method also has difficulties caused by the implicit representation of in-
terfaces, which is the main topic of this paper. In this paper we consider the existence and
stability of stationary solutions to (1.1) with the level set formulation. One can easily find
some stationary interfaces of (1.1) as the hypersurface with the constant mean curvature.
We first prove that there exist discontinuous (so that weak) stationary solutions to (1.4) de-
scribing an interface with a constant mean curvature which is a boundary ofN-dimensional
submanifold. We next prove that there are no continuous stationary solutions describing a
sphere in R

N provided C �= 0, or a hyperplane contacting to ∂Ω of a sandglass-type do-
mainΩ ⊂ R

N at its neck with the right angle provided that C = 0. From the proof of these
facts we also deduce that the first stationary solution is unstable which was proved in [19],
and the second one is asymptotically stable with set-theoretic approach.

The stationary solution to (1.1) with C �= 0 means an interface with a constant mean
curvature. In this paper we treat only a sphere or a cylindrical surface; however there exist
various hypersurfaces with constant mean curvature; see [33, 25, 26]. A compact hypersur-
face with a constant mean curvature is characterized as a stable solution to the variational
problem minimizing surface area provided that the measure of the domain enclosed by the
surface is a constant. The result of this paper means that a boundary of a domain with a
constant mean curvature is unstable from a view point of eikonal-curvature flow (1.1) even
if the domain and boundary are compact.

From a view point of stability of stationary solution to an evolution equation, Ei and
Yanagida [10, 11] or Ei, Sato and Yanagida [9] investigate the stability or instability of
stationary solutions to a generalized mean curvature flow including (1.1) with contact an-
gle condition. Their method is extended to a surface diffusion flow by [14]. As in these
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papers we often consider a linearization of problems around a stationary solution: see [2]
or [27] for details of linearization of nonlinear ordinary or partial differential equations,
respectively. In particular, the existence of solutions to (1.1) in [9] is guaranteed with aid
of level set method. Giga and Yama-Uchi [19] proved Lyapunov instability of stationary
interfaces evolving by an evolution equation depending on the second fundamental form of
the interface, which includes (1.1). In this paper we concentrate our attention to (1.1) with
C �= 0 and an unstable stationary sphere, or (1.1)–(1.2) with C = 0 and stable stationary
hyperplane at the neck of a sandglass-type domain. Our method is close to [19] and com-
pletely different from [10, 11, 9]; we construct a supersolution with a quadratic function
and appeal to the comparison principle. For the results on the unstable stationary sphere,
the difference of our results from [19] is to prove that there are no continuous stationary
solutions but there exists a discontinuous stationary solution to the level set equation de-
scribing the stationary sphere. This fact is not mentioned in [19]. On the other hand, a
nonstationary solution u keeps the stationary sphere as a level set {x; u(t, x) = c} with
c ∈ R if the sphere is given as {x; u(0, x) = c} by the existence result and the comparison
principle as in [7]. By combining these facts our result means that the stationary solution
given as in [9] which is a center of linearization is given by nonstationary continuous or
discontinuous stationary viscosity solution. Moreover, our results point out that there may
be no suitable center of linearization for (1.4) around a stationary solution if we consider
the stability or instability of a stationary interface by a level set method. We also refer
[17] for the result of convergence to stationary solution in cylindrical domain by the strong
maximum principle of a stationary problem to (1.4)–(1.5) with C = 0.

We also mention on a discontinuous solution from another view point. The discontin-
uous stationary solutions we find are based on characteristic function of an open set, and
then they are examples of set-theoretic solution which is introduced in [16]. There is a pi-
oneering work on set-theoretic approach to (1.1) including anisotropic evolution by Soner
[32], which is based on the signed distance function. The definition by [16] corresponds to
some approximation algorithms to (1.1): see [5, 1, 4, 6, 12]. One can find a lot of charac-
terization of set-theoretic solution in [16]. We calculate weak derivatives of characteristic
function in viscosity solution sense in this paper. Moreover, we observe that discontinuous
solutions to (1.4) play important role to describe stationary interfaces to (1.1).

This paper is organized as follows. We first summarize the definition and some proper-
ties of viscosity solutions in §2. We also give some properties of the characteristic functions
for an open set from the view point of viscosity solutions. We next consider the stationary
ball solution to (1.1) with C �= 0 in Ω = R

N in §3. We finally consider the stationary
hyperplane to (1.1) with C = 0 in the axis-symmetric domain in §4.

2. Viscosity solutions

In this section we summarize the theory of viscosity solutions to the degenerate par-
abolic equation, and show some fundamental properties which are used in the following
sections. See [16] for details.
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2.1. Definitions.
Let Ω ⊂ R

N be a domain and T > 0. We consider a geometric degenerate parabolic
equation of the form

(2.1) ut + F(∇u,∇2u) = 0 in (0, T )×Ω

including (1.1). We also consider the Neumann boundary condition

(2.2) 〈	ν,∇u〉 = 0 in (0, T )× ∂Ω

if ∂Ω �= ∅. The equation (1.4) is represented with

F(p,X) = F0(p,X) − C|p| ,(2.3)

F0(p,X) = −trace

{(

IN − p ⊗ p

|p|2
)

X

}

(2.4)

for p ∈ R
N \ {0} and X ∈ S

N , where S
N is the space of real N × N symmetric matrices,

and p ⊗ q = (piqj )1≤i,j≤N for p = (p1, . . . , pN), q = (q1, . . . , qN) ∈ R
N .

Note that the equation (2.1) for (1.1) is not defined where ∇u = 0 though we have
to handle this situation. In the theory of viscosity solutions we often extend equations or
solutions with upper or lower semicontinuous envelope to overcome such a difficulty. For
f : Rd ⊃ D → R define f ∗ : D → R ∪ {∞} or f∗ : D → R ∪ {−∞} as

f ∗(x) = lim
r→0

sup{f (y); |y − x| < r} , f∗(x) = lim
r→0

inf{f (y); |y − x| < r} ,
respectively. We call f ∗ or f∗ upper or lower semicontinuous envelope, respectively. Note
that f∗ ≤ f ≤ f ∗ inD, and f is upper (resp. lower) semicontinuous if and only if f ∗ = f

(resp. f∗ = f ).
We now list the assumptions for F .

(F1) F : J := (RN \ {0})× S
N → R is continuous.

(F2) −∞ < F∗(0,O) = F ∗(0,O) < +∞, whereO is the zero matrix.
(F3) F is degenerate elliptic, i.e.,

F(p,X + Y ) ≤ F(p,X)

for (p,X) ∈ J , Y ∈ S
N provided that Y ≥ O ,

(F4) F is geometric, i.e.,

F(λp, λX + μp ⊗ p) = λF(p,X) for (p,X) ∈ J , λ > 0, μ ∈ R ,

(F5) There exist positive constants K1,K2,K3,K4 such that, if X,Y ∈ S
N and non-

negative constants γ1, γ2, γ3 satisfying

〈Xξ, ξ〉 + 〈Yη, η〉
≤ γ1|ξ − η|2 + γ2(|ξ |2 + |η|2)+ γ3|ξ − η|(|ξ | + |η|)

for ξ, η ∈ R
N , then

F(p,X) − F(q,−Y )
≥ −K1γ1|p̄ − q̄|2 −K2γ2 −K3γ3|p̄ − q̄| −K4|p − q|

for p, q ∈ R
N \ {0}, where p̄ = p/|p|,
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Note that (2.4) and then (2.3) satisfy (F1)–(F5). Moreover, note that F∗, F ∗ also satisfy
(F3) or (F4) if F is so, respectively.

We now recall the definition of viscosity solution, which is a weak solution to a de-
generate parabolic or elliptic equation based on the maximum principle of C2 function.

DEFINITION 2.1. We say u : (0, T ) × Ω → R is a viscosity sub- (resp. super-)
solution to (2.1) if the followings hold;

(S1) u∗ < ∞ (resp. u∗ > −∞) in [0, T ] ×Ω .
(S2) for each (t̂ , x̂) ∈ (0, T )×Ω and ϕ ∈ C2((0, T )×Ω) satisfying

u∗(t, x)− ϕ(t, x) ≤ u∗(t̂ , x̂)− ϕ(t̂, x̂)

(resp. u∗(t, x)− ϕ(t, x) ≥ u∗(t̂ , x̂)− ϕ(t̂, x̂))

for (t, x) ∈ (0, T )×Ω ,

ϕt (t̂, x̂)+ F∗(∇ϕ(t̂, x̂),∇2ϕ(t̂, x̂)) ≤ 0(2.5)

(resp. ϕt(t̂ , x̂)+ F ∗(∇ϕ(t̂ , x̂),∇2ϕ(t̂ , x̂)) ≥ 0)(2.6)

holds.

We say u is a viscosity sub- (resp. super-) solution to (2.1)–(2.2) if u satisfies (S1) and the
following (S2)′ instead of (S2) hold;

(S2)′ for each (t̂ , x̂) ∈ (0, T )×Ω and ϕ ∈ C2((0, T )×Ω) satisfying

u∗(t, x)− ϕ(t, x) ≤ u∗(t̂ , x̂)− ϕ(t̂, x̂)

(resp. u∗(t, x)− ϕ(t, x) ≥ u∗(t̂ , x̂)− ϕ(t̂, x̂))

for (t, x) ∈ (0, T )×Ω ,
(a) (2.5) (resp. (2.6)) holds if x̂ ∈ Ω ,
(b) either (2.5) (resp. (2.6)) or

〈	ν(x̂),∇ϕ(t̂ , x̂)〉 ≤ 0 (resp. 〈	ν(x̂),∇ϕ(t̂ , x̂)〉 ≥ 0)

holds if x̂ ∈ ∂Ω .

We say u is a viscosity solution if u is viscosity sub- and supersolution.

See [8] for details of viscosity solutions, or [7] for theory of viscosity solutions to degen-
erate parabolic equations. Note that C2 classical sub- or supersolution to (2.1) is viscosity
sub- or supersolution if (F3) holds. These theory is extended to the Neumann boundary
value problem in a bounded domain of geometric and degenerate parabolic equation; see
[18] or [31]. In this paper we consider all solutions in viscosity solution sense so that we
omit the word of “viscosity” here and hereafter.

It is convenient to introduce an equivalent definition to the conditions of (S2) by [24].

LEMMA 2.2 ([3], [16]). Assume that (F3) holds. Then, the condition (S2) is equiv-
alent to the following conditions.
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(i) If |∇ϕ(t̂, x̂)| �= 0, then

ϕt + F(∇ϕ,∇2ϕ) ≤ 0 (resp. ϕt + F(∇ϕ,∇2ϕ) ≥ 0) at (t̂, x̂).

(ii) If |∇ϕ(t̂, x̂)| = 0, then

ϕt + F∗(0,O) ≤ 0 (resp. ϕt + F ∗(0,O) ≥ 0) at (t̂ , x̂)

provided that ∇ϕ(t̂ , x̂) = 0 and ∇2ϕ(t̂, x̂) = O .

Note that the paper [3] derives the above for a geometric evolution equation and then the
condition (ii) is

ϕt(t̂, x̂) ≤ 0 (resp. ϕt(t̂ , x̂) ≥ 0)

provided that ∇ϕ(t̂, x̂) = 0 and ∇2ϕ(t̂, x̂) = O; in fact F ∗(0,O) = F∗(0,O) = 0 .
However, we can prove this lemma without the assumption (F4) by revising the conclusion
of the case (ii) as the above; see [16, Proposition 2.2.8].

2.2. Remarks on the existence and uniqueness.
The existence of solution to (2.1) is established by Perron’s method due to H. Ishii

[22]. This method is based on the following two propositions.

PROPOSITION 2.3. Let S be a non-empty set of subsolutions (resp. supersolutions)
to (2.1) in (0, T )×Ω . Assume that functions in S are locally uniformly bounded in (0, T )×
Ω . Then,

u(t, x) = sup{v(t, x); v ∈ S} (resp. u(t, x) = inf{v(t, x); v ∈ S})
is still a subsolution (resp. supersolution) to (2.1) in (0, T )×Ω .

PROPOSITION 2.4 (Perron’s method). Assume that (F3) holds.
Let f, g : (0, T )×Ω → R be a locally bounded sub- and supersolution to (2.1) in (0, T )×
Ω satisfying f ≤ g in (0, T )×Ω . Then,

u(t, x) = sup

{

v(t, x);
v is a subsolution to (2.1) in (0, T )×Ω ,

f ≤ v ≤ g in [0, T ] ×Ω

}

is a solution to (2.1) in (0, T )×Ω .

This method is established by [22] for Hamilton-Jacobi equations, and is extended to sec-
ond order degenerate elliptic equation in [23]. This method is also extended to the degen-
erate parabolic equation in [7] with an interpretation of (2.1) to a second order degenerate
elliptic equation

E(Du,D2u) = ut + F(∇u,∇2u)

with a differential operator

D =
(
∂

∂t
,
∂

∂x1
, . . . ,

∂

∂xN

)

.
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It is also extended to the Neumann boundary value problem in [31]. One also can find in
[7] or [31] the detailed construction of a solution with initial data u0 ∈ BUC(Ω) to (2.1),
where BUC(Ω) denotes the space of bounded and uniformly continuous functions on Ω .
By combining the comparison principle, which is explained later, one observes that the
solution is continuous.

The uniqueness of solutions to (2.1) with respect to the initial data u|t=0 = u0 is
derived from the following comparison principle.

Comparison principle(CP) : Let u and v be a sub- and supersolution to (2.1) in
(0, T )×Ω , respectively. Under suitable assumptions from boundary condition, if

(2.7) u∗(0, x) ≤ v∗(0, x) for x ∈ Ω ,

then
u∗(t, x) ≤ v∗(t, x) for (t, x) ∈ [0, T )×Ω.

We now summarize the known results on the comparison principle. In the following sec-
tions we consider two types of domains;

• Ω = R
N (in §3),

• axis-symmetric nonconvex domain (in §4):

(2.8) Ω = {(x ′, xN) ∈ R
N−1 × R ; |x ′| < r(xN)}

with a smooth function r : R → (0,∞) satisfying
(Ω1) r ′ < 0 in (−∞, 0), r ′ > 0 in (0,∞),
(Ω2) there exists δ0 > 0 such that

Bδ0(x + δ0	ν(x)) ∩Ω = Bδ0(x − δ0	ν(x)) ∩Ωc = {x}
for x ∈ ∂Ω , where Bδ(x0) = {x ∈ R

N ; |x − x0| < δ} .

If Ω is bounded, (CP) is established by [7] at least (2.1) with (F1)–(F3) and additional
assumption from Dirichlet boundary condition as

u∗(t, x) ≤ v∗(t, x) in (0, T )× ∂Ω .

Their proof is easily extend to the case Ω = R
N with (F1)–(F3) and

(2.9)

{ there exist α , β ∈ R and R > 0 such that

u(t, x) = α , v(t, x) = β if |x| > R and t ∈ [0, T ) .
The above condition is essentially same as the Dirichlet boundary condition. Note that
α ≤ β by (2.7). In general (CP) for unbounded domains is established by [15] with ad-
ditional assumptions of asymptotic behavior for sub- and supersolutions as |x| → ∞ and
boundedness assumptions for F ; see [15] and [16] for details. For the Neumann boundary
value problem on a bounded nonconvex domain (CP) is established by [18] for (2.1) satis-
fying (F1)–(F3) and (F5). When we consider the axis-symmetric domain, we additionally
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assume that

(2.10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

there exist αj , βj ∈ R for j = 1, 2 and R > 0 such that

u(t, x) = α1 , v(t, x) = α2 if xN < −R ,
u(t, x) = β1 , v(t, x) = β2 if xN > R

for t ∈ [0, T ) and x = (x ′, xN) ∈ Ω .

Then (CP) is established by applying the proof in [18]. By (CP) we obtain the solution
constructed from u0 ∈ BUC(Ω) which satisfies (2.9) or (2.10) is not only unique but also
continuous in [0,∞)×Ω .

The level set method establishes the evolution of interfaces by extracting implicitly
described Γt as in (1.3) with a solution to the level set equation of the evolution equation.
However, we remark that the initial data u0 is not unique for given Γ0 and implicit descrip-
tion (1.3); for example u3

0 still describes Γ0 if u0 describes it with c = 0 level set. Thus,
even if solution to the level set equation is unique with respect to initial data u0, one can
obtain several level sets started from Γ0. It is very important property if Γt is determined
uniquely with respect to Γ0.

We shall conclude this section with mentioning the uniqueness of level sets. It is
obtained from the comparison of interior or exterior sets. In the level set method we regard
a set {x ∈ Ω; u(t, x) > c} or {x ∈ Ω; u(t, x) < c} is interior or exterior of Γt given by
(1.3), respectively. We now deduce a comparison principle of interior or exterior set from
(CP). We first recall the stability result of solutions.

PROPOSITION 2.5. Let uk : (0, T ) × Ω → R be a sub- (resp. super-) solution to
(2.1) in (0, T ) × Ω for k ∈ N. Assume that uk converges to u : (0, T ) × Ω → R locally
uniformly in (0, T )×Ω as k → ∞. If u∗ < ∞ (resp. u∗ > −∞) in (0, T )×Ω , then u is
a sub- (resp. super-) solution to (2.1) in (0, T )×Ω .

Proposition 2.5 is established for more general equations in [7] and extended to the
Neumann boundary problem in [31]. We now show the following rescaling invariance of
dependent variable for geometric evolution equations.

LEMMA 2.6. Assume that (F1)–(F4) hold. Let u be a sub- (resp. super-) solution
to (2.1) in (0, T )×Ω andG : R → R be uniformly continuous and nondecreasing function.
Then, G(u∗(t, x)) (resp. G(u∗(t, x))) is still a sub- (resp. super-) solution to (2.1) in
(0, T )×Ω .

Proof. In this proof we demonstrate only that w(t, x) = G(u∗(t, x)) is a subsolution
if u is so. Note that w is upper semicontinuous and thus w∗ = w in this case.

We first demonstrate that w is a subsolution to (2.1) provided that G ∈ C2(R) and
G′ > 0 in R. Let ϕ ∈ C2((0,∞)×Ω) and assume that

w(t, x)− ϕ(t, x) ≤ w(t̂, x̂)− ϕ(t̂ , x̂) for (t, x) ∈ (0,∞)×Ω
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We may assume that w(t̂, x̂) − ϕ(t̂, x̂) = 0 by considering ϕ(t, x) − (w(t̂ , x̂) − ϕ(t̂ , x̂))

instead of ϕ.
Since G′ > 0 there exists H = G−1 ∈ C2(R) and H ′ > 0 in R. We now define

ψ(t, x) = H(ϕ(t, x)). Then,

u∗(t, x)− ψ(t, x) ≤ u∗(t̂ , x̂)− ψ(t̂ , x̂) = 0 for (t, x) ∈ (0,∞)×Ω .

In fact, since H ′ > 0 and w(t, x) = G(u∗(t, x)) ≤ ϕ(t, x) we obtain

u∗(t, x) ≤ H(ϕ(t, x)) = ψ(t, x) .

Moreover, we have

ψ(t̂ , x̂) = H(ϕ(t̂, x̂)) = H(G(u∗(t̂ , x̂))) = u∗(t̂, x̂) ,
which implies

u∗(t, x)− ψ(t, x) ≤ 0 = u∗(t̂ , x̂)− ψ(t̂ , x̂)

for (t, x) ∈ (0,∞)×Ω .
By straightforward calculation we obtain

ψt = H ′(ϕ)ϕt , ∇ψ = H ′(ϕ)∇ϕ ,
∇2ψ = H ′(ϕ)∇2ϕ +H ′′(ϕ)∇ϕ ⊗ ∇ϕ .

Since u∗ is a subsolution to (2.1) then we have

ψt + F∗(∇ψ,∇2ψ) ≤ 0 at (t̂ , x̂) ,

which implies
H ′(ϕ)(ϕt + F∗(∇ϕ,∇2ϕ)) ≤ 0 at (t̂, x̂)

by (F4). Since H ′ > 0 we obtain

ϕt + F∗(∇ϕ,∇2ϕ)) ≤ 0 at (t̂ , x̂) .

Let G is uniformly continuous and nondecreasing. We now approximate G with
smooth and strictly increasing Gε. Let Gε = (G ∗ ρε)(s) + ε tanh s, where G ∗ ρε is a
convolution betweenG and ρε , and ρε ∈ C∞(R) is a mollifier, i.e., ρε ≥ 0,

∫
R
ρε = 1 and

suppρε ⊂ [−ε, ε]. Then,Gε ∈ C∞(R), G′ > 0 and limε→0Gε = G uniformly in R.
We now define wε(t, x) = Gε(u

∗(t, x)). Then, limε→0 wε(t, x) = w(t, x) uniformly
on [0,∞)×Ω and thus w is a subsolution to (2.1) by Proposition 2.5. �

We are now in the position to state the comparison principle of interior and exterior sets.

THEOREM 2.7. Either following (I) or (II) holds.

(I) For the case Ω = R
N , assume (F1)–(F4) hold. Let u and v be a sub- and

supersolution to (2.1) in (0, T )×Ω satisfying (2.9), respectively.
(II) For the case Ω given by (2.8) satisfying (Ω1)–(Ω2), assume that (F1)–(F5)

hold. Let u and v be a sub- and supersolution to (2.1)–(2.2) in (0, T )×Ω satis-
fying (2.10), respectively.
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If

{x ∈ Ω; u∗(0, x) > c1} ⊂ {x ∈ Ω; v∗(0, x) > c2}(2.11)

(resp. {x ∈ Ω; u∗(0, x) < c1} ⊃ {x ∈ Ω; v∗(0, x) < c2})(2.12)

for some c1, c2 ∈ R, then

{x ∈ Ω; u∗(t, x) > c1} ⊂ {x ∈ Ω; v∗(t, x) > c2}(2.13)

(resp. {x ∈ Ω; u∗(t, x) < c1} ⊃ {x ∈ Ω; v∗(t, x) < c2})(2.14)

for t ∈ [0, T ].

Note that (CP) is available for the situations Theorem 2.7 considered. However, The-
orem 2.7 requires no relation between u∗ and v∗ except (2.11) or (2.12) though (CP) is
crucial to prove that. This comparison principle is the generalized result of [7, Theorem
7.1]. Moreover no regularity assumptions for initial data u(0, ·) and v(0, ·) are required in
Theorem 2.7, which is the advantage to the result in [7, §7]. The proof is similar to that in
[7], but we verify it here because we relax the assumptions; see also [16, Chapter 4].

Proof. We may assume that c1 = c2 = 0 without loss of generality by considering
u− c1 and v − c2 instead of u and v, respectively. We here mention only the case (I) since
the argument for the case (II) is parallel.

We divide the proof into three steps.

Step 1. We construct a rescaling function to apply the comparison principle.
We now define

G(s) = sup{(u∗(0, y))+; v∗(0, y) ≤ s} ,
where (a)+ = max{0, a}. Then, the followings hold.

(i) G is monotone nondecreasing,G ≥ 0 ,
(ii) G(s) = 0 if s ≤ 0 ,

(iii) u∗(0, x) ≤ G(v∗(0, x)) for x ∈ Ω ,
(iv) G is upper semicontinuous in R, and continuous on (−∞, 0] .

We now demonstrate these properties. The property (i) is derived directly from the defini-
tion ofG. The property (ii) is derived from (2.11). In fact, from (2.11) we have u∗(0, x) ≤ 0
if v∗(0, x) ≤ 0, which implies

(u∗(0, x))+ = 0 for x ∈ {y ∈ Ω; v∗(0, y) ≤ 0}
and thus G(s) = 0 for s ≤ 0. The property (iii) follows from definition of G. In fact, for
fixed x ∈ Ω we have x ∈ {y ∈ Ω; v∗(0, y) ≤ v∗(0, x)}, which implies

u∗(0, x) ≤ (u∗(0, x))+ ≤ G(v∗(0, x)) .
Finally, we demonstrate (iv). Let

s∗ := sup{s̄; G(s) = 0 for s ∈ (−∞, s̄)} ,
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then it is clear that G is continuous in (−∞, s∗) since G = 0 in (−∞, s∗). Let ŝ ≥ s∗.
Then, for each k ∈ N there exists yk ∈ Ω such that

(2.15) u∗(0, yk) > G(ŝ + k−1)− k−1, v∗(0, yk) ≤ ŝ + k−1

by the definition ofG and s∗ sinceG(ŝ+k−1) > 0. We now divide the case into two cases.

Case 1. Assume that there exists k0 such that |yk| > R for k > k0, where R > 0
is such that u∗(0, y) = α and v∗(0, y) = β if |y| > R. Then, v∗(0, yk) = β ≤ ŝ + k−1

provided k > k0, which implies v∗(0, yk) ≤ ŝ for k > k0 so that we have

u∗(0, yk) ≤ G(ŝ)

provided that k > k0. Then, for ε > 0 we choose k ∈ (k0,∞) satisfying k−1 < ε. If
r ∈ (0, k−1) then

(2.16) G(ŝ + r) ≤ G(ŝ + k−1) < u∗(0, yk)+ k−1 < G(ŝ)+ ε .

Case 2. Assume that there exists a subsequence of yk , which we denoted also by yk ,
satisfying |yk| ≤ R. Then, we may assume that limk→∞ yk = y0 ∈ R

N by taking a sub-
sequence of yk if necessary. Then the second inequality of (2.15) and lower semicontinuity
of v∗ imply that

v∗(0, y0) ≤ ŝ

and thus u∗(0, y0) ≤ G(ŝ). For ε > 0 we choose k ∈ (0,∞) such that k−1 < ε/2 and
u∗(0, yk) < u∗(0, y0)+ ε/2 by the upper semicontinuity of u∗. If r ∈ (0, k−1) then

G(ŝ + r) ≤ G(ŝ + k−1) < u∗(0, yk)+ k−1 < u∗(0, y0)+ ε(2.17)

≤ G(ŝ)+ ε .

The inequalities (2.16) and (2.17) imply lims→ŝ+0G(s) = G(ŝ): here we have usedG(ŝ+
r) ≥ G(ŝ). On the other hand lims→ŝ−0G(s) ≤ G(ŝ) by (i). Hence, we obtain the upper
semicontinuity of G.

It remains the continuity of G at s = 0. Note that s∗ ≥ 0 by (ii), thus it suffices to
prove the continuity of G at s = 0 provided that s∗ = 0. In this case there exists sequence
yk ∈ R

N satisfying (2.15) with ŝ = 0, since G(k−1) > 0. Then, the parallel argument of
the above Case 1 or Case 2 yields that either the following Case 3 or 4 holds;

Case 3. There exists k0 > 0 such that v∗(0, yk) ≤ 0 provided that k > k0 ,
Case 4. There exists y0 = limk→∞ yk satisfying v∗(0, y0) ≤ 0 by taking

subsequence of yk .

If Case 3 holds then u∗(0, yk) ≤ 0 provided that k > k0, and if Case 4 holds then
u∗(0, y0) ≤ 0 by (2.11). This implies that lims→+0G(s) ≤ 0 by the parallel argu-
ment of the above Case 1 and 2. Since G ≥ 0 in R and G = 0 on (−∞, 0] we obtain
lims→0G(s) = 0 = G(0).

Step 2. We now mollify G to uniformly continuous, monotone nondecreasing func-
tion.
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By (2.9) and upper semicontinuity of u∗ there exists K > 0 such that u∗(0, x) ≤ K

for x ∈ R
N . We first define

Ḡ(2k) := G(2k+1) if k ∈ Z ∩ (−∞, 0] ,
Ḡ(2) := K .

We next define Ḡ in [2k, 2k+1] for k ∈ Z ∩ (−∞, 0] with linear interpolation, i.e.,

Ḡ(s) := Ḡ(2k)
2k+1 − s

2k+1 − 2k
+ Ḡ(2k+1)

s − 2k

2k+1 − 2k
for s ∈ [2k, 2k+1]

for k ∈ Z ∩ (−∞, 0]. Finally, we define

Ḡ(s) :=
{
Ḡ(2) if s ∈ [2,∞) ,

0 if s ∈ (−∞, 0] .
Then, Ḡ satisfies

(v) Ḡ is monotone nondecreasing , Ḡ ≥ 0 in R,
(vi) Ḡ(s) = 0 if s ≤ 0,

(vii) u∗(0, x) ≤ Ḡ(v∗(0, x)) for x ∈ R
N ,

(viii) Ḡ is uniform continuous on R.

We now demonstrate the above properties. The properties (v), (vi) and (viii) follows
directly from the definition of Ḡ.

It remains to prove (vii). Note thatG ≤ Ḡ on R so that (vii) follows from (iii). In fact,
if s ∈ (0, 1] then there exists k ∈ Z ∩ (−∞, 0] such that s ∈ [sk−1, sk], which implies

Ḡ(s) ≥ Ḡ(sk−1) = G(sk) ≥ G(s) .

If s ≤ 0, then Ḡ(s) = 0 = G(s). If s ≥ 2, then Ḡ(s) = K ≥ G(s) by definition of G . If
s ∈ [1, 2], then

Ḡ(s) = (K −G(2))(s − 1)+G(2) ≥ G(2) ≥ G(s) .

Step 3. We are in the position to prove (2.13).
Let w(t, x) = Ḡ(v∗(t, x)). Then, w is a supersolution to (2.1) by Lemma 2.6, and

lower semicontinuous i.e., w∗ = w. Moreover, we observe that

u∗(0, x) ≤ w(0, x) for x ∈ R
N

by (vii). Then, we obtain

u∗(t, x) ≤ w(t, x) for (t, x) ∈ (0.T )× R
N

by (CP). The above implies

{x ∈ R
N ; u∗(t, x) > 0} ⊂ {x ∈ R

N ; w(t, x) > 0}
for t ∈ [0, T ). By (vi) we have

{x ∈ R
N ; w(t, x) > 0} ⊂ {x ∈ R

N ; v∗(t, x) > 0}
for t ∈ [0, T ), so that we obtain (2.13).
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To derive (2.14) from (2.12) we construct a rescaled subsolution H̄ (u∗(t, x)) with

H(s) = inf{(v∗(0, y))−; u∗(0, y) ≥ s} ,
where (a)− = min{0, a}, and its relaxation H̄ by the parallel argument of the above Step
1, 2, and 3. Then, H̄ satisfies

• H̄ is monotone nondecreasing, H̄ ≤ 0 in R,
• H̄ (s) = 0 if s ≥ 0,
• H̄ (u∗(0, x)) ≤ v∗(0, x) for x ∈ R

N ,
• H̄ is uniform continuous on R.

Hence, we obtain (2.14). �
2.3. A set theoretic solution.

A set-theoretic solution for a geometric evolution equation is introduced in [16]; we
say that Dt is a set-theoretic sub- (resp. super-) solution to (1.1) if

w(t, x) := χDt (x) =
{

1 if x ∈ Dt
0 otherwise

is a sub- (resp. super-) solution to the level set equation of (1.1), i.e., (2.1) with (2.3).
The characterizations of the set-theoretic solution are also introduced in [16]; see for

details. In this section we derive a direct calculation of derivatives of a characteristic func-
tion in viscosity solution sense.

THEOREM 2.8. Let D ⊂ R
N be a N-dimensional submanifold with smooth bound-

ary Γ = ∂D . If ϕ(x) ∈ C2(RN) and x̂ ∈ Γ satisfies

(χD)
∗(x)− ϕ(x) ≤ (χD)

∗(x̂)− ϕ(x̂)

(resp. (χD)∗(x)− ϕ(x) ≥ (χD)∗(x̂)− ϕ(x̂)) for x ∈ R
N

and |∇ϕ(x̂)| �= 0, then

−div
∇ϕ
|∇ϕ| + KΓ ≤ 0

(

resp. − div
∇ϕ
|∇ϕ| + KΓ ≥ 0

)

at x̂,

where KΓ = KΓ (x) is the mean curvature of Γ at x ∈ Γ in the direction of the outer unit
normal vector field n of ∂D.

Proof. We here demonstrate only the subsolution case since the proof of supersolu-
tion case is parallel.

By the definition of N-dimensional submanifold with boundary Γ is smooth N − 1-
dimensional submanifold, i.e., smooth hypersurface in R

N . We here choose the orthonor-
mal basis τj (j = 1, . . . , N − 1) of tangential space Tx̂Γ at x̂. Then the outer unit normal
vector field n of Γ is defined, and there exists δ0 > 0 such that

x̂ + δn̂ ∈ R
N \D, x̂ − δn̂ ∈ IntD,
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for δ ∈ (0, δ0), where n̂ = n(x̂). We next choose a smooth curve ζj on Γ , which is defined
in a neighborhood of 0 ∈ R, satisfying

ζj (0) = x̂, ζ ′
j (0) = τj

for j = 1, . . . , N − 1.
We now define functionsΦj (σ), Ψ (σ), which are defined in a neighborhood of 0 ∈ R,

given as

Φj (σ) = (χD)
∗(ζj (σ ))− ϕ(ζj (σ )) ,

Ψ (σ) = (χD)
∗(x̂ + σ n̂)− ϕ(x̂ + σ n̂) .

Then, both Φj and Ψ take their maximum at σ = 0. Moreover, since (χD)∗ = χD , Φj is
smooth in a neighborhood of σ = 0 for j = 1, . . . , N − 1, and Ψ is smooth in (−δ0, 0).
Thus, we first obtain

Φ ′
j (0) = −〈∇ϕ(x̂), τj 〉 = 0

for j = 1, . . . , N − 1, which and |∇ϕ(x̂)| �= 0 yield that

∇ϕ(x̂)
|∇ϕ(x̂)| = n̂ or − n̂ .

We next obtain

0 ≥ Ψ (−σ)− Ψ (0)

= 1 − ϕ(x̂ − σ n̂)− (1 − ϕ(x̂))

= −ϕ(x̂ − σ n̂)+ ϕ(x̂) = σ 〈∇ϕ(x̂), n̂〉 +O(σ 2) as σ → 0 ,

which implies 〈∇ϕ(x̂), n̂〉 ≤ 0 and thus

∇ϕ(x̂)
|∇ϕ(x̂)| = −n̂ .

Moreover, we obtain Φ ′′
j (0) ≤ 0 for j = 1, . . . , N − 1 since Φj (σ) attains its maximum at

σ = 0, which implies

0 ≥
N−1∑

j=1

(−〈∇2ϕ(x̂)τj , τj 〉 − 〈ϕ(x̂), ζ ′′
j (0)〉)

=
N−1∑

j=1

[
−trace

{
(τj ⊗ τj )∇2ϕ(x̂)

}
+ |∇ϕ(x̂)|〈n̂, ζ ′′

j (0)〉
]
.

Note that

IN −
N−1∑

j=1

τj ⊗ τj = n̂ ⊗ n̂ = ∇ϕ(x̂)
|∇ϕ(x̂)| ⊗ ∇ϕ(x̂)

|∇ϕ(x̂)| ,

and
N−1∑

j=1

〈n̂, ζ ′′
j (0)〉 = −

N−1∑

j=1

〈Dτj n̂, τj 〉 = KΓ (x̂) ,
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where Dτj n̂ is the tangential derivative of n in the direction of τj at x̂. Then the above
yields

−trace

{(

IN − ∇ϕ ⊗ ∇ϕ
|∇ϕ|2

)

∇2ϕ

}

+ KΓ |∇ϕ| ≤ 0 at x̂ .

Since

trace

{(

IN − ∇ϕ ⊗ ∇ϕ
|∇ϕ|2

)

∇2ϕ

}

= |∇ϕ|div
∇ϕ
|∇ϕ| ,

we obtain the conclusion of Theorem 2.8. �

The following corollary looks trivial; however, we need Theorem 2.8 and Lemma 2.2 to
prove.

COROLLARY 2.9. A domain with suitable constant mean curvature boundary is a
stationary set theoretic solution to (1.1). For example,

(i) Ball: {x ∈ R
N ; |x − x0| < (N − 1)/C} for x0 ∈ R

N provided that C �= 0,
(ii) Generalized cylindrical surface:

{(x ′, xk+1, . . . , xN) ∈ R
k×R

N−k; |x ′| < (N−1−k)/C} for k ∈ [2, N−1]∩Z

and its rotation provided that C �= 0,
(iii) For e ∈ SN−1 and x0 ∈ R

N , the set under a hyperplane {x ∈ R
N ; 〈e, x−x0〉 ≤ 0}

provided that C = 0.

REMARK 2.10. We remark that the mean curvature of ∂{x ∈ R
N ; |x − x0| <

(N − 1)/C} is −C since the curvature is defined with the outer unit normal vector field n
and we do not take the average of principal curvature as the mean curvature.

3. Eikonal-curvature flow

In this section we consider a stationary ball for (1.1) in R
N with a level set formulation.

The level set equation of (1.1) is of the form

(3.1) ut + F(∇u,∇2u) = 0 in (0,∞)× R
N,

with (2.3) and (2.4). To consider stability of a stationary ball we consider evolution of
compact interface with a level set formulation, so that we consider spatially profile of initial
data or solutions to (3.1) in

Xα := {f : RN → R; supp(f − α) is compact}
for α ∈ R.
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3.1. Barrier solutions for the uniqueness.
The comparison principle is established by [7] or [15]. Note that we now consider

Ω = R
N thus Ω is unbounded. However, if we assume (2.9) for a sub- and supersolution

u, v to (3.1), then we obtain (CP) in this problem with the argument as in [7]. Note that if
we assume (2.7) then we observe α ≤ β for α, β in (2.9). Theorem 2.7 is also available in
this problem.

The existence of viscosity solution with initial data u0 ∈ BUC(RN), where BUC(Ω)
denotes the space of bounded uniformly continuous functions on Ω , is also established in
[7] with Perron’s method. For the uniqueness of solutions we have to verify that

u(t, x) = α if |x| > R(t)

with at least locally bounded R(t). For this purpose we now construct barrier sub- and su-
persolutions. We here construct only the supersolution since the construction of subsolution
is parallel.

We now assume that there exists R0 > 0 such that

u0(x) = u(0, x) = α if |x| ≥ R0 .

We now set
b(t, x) = Bt + A(−|x| + R0 + 1)

for constants A,B > 0 determined later. Then, for x �= 0 we have

∇b = −Ax|x| , ∇2b = − A

|x|I + Ax ⊗ x

|x|3 .

Thus we obtain

F(∇b,∇2b) = F

(

− A

|x|x,−
A

|x|I
)

= A

(
(N − 1)

|x| − C

)

for x �= 0 by (F4). We now set B = AC. Then

bt + F(∇b,∇2b) = A(N − 1)

|x| > 0

for x �= 0.
We now set A = ‖u0‖∞ − α and define

b+(t, x) = min{θ+
α (b(t, x)+ α), ‖u0‖∞}

with a cut-off function

(3.2) θ+
α (σ ) =

{
α if σ < α ,

σ otherwise ,

where ‖u0‖∞ = sup
RN |u0|. Note that a constant function is a solution to (3.1) and then

b+ is a supersolution. Then, we observe that b+ is a supersolution to (3.1) in (0,∞)×R
N

from Lemma 2.6 and Proposition 2.3, and satisfies

b+(0, x) = ‖u0‖∞ if |x| ≤ R0 ,(3.3)

b+ ≥ α in [0, T ] × R
N , and b+(t, x) = α if |x| ≥ R0 + 1 + Bt/A .(3.4)
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The property (3.3) and (3.4) implies that b+(0, x) ≥ u0(x). Then, the solution u con-
structed by Perron’s method implies u(t, x) ≤ b+(t, x) by taking infimum of the con-
structed supersolutions and b+.

By the parallel argument of the above with A = ‖u0‖∞ + α we obtain a barrier
subsolution b−(t, x) = max{θ−

α (−b(t, x)+α),−‖u0‖∞} to (3.1) in (0,∞)×R
N satisfying

b−(0, x) = −‖u0‖∞ if |x| ≤ R0 ,

b− ≤ α in [0, T ] × R
N , and b−(t, x) = α if |x| ≥ R0 + 1 + Bt/A ,

where

(3.5) θ−
α (σ ) =

{
α if σ > α ,

σ otherwise .

The above implies that the solution u(t, x) to (3.1) with u(0, x) = u0(x) satisfies

u(t, x) = α if |x| ≥ R(t) := R0 + 1 + Ct ,

and then the solution u is unique with respect to u0 ∈ UC(RN) ∩ Xα in [0, T ) × R
N for

arbitrary T > 0, whereUC(Ω) denotes the space of uniformly continuous functions onΩ .

3.2. Instability of stationary ball.
By Corollary 2.9

Ξ =
{

x ∈ R
N ; |x − x0| < N − 1

C

}

is a set-theoretic solution to (1.1) with a constant C �= 0. It is also easy to find that the
above stationary solution is unstable by considering a ball with the different radius from
(N − 1)/C; if the radius is less than (N − 1)/C then the ball will vanish, and if the radius
is larger than that then the ball will spread whole domain. The following result expresses
the above phenomena from a view point with a level set formulation.

THEOREM 3.1. Let u ∈ C([0,∞) × R
N) be a solution to (3.1) with initial data

u(0, ·) = u0 ∈ UC(RN) ∩ Xα for α ∈ R satisfying

Ξ = {x ∈ R
N ; u(0, x) > c} , Γ = ∂Ξ = {x ∈ R

N ; u(0, x) = c}
for fixed c ∈ R. Then

lim
t→∞u(t, x) = c for x ∈ R

N .

Proof. We may assume that c = 0 and x0 = 0 without loss of generality by consider-
ing ũ(t, x) = u(t, x + x0)− c instead of u.

We first note that, for arbitrary T > 0 we have

(3.6) u ≥ 0 on [0, T )×Ξ , u ≤ 0 on [0, T )×Ξc

by (CP), which implies that

(3.7) u ≡ 0 on [0,∞)× Γ .
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In fact, χ−(x) = −‖u0‖∞χΞc(x) is a solution to (3.1) by Corollary 2.9 and satisfies

χ∗−(x) ≤ u(0, x) for x ∈ R
N .

Note that u∗ = u∗ = u since u ∈ C([0,∞)× R
N). This implies

χ∗−(x) ≤ u(t, x) for (t, x) ∈ (0, T )× R
N

with arbitrary T > 0 by (CP). Note that χ∗−(x) = ‖u0‖∞(χΞ(x)−1) and then we obtain the
first inequality of (3.6). The second inequality of (3.6) is obtained by the parallel argument
of the above with χ+(x) = ‖u0‖∞χΞ(x).

Let ε > 0. Then, there exists δ > 0 such that

{x ∈ R
N ; u(0, x) > ε} ⊂ Ξδ :=

{

x ∈ R
N ; |x| < N − 1

C
− δ

}

since u is uniformly continuous in R
N . We may assume that δ → 0 as ε → 0 by taking

δ′ = min{δ, ε} instead of δ.
We now define

v+
δ (t, x) = −A1t − |x|2 +

(
N − 1

C
− δ

)2

,

where A1 > 0 is a constant determined later. Then,

Ξδ = {x ∈ R
N ; v+

δ (0, x) > 0}
which implies

(3.8) {x ∈ R
N ; u(0, x) > ε} ⊂ {x ∈ R

N ; v+
δ (0, x) > 0} .

By straightforward calculation we obtain

(v+
δ )t = −A1 , ∇v+

δ = −2x , ∇2v+
δ = −2I

and then
(v+
δ )t + F ∗(∇v+

δ ,∇2v+
δ ) = −A1 + 2(N − 1)− 2C|x| .

We here have used the fact that

F ∗
0 (0,X) = −

N−1∑

j=1

λj ,

where λj is an eigenvalue of X satisfying λ1 ≤ λ2 ≤ · · · ≤ λN . Then, if x ∈ Ξδ/4, then

(v+
δ )t + F ∗(∇v+

δ ,∇2v+
δ )

≥ −A1 + 2(N − 1)− 2(N − 1)+ Cδ

2
= −A1 + Cδ

2
.

Hence, we obtain v+
δ is a supersolution to (3.1) in (0,∞) × Ξδ/4 provided that A1 ∈

(0, Cδ/2).
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We extend v+
δ to the whole domain. Fix A1 ∈ (0, Cδ/2) and let G+ : R → R be a

function such that

G+(s) =

⎧
⎪⎨

⎪⎩

−1 if s < −M1 ,
s

M1
if −M1 ≤ s < 0 ,

s if s ≥ 0 ,
where

M1 =
(
N − 1

C
− δ

2

)2

−
(
N − 1

C
− δ

)2

.

Then,G+ is continuous and monotone nondecreasing function and thus

ṽ+
δ (t, x) = G+(v+

δ (t, x))

is still a supersolution to (3.1) in (0, T ) × Ξδ/4. Moreover, if |x| ≥ C−1(N − 1) − δ/2,
then ṽ+

δ (t, x) = −1 for t > 0 since

v+
δ (t, x) ≤ −

(
N − 1

C
− δ

2

)2

+
(
N − 1

C
− δ

)2

= −M1 .

We now define

w+
δ (t, x) =

⎧
⎨

⎩
ṽ+
δ (t, x) if x ∈

{

y ∈ R
N ; |x| < N − 1

C
− δ

4

}

,

−1 otherwise.

Then, w+
δ is a supersolution to (3.1) in (0,∞)× R

N . In fact, w+
δ ≡ −1 in (0,∞)× {x ∈

R
N ; |x| > (N − 1)/C − δ/2}, which implies

(w+
δ )t + F ∗(∇w+

δ ,∇2w+
δ ) = 0 + F ∗(0,O) = 0

in (0,∞)× {x ∈ R
N ; |x| > (N − 1)/C − δ/2} .

Theorem 2.7 and (3.8) yield

{x ∈ R
N ; u(t, x) > ε} ⊂ {x ∈ R

N ; w+
δ (t, x) > 0}

for t ∈ (0, T ) with arbitrary fixed T > 0. Note that

{x ∈ R
N ; w+(t, x) > 0} = ∅

provided that t > Tδ := ((N − 1)/C − δ)2/A1. Hence, we obtain

{x ∈ R
N ; u(t, x) > ε} = ∅ provided that t > Tδ ,

which implies
lim
t→∞u(t, x) ≤ ε for x ∈ Ξδ .

Tending ε → 0 yields that

lim
t→∞u(t, x) ≤ 0 for x ∈ Ξ ,

which and the second inequality of (3.6) implies

(3.9) lim
t→∞u(t, x) ≤ 0 for x ∈ R

N.
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The lower estimate of u, i.e.,

lim
t→∞

u(t, x) ≥ 0 for x ∈ R
N

is derived with similar way. For ε > 0 we first choose δ > 0 such that limε→0 δ = 0 and

(3.10) {x ∈ R
N ; u(0, x) < −ε} ⊂ Ξδ :=

{

x ∈ R
N ; |x| > N − 1

C
+ δ

}

.

We introduce the function v−
δ of the form

v−
δ (t, x) = A2t − |x|2 +

(
N − 1

C
+ δ

)2

.

Then we can find suitable A2 > 0 such that is a subsolution to (3.1) in (0,∞) × Ξδ/4 by
the parallel way of the case of v+

δ . Then, we extend v−
δ into (0, T ) × R

N by similar way
with

G−(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if s ≤ −1 ,
s if − 1 < s ≤ 0 ,
s

M2
if 0 < s ≤ M2 ,

1 otherwise,
where

M2 =
(
N − 1

C
+ δ

)2

−
(
N − 1

C
+ δ

2

)2

,

i.e.,

w−
δ (t, x) =

{
G−(v−

δ (t, x)) if x ∈ Ξδ/4,

1 otherwise.
Then we obtain

{x ∈ R
N ; u(t, x) < −ε} ⊂ {x ∈ R

N ; w−
δ (t, x) < 0}

for t ∈ [0, T ) with arbitrary fixed T > 0 from (3.10) and Ξδ = {x ∈ R
N ; w−

δ (0, x) < 0}.
The above implies

u(t, x) ≥ −ε if |x| ≤
√

A2t +
(
N − 1

C
+ δ

)2

and then limt→∞ u(t, x) ≥ −ε. By tending ε → 0 we obtain

(3.11) lim
t→∞

u(t, x) ≥ 0 for x ∈ R
N .

We obtain the conclusion in Theorem 3.1 by (3.9), (3.11) and (3.7). �

Note that the estimate (3.11) is not uniform with respect to x ∈ R
N and

limt→∞ ‖u(t, ·)− c‖∞ �= 0.
Theorem 3.1 means that every continuous stationary solution to (3.1) at least has no

strict local maximum and minimum. This is generalized as follows.
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THEOREM 3.2. There are no continuous stationary solutions u ∈ Xα for α ∈ R to
(3.1) such that u has a connected componentU �= ∅ of super- or sublevel set whose closure
is included in the ballΞ whose center and radius, respectively, is x0 ∈ R

N and (N−1)/C,
i.e., Ξ ⊃ {x ∈ Ξ; u(x) > c} �= ∅ or Ξ ⊃ {x ∈ Ξ; u(x) < c} �= ∅ for a constant c ∈ R.

Proof. We may assume that c = 0 and x0 = 0 without loss of generality. We also
assume that {x ∈ Ξ; u(x) > 0} ⊂ Ξ since the proof of the other case is parallel.

Fix ε ∈ (0,maxΞ u(x)). Since max∂Ξ u(x) ≤ 0, the function ũ defined as

ũ =
{

max{ε/2, u(x)} if x ∈ Ξ ,
ε/2 otherwise

is still a subsolution to (3.1) by Proposition 2.3 and ũ ∈ Xε/2. However, the superlevel
set {x ∈ Ξ; ũ(x) > ε} must vanish by the similar argument in the proof of Theorem 3.1,
which is the contradiction. �

REMARK 3.3. (i) The proof of Theorem 3.1 is naturally extended to the solution
u(t, x) ∈ C([0,∞) × R

k × (R/Z)N−k) describing the generalized cylindrical
surface

Γ =
{

(x ′, xk+1, . . . , xN) ∈ R
k × R

N−k; |x ′| = N − 1 − k

C

}

for k ∈ [2, N − 1] ∩Z with the comparison principle for unbounded domain as in
[15]. Note that the assumption (2.9) for the above problems should be revised as
follows.

(2.9)′ There exists R > 0 such that u(t, x) = α and v(t, x) = β if |x ′| > R for
t ∈ [0, T ) and x = (x ′, xk+1, . . . , xN) ∈ R

k × R
N−k .

(ii) We also obtain the nonexistence result like as Theorem 3.2 corresponding to the
stationary cylindrical surface in (i).

4. Curvature flow equation on axis-symmetric domain

Let Ω ⊂ R
N be an axis-symmetric domain

Ω = {(x ′, xN) ∈ R
N−1 × R; |x ′| < r(xN)}

with some smooth positive function r satisfying (Ω1)–(Ω2) (see §2.2). In this section we
consider evolving hypersurface Γt ⊂ Ω by (1.1) with C = 0 and the right angle condition,
i.e.,

V = K on Γt ,(4.1)

Γt ⊥ ∂Ω .(4.2)

The level set equation is of the form

ut + F0(∇u,∇2u) = 0 in (0, T )×Ω ,(4.3)

〈∇u, 	ν〉 = 0 on (0.T )× ∂Ω(4.4)
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with (2.4), where 	ν is the outer unit normal vector field of ∂Ω .
Note thatΩ is non-convex. In this section we consider the situation such that (x ′, xN)

is in interior or exterior if xN → −∞ or xN → ∞, respectively. To describe this situation
with the level set method we consider a spatially profile of initial data or solutions in

Yα,β =

⎧
⎪⎨

⎪⎩
f : Ω → R;

there exists R > 0 such that

f (x ′, xN) = α if xN < −R ,
f (x ′, xN) = β if xN > R

⎫
⎪⎬

⎪⎭

for α, β ∈ R.

4.1. Barrier solutions for the uniqueness.
We here remark on the uniqueness and existence of solutions to (4.3)–(4.4). The

comparison principle for (4.3)–(4.4) for a nonconvex and bounded Ω is established by
[18]. Although Ω in our problem is unbounded, the comparison principle for our problem
is also derived by applying the proof of [18] for sub- and supersolution u and v satisfying
(2.10).

The existence of solution u to (4.3)–(4.4) with initial data u0 ∈ UC(Ω) ∩ Yα,β is
also derived by the Perron’s method; see [31]. To show the uniqueness of solution we have
to see u(t, ·) ∈ Yα,β with at least locally bounded R = R(t) > 0. For this purpose we
make a barrier sub- and a supersolution as well as in §3 and demonstrate that the above R
is independent of time t ≥ 0.

We now assume there exists R0 > 0 such that

u0(x) = α if xN < −R0 , u0(x) = β if xN > R0

for x = (x ′, xN) and u0 = u(0, ·). Then,

b(x) =
⎧
⎨

⎩

−A(xN + R0)
4 + ‖u0‖∞ if xN < −R0 ,

‖u0‖∞ if |xN | ≤ R0 ,

−A(xN − R0)
4 + ‖u0‖∞ otherwise

is a C2 supersolution to (4.3)–(4.4) in (0,∞)×R
N . In fact, by straightforward calculation

we have ∇2b = c(x)∇b⊗ ∇b for x ∈ Ω , which implies

bt + F ∗
0 (∇b,∇2b) = 0 + F ∗

0 (∇b,O) = 0 in (0, T )×Ω

by (F4). For (4.4) we have

〈∇b, 	ν〉 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4A(xN + R0)
3r ′(xN)

√
1 + r ′(xN)2

if xN < −R0 ,

0 if |xN | ≤ R0,

4A(xN − R0)
3r ′(xN)

√
1 + r ′(xN)2

otherwise,

which implies 〈∇b, 	ν〉 ≥ 0 on (0, T )× ∂Ω from (Ω1).
We now define

b+(x) :=
{
θ+
α (b(x)) if xN < 0 ,
θ+
β (b(x)) if xN ≥ 0 ,
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where θ+
α or θ+

β is defined in (3.2). Then, b+(x) is still a supersolution to (4.3)–(4.4) in

(0,∞)×Ω satisfying b+ ≥ u0. Then, we observe that the solution u by Perron’s method
satisfies b+(x) ≥ u(t, x) for t > 0 and x ∈ Ω . By the parallel argument of the above with
−b and cut-off functions θ−

α , θ−
β as in (3.5) we also obtain the subsolution

b−(x) :=
{
θ−
α (−b(x)) if xN < 0 ,
θ−
β (−b(x)) if xN ≥ 0

satisfying b−(x) ≤ u(t, x) for (t, x) ∈ (0,∞) × Ω . By the definitions of b± there exists
R = R0 +O(1/A) > R0 such that

b−(x) = b+(x) = α if xN < −R ,
b−(x) = b+(x) = β if xN > R

and thus

u(t, x) =
{
α if xN < −R ,
β if xN > R ,

for t ≥ 0: note that R is independent of t . Hence, we observe that the solution u ∈
C([0,∞)×Ω) for u0 ∈ UC(Ω) ∩ Yα,β is unique.

Moreover, the idea of constructing barrier solutions b± yields the following funda-
mental property.

LEMMA 4.1. Let u ∈ C([0,∞) × Ω) be a solution to (4.3)–(4.4) in (0,∞) × Ω

with u(0, ·) ∈ Yα,β for α, β ∈ R. If

{x ∈ Ω; u(t0, x) = c} ⊂ ΩI := Ω ∩ (RN−1 × I)

for a connected interval I ⊂ R and t0 ∈ [0,∞), then,

{x ∈ Ω; u(t, x) = c} ⊂ ΩĪ

for t > t0.

Proof. Let p = inf I , q = sup I , and

Ω
c−
I = {(x ′, xN) ∈ Ω; xN < p} , Ω

c+
I = {(x ′, xN) ∈ Ω; xN > q} .

Note that Ω
c−
I or Ω

c+
I is empty if p = −∞ or q = ∞, respectively. By assumption we

have that each Ω
c±
I is included in {x ∈ Ω; u(t0, x) > c} or {x ∈ Ω; u(t0, x) < c}.

We now demonstrate that

{x ∈ Ω; u(t, x) = c} ⊂ Ω [p,∞) for t ≥ t0 provided that p > −∞.(4.5)

We now assume Ω
c−
I ⊂ {x ∈ Ω; u(t0, x) > c}. Then, the subsolution

b̄(x) =
{
θ−

1 (|xN − (p + 1)|4 − 1) if xN < p + 1 ,
−1 otherwise

satisfies b̄ ∈ Y1,−1 and

{x ∈ Ω; b̄(x) > 0} = Ω(−∞,p) ⊂ {x ∈ Ω; u(t0, x) > c} .
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Then, by Theorem 2.7 we obtain

Ω(−∞,p) ⊂ {x ∈ Ω; u(t, x) > c}
for t > t0, which implies (4.5). IfΩ

c−
I ⊂ {x ∈ Ω; u(t, x) < c}, then we deduce (4.5) with

similar argument as the above with the supersolution

b̃(x) =
{
θ+
−1(−|xN − (p + 1)|4 + 1) if xN < p + 1 ,

1 otherwise.

We also deduce

{x ∈ Ω; u(t, x) = c} ⊂ Ω(−∞,q] for t ≥ t0 provided that q < ∞
with the parallel argument. �
4.2. Stability of plane at the neck.

By Corollary 2.9 we obtain that the plane at xN = 0, i.e.,

Ξ = {(x ′, xN) ∈ Ω; xN < 0} , Γ = ∂Ξ = {(x ′, 0) ∈ Ω; x ′ ∈ R
N−1}(4.6)

is a set theoretic solution to (4.1)–(4.2). The goal of this section is to show the discontinuous
solution is stable in the following sense.

THEOREM 4.2. Let u ∈ C([0,∞)×Ω) be a solution to (4.3)–(4.4) in (0,∞)×Ω

with initial data u0 ∈ Yα,β for α, β ∈ R. Then,

lim
t→∞u(t, x) =

{
α if xN < 0 ,
β if xN > 0 .

In other words, for every c ∈ R between α and β the level set {x ∈ Ω; u(t, x) = c}
converges to Γ as t → ∞.

Proof. We may assume that α > β without loss of generality. Let R0 > 0 be such
that

u0(x) =
{
α if xN < −R0 ,

β if xN > R0

for x = (x ′, xN) ∈ Ω . Then, for μ > 0

{x ∈ Ω; u0(x) > α + μ or u0(x) < β − μ} ⊂ Ω(−R0,R0) ,

{x ∈ Ω; u0(x) < α − μ} ⊂ Ω(−R0,+∞) ,

{x ∈ Ω; u0(x) > β + μ} ⊂ Ω(−∞,R0) .

We now prove that, for ε ∈ (0,min{1, R0}), there exists Tε > 0 such that

{x ∈ Ω; u(t, x) > α + μ or u(t, x) < β − μ} ⊂ Ω(−ε,ε) ,
{x ∈ Ω; u(t, x) < α − μ} ⊂ Ω(−ε,+∞) ,

{x ∈ Ω; u(t, x) > β + μ} ⊂ Ω(−∞,ε)(4.7)

for t > Tε. We here demonstrate only (4.7) since the proof of the others are parallel.
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Let
v(x) = −|x − y|2 + z = −|x ′|2 − |xN + yN |2 + z

for y = (0′,−yN), yN > 0 and z > 0. We choose yN and z so that v satisfies

v(x ′, R0) = 0 if (x ′, R0) ∈ ∂Ω ,(4.8)

v(0′, R0 + 1) ≤ −1 ,(4.9)

v(x ′, ε/2) ≥ cε + 1 if (x ′, ε/2) ∈ ∂Ω , where cε = v(0′, ε) ,(4.10)

〈∇v, 	ν〉 ≥ 0 for (x ′, xN) ∈ ∂Ω if xN ∈ Iε = [ε/2, R0 + 1] .(4.11)

From (4.8) we set
z = r(R0)

2 + (R0 + yN)
2.

For (4.9), (4.10) and (4.11) it suffices to choose yN satisfying

yN ≥ max

{
r(R0)

2

2
− R0,

r(R0)
2

ε
+ 1

ε
− 3

4
ε,
r(R0 + 1)

mε

}

,

where mε = infIε r
′ > 0 , since

〈∇v, 	ν〉 = −2(|x ′| − r ′(xN)(xN + yN))
√

1 + r ′(xN)2
≥ −2(r(R0 + 1)−mεyN)

√
1 + r ′(xN)2

for (x ′, xN) ∈ ∂Ω satisfying xN >0 by (Ω1), and 	ν = (1+r ′(xN)2)−1/2(x ′/|x ′|,−r ′(xN)).
We now introduce

w(t, x) = −Bt + Av(x)

for A,B > 0 chosen later. Then we have

∇w = −2A(x ′, xN + yN) , ∇2w = −2AI ,

which implies
F ∗

0 (∇w,∇2w) = 2A(N − 1) .

Thus, we set B = 2A(N − 1) > 0 to get

wt + F ∗
0 (∇w,∇2w) = 0 in (0,∞)×Ω .

Moreover we have
〈∇w, 	ν〉 ≥ 0 on (0,∞)× (∂Ω ∩ΩIε ) .

Hence, we obtain w(t, x) is a supersolution to (4.3)–(4.4) on (0,∞)×ΩIε .
Let Tε > 0 be such that

w(Tε, (0
′, ε)) = −BTε + Acε = 0 , i.e., Tε = Acε

B
= cε

2(N − 1)
.

Then, we have

w(t, (x ′, R0 + 1)) ≤ −A for (t, (x ′, R0 + 1)) ∈ [0, Tε] ×Ω(4.12)

w(t, (x ′, ε/2)) ≥ A for (t, (x ′, ε/2)) ∈ [0, Tε] ×Ω(4.13)

from (4.9) and (4.10), respectively. Fix A > 1. Then (4.12) and (4.13) imply that there
exists εA > 0 such that

w(t, (x ′, R0 + 1)) < −1 for (t, (x ′, R0 + 1)) ∈ [0, Tε + εA] ×Ω ,
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w(t, (x ′, ε/2)) > 1 for (t, (x ′, ε/2)) ∈ [0, Tε + εA] ×Ω .

We now define

w̄(t, x) =
{

min{1,max{−1, w(t, x)}} = θ̄ (w(t, x)) in [0,∞)×Ω(ε/2,∞) ,

1 otherwise,

where

θ̄ (σ ) =
⎧
⎨

⎩

−1 if σ < −1 ,

σ if |σ | ≤ 1 ,

1 otherwise.

Then, w̄ is still a supersolution to (4.3)–(4.4) in (0, Tε + εA)×Ω . Moreover, (4.8) implies

{x ∈ Ω; w̄(0, x) > 0} ⊃ Ω(−∞,R0) ⊃ {x ∈ Ω; u0(x) > β + μ} .
Thus we obtain

{x ∈ Ω; w̄(Tε, x) > 0} ⊃ {x ∈ Ω; u(Tε, x) > β + μ}
by Theorem 2.7. The definition of Tε implies

w̄(Tε, (x
′, xN)) ≤ w̄(Tε, (x

′, ε)) ≤ w̄(Tε, (0
′, ε)) = 0

if xN ≥ ε, which and Lemma 4.1 yield

Ω(−∞,ε) ⊃ {x ∈ Ω; u(t, x) > β + μ} for t ≥ Tε .

Hence, we obtain
lim
t→∞u(t, x) ≤ β + μ if xN ≥ ε .

Tending ε → 0, and next μ → 0 yield that

lim
t→∞u(t, x) ≤ β if xN > 0 .

By the parallel arguments using a subsolution with Bt − Av(x) we obtain

lim
t→∞

u(t, x) ≥ β if xN > 0 .

Hence, we obtain limt→∞ u(t, x) = β if xN > 0.
We also deduce limt→∞ u(t, x) = α if xN < 0 by the parallel argument construct-

ing a sub- and supersolution by v with y = (0, yN), yN > 0. �

One can easily deduce the asymptotic stability of Γ from the proof of Theorem 4.2.

COROLLARY 4.3. There is no continuous stationary solution u ∈ Yα,β to (4.3)–
(4.4) satisfying Γ = {x ∈ W ; u(x) = c} for c ∈ R between α and β and Γ given as in
(4.6).
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5. Concluding remarks

The following problems are still open:

(i) Are there continuous stationary solutions to (3.1) describing a constant mean cur-
vature interface?

(ii) Are there nonconstant stationary solutions to (3.1)?

However, at least every continuous stationary solution to (3.1) has neither strict local max-
imum nor minimum by Theorem 3.2. It is very strong restriction to continuous stationary
solutions except constant functions.

Although we prove the nonexistence of continuous stationary solutions describing sta-
tionary interface Γ considered in §3 or §4, there exist continuous and exactly nonstationary
solution describing Γ by [7] or [31]. It means that we have to choose the nonstationary so-
lution as the center of linearization if we consider the stability of stationary interface to
(1.1) with a level set method from a view point of eigenvalue problem.

We conclude this section to mention anisotropic curvature equation, which we do not
treat in this paper. The exact solution to the level set equation of an anisotropic mean
curvature equation is presented in [16, §1.7.2]. Thus, one can easily find a vanishing or
spreading self similar solution to an anisotropic curvature flow with constant driving force
by the parallel argument of the proof of Theorem 3.1.

Acknowledgement The author is grateful to Professor Kota Ikeda for giving some
valuable comments. The author is also grateful to anonymous referees for valuable sugges-
tions to improve the presentation of this paper.
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