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Abstract. Let Ω be a homogeneous cone on which a split solvable Lie group H
acts linearly and simply transitively. We describe the closure relation between H -orbits
in the closure Ω of the cone Ω , and discuss related results in connection with the Riesz
distributions on Ω .

1. Introduction

In studying the wave equation, M. Riesz [12] considered a family of tempered distri-
butions Tα ∈ S ′(Rn) (α ∈ C) obtained by the analytic continuation with respect to the
parameter α of the function
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on the Lorentz cone. For a positive integerm, the distribution T2m is a fundamental solution

of the differential operator
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)m, and the validity of the Huygens prin-

ciple of the operator depends on the nature of the support of T2m. Gindikin [2] developed
Riesz’s idea in full generality in the theory of homogeneous cones. Let Ω be a homoge-
neous cone on which a split solvable Lie groupH acts linearly and simply transitively. The
Riesz distribution Rs on Ω is defined by the analytic continuation with respect to the pa-
rameter s = (s1, . . . , sr ) ∈ C

r of the complex measureΓΩ(s)−1f
s1
1 f

s2
2 · · ·f srr dμΩ , where

fk (k = 1, . . . , r) is a certain H -relatively invariant rational function, μΩ an H -relatively
invariant measure on Ω , and ΓΩ(s) an appropriate gamma factor. Then Rm with a special
value m ∈ Z

r is the fundamental solution of a differential operator F( ∂
∂x
), where F is an

H -relatively invariant polynomial associated to the dual cone ofΩ ([2, 4, 9]). The descrip-
tion of the support of the distributions Rs is of fundamental importance, and it is still an
open problem. When Rs is a positive measure, it plays significant roles in representation
theory ([3, 7, 14]) and statistics ([5, 6]). The parameter setΞ := {

s ∈ C
r ; Rs is positive

}
is determined first by Gindikin [3] (see also [1, Theorem VII.3.2] and [13]), while the sup-
port of each Rs (s ∈ Ξ) is given by [8, Theorem B]. Indeed, all positive Rs are described
explicitly in [8], related to the H -orbit structure of the closureΩ .
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106 H. ISHI

In this paper, we discuss geometric structures of theH -orbits inΩ . Our main theorem
is a simple criterion for the closure relation O1 ⊂ O2 betweenH -orbits O1, O2 ⊂ Ω . The
result is closely related to the study of Riesz distributions Rs . We can deduce a part of the
main theorem from observation of the support of Rs . And we expect to utilize the theorem
in future research on the distributions Rs .

Let us explain the present work in more detail. Let Ω be an open convex cone con-
taining no line in a real vector space V . We assume that the cone Ω is homogeneous, that
is, the linear automorphism group GL(Ω) := { g ∈ GL(V ) ; gΩ = Ω } acts on Ω transi-
tively. Let H be a maximal connected split solvable Lie subgroup of GL(Ω). Such H is
unique up to inner automorphisms of GL(Ω), and H acts on Ω simply transitively ([16]).
Moreover, if a Lie groupG ⊂ GL(Ω) acts on Ω transitively and its Lie algebra Lie(G) is
algebraic, then there exists g0 ∈ G for which g0H g−1

0 ⊂ G. In this case, a G-orbit in V is
a union of g0-images ofH -orbits. This observation tells us the significance of investigation
of the H -action in the theory of homogeneous cones.

Let h be the Lie algebra of H . Then the solvable Lie algebra V � h admits a normal
j -algebra structure ([8]), and one can make use of its root space decomposition due to
Piatetskii-Shapiro [11]. As a result, there exist a commutative Cartan subalgebra a of V �h
and linear forms αk : a → R (k = 1, . . . , r, r := dim a) for which

h = a ⊕
∑⊕

1≤k<l≤r
h(αl−αk)/2 ,(1.1)

V =
r∑⊕

k=1

Vαk ⊕
∑⊕

1≤k<l≤r
V(αl+αk)/2 ,(1.2)

where

hα := {T ∈ h ; [C, T ] = α(C)T (∀C ∈ a) } ,
Vα := { x ∈ V ; Cx = α(C)x (∀C ∈ a) }

for a linear form α ∈ a∗. We have dimVαk = 1 for k = 1, . . . r , while some nlk :=
dimV(αl+αk)/2 (1 ≤ k < l ≤ r)may be zero. We can takeEk ∈ Vαk (k = 1, . . . , r) so that∑r
k=1Ek belongs to Ω . For ε = (ε1, . . . , εr ) ∈ {0, 1}r , let Eε be the element

∑r
k=1 εkEk

of V , and Oε ⊂ V the H -orbit through Eε . In particular, the cone Ω itself equals the
H -orbit O(1,...,1). By [8, Theorem 3.5], the H -orbit decomposition of the closure of Ω is
given byΩ = ⊔

ε∈{0,1}r Oε . For ε ∈ {0, 1}r , we define σ(ε) = (σ1(ε), . . . , σr (ε)) ∈ Z
r by

σk(ε) := ∑k
i=1 εinki (k = 1, . . . , r), where we put nkk := dimVαk = 1 for k = 1, . . . , r .

Now we state our result.

MAIN THEOREM . For ε1, ε2 ∈ {0, 1}r , one has Oε1 ⊂ Oε2 if and only if σk(ε1) ≤
σk(ε

2) for all k = 1, . . . , r .

In order to study the H -orbits in Ω , we may assume that the cone Ω ⊂ V and the
group H are realized as the set of matrices with specific block decompositions owing to
the results in [10] about the symplectic representation of the normal j -algebra V � h.
In section 2, we explain the detail of the matrix realization of a homogeneous cone, and
present some results about geometry of H -orbits (Propositions 3 and 4). Main Theorem
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is proved in section 3 by rather elementary argument of linear algebra. In section 4, after
brief review of results about Riesz distributions, we obtain a refinement of the ‘if’ part of
Main Theorem (Theorem 9 (ii)) by observing the support of positive Riesz distributions.
We emphasize that the meaning of the integers σk(ε) becomes clearer when it is related to
the theory of Riesz distributions. As a biproduct, we obtain the path-connectedness of the
parameter set Ξ (Theorem 10).

The author would like to thank Professor Simon Gindikin and Professor Piotr Graczyk
for their interests to the present work. He is also grateful to the referee for helpful comments
and suggestions for the improvement of the paper.

2. Matrix realization of a homogeneous cone

In studying a homogeneous cone, we may discuss only the cone ΩV constructed in a
specific way explained below without loss of generality because every homogeneous cone
is shown to be linearly isomorphic to such a cone ([10, Theorem D]). In what follows, we
denote by Mat(p, q;R) the vector space of p × q real matrices, by Mat(p,R) the space
Mat(p, p;R), and by Sym(p,R) the vector space of p × p real symmetric matrices. The
transpose of a matrixA is denoted by tA. Let us take a partitionN = ν1+ν2+· · ·+νr (νk >
0, k = 1, . . . , r) of a positive integer N , and V = {Vlk}1≤k≤l≤r a system of vector spaces
Vlk ⊂ Mat(νl, νk;R) satisfying

(V1) A ∈ Vlk, B ∈ Vki ⇒ AB ∈ Vli (1 ≤ i ≤ k ≤ l ≤ r),
(V2) A ∈ Vli, B ∈ Vki ⇒ A tB ∈ Vlk (1 ≤ i ≤ k ≤ l ≤ r),
(V3) A ∈ Vlk ⇒ A tA ∈ RIνl (1 ≤ k ≤ l ≤ r),
(V4) Vll = RIνl (l = 1, . . . , r).

Let ZV be the vector space consisting of symmetric matrices X ∈ Sym(N,R) of the form

X =

⎛
⎜⎜⎜⎝

X11
tX21 · · · tXr1

X21 X22
tXr2

...
. . .

Xr1 Xr2 · · · Xrr

⎞
⎟⎟⎟⎠ (Xlk ∈ Vlk, 1 ≤ k ≤ l ≤ r) ,

and ΩV ⊂ ZV the subset {X ∈ ZV ; X is positive definite }. Then ΩV is an open convex
cone in the vector space ZV . Let hV be the vector space of lower triangular matrices
T ∈ Mat(N,R) of the form

T =

⎛
⎜⎜⎜⎝

T11
T21 T22
...

. . .

Tr1 Tr2 · · · Trr

⎞
⎟⎟⎟⎠ (Tlk ∈ Vlk, 1 ≤ k ≤ l ≤ r) .

Then hV is an R-subalgebra of the matrix algebra Mat(N,R) by (V1). Diagonal com-
ponents Tkk (k = 1, . . . , r) of T ∈ hV are scalar matrices by (V4), that is, we have
Tkk = tkkIνk with tkk ∈ R. Regarding hV as a real Lie algebra, we denote by HV the Lie
group exp hV ⊂ GL(N,R). Then we have

HV = { T ∈ hV ; tkk > 0 (k = 1, . . . , r) } ⊂ hV .
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If T ∈ HV and X ∈ ZV , then ρ(T )X:=TX tT belongs to ZV thanks to (V1)–(V4).
Moreover ρ(HV ) acts on the cone ΩV ⊂ ZV simply transitively (see [10, Proposition
3.2]). Namely, ΩV is a homogeneous cone. For instance, if νk = 1 (k = 1, . . . , r) and
Vlk = R (1 ≤ k ≤ l ≤ r), then we have ZV = Sym(r,R), andΩV is the cone Sym+(r,R)
of positive definite symmetric matrices. See [5, p. 331] for other examples of the homoge-
neous cone ΩV .

Let a be the subspace of h consisting of diagonal matrices, that is,

a :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
C =

⎛
⎜⎜⎜⎝

c1Iν1

c2Iν2

. . .

cr Iνr

⎞
⎟⎟⎟⎠ ; c1, c2, . . . , cr ∈ R

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
,

and αk ∈ a∗ (k = 1, . . . , r) the linear form given by αk(C) := 2ck (C ∈ a). Then
the root space decompositions (1.1) and (1.2) coincide with the block decompositions of
hV and ZV respectively, where h(αl−αk)/2 and V(αl+αk)/2 naturally correspond to Vlk for
1 ≤ k < l ≤ r .

For ε ∈ {0, 1}r , let Eε be the element of ZV given by

Eε :=
⎛
⎜⎝
ε1Iν1

. . .

εrIνr

⎞
⎟⎠ ,

and Oε the HV -orbit ρ(HV)Eε ⊂ ZV through Eε . In particular, if we write 0 and 1 for
(0, . . . , 0) and (1, . . . , 1) respectively, then O0 is the origin {0}, and O1 = ρ(HV )IN equals
the cone ΩV .

THEOREM 1 ([8, Theorem 3.5]). TheHV -orbit decomposition of the closureΩV of
the homogeneous coneΩV is given by

ΩV =
⊔

ε∈{0,1}r
Oε .

We denote by Hε the stabilizer subgroup
{
T ∈ HV ; ρ(T )Eε = Eε

}
of HV at Eε .

Then we see easily that Hε equals
{
T ∈ HV ; if εk = 1, then Tkk = Iνk and Tlk = 0 (l > k)

}
.

Let H(Oε) be the group H1−ε , that is,

H(Oε) := {
T ∈ HV ; if εk = 0, then Tkk = Iνk and Tlk = 0 (l > k)

}
.

Then the Lie algebra of H(Oε) is

(2.1)
h(Oε):= {T ∈ h ; if εk = 0, then Tlk = 0 (l ≥ k) }

= {
T ∈ h ; TEε = T

}
.

We set
h+(Oε) := {

T ∈ h(Oε) ; if εk = 1, then tkk > 0
} ⊂ h(Oε) ,
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so that we have a bijection

h+(Oε) � T ∼�→ E1−ε + T ∈ H(Oε) .

Though the following results are shown in [5] and [8], we give the proofs here for reader’s
convenience.

LEMMA 2. (i) One has a diffeomorphism h+(Oε) � T �→ T tT ∈ Oε .
(ii) The group H(Oε) acts on Oε simply transitively.
(iii) The closure of the orbit Oε is described as

Oε =
{
T tT ; T ∈ h(Oε)

}
.

Proof. Let X be an element of the HV -orbit of Oε. Then there exists T̃ ∈ HV for
which X = ρ(T̃ )Eε. Put T := T̃ Eε ∈ h+(Oε). We observe

X = T̃ Eε
tT̃ = (T̃ Eε)

t(T̃ Eε) = T tT

= (E1−ε + T )Eε
t(E1−ε + T ) = ρ(E1−ε + T )Eε .

Since E1−ε + T ∈ H(Oε), the orbit map H(Oε) � T 0 �→ ρ(T 0)Eε ∈ Oε is surjective,
while it is injective because H(Oε) ∩Hε = {IN }. Therefore (i) and (ii) hold. Let us prove
(iii). We consider the quadratic map

qε : h(Oε) � T �→ T tT ∈ ZV .

It follows from (i) that the image qε(h(Oε)) is contained in Oε. Thus it is sufficient to
show that qε(h(Oε)) is a closed set in ZV . In general, for a real vector spaceW , we denote
by P(W) the projective space (W⊕R \ {(0, 0)})/R×, and by ιW the projective imbedding
ιW : W � w �→ [w, 1] ∈ P(W). We extend the map qε : h(Oε) → ZV to the continuous
map q̃ε : P(h(Oε)) � [T , c] �→ [T tT , c2] ∈ P(ZV ), noting that T tT �= 0 if T �= 0. The
image q̃ε(P(h(Oε))) is compact, so that the set qε(h(Oε)) = ι−1

ZV (q̃ε(P(h(Oε)))) is closed
in ZV . �

We see from Lemma 2 (i) that the HV -orbit Oε is homeomorphic to a vector space.
Furthermore, we deduce the following.

PROPOSITION 3 ([8, Proposition 3.6]). Let ε and ε′ be elements of {0, 1}r for which
ε + ε′ ∈ {0, 1}r . Then one has a bijection

Oε × Oε′ � (X,X′) �→ X +X′ ∈ Oε+ε′ .
Proof. Clearly the map

h+(Oε)× h+(Oε′) � (T , T ′) �→ T + T ′ ∈ h+(Oε+ε′)
is bijective, and we have (T + T ′) t(T + T ′) = T tT + T ′ tT ′. These observations together
with Lemma 2 (i) imply the statement. �

Let C ⊂ R
n be a closed convex cone. For x ∈ C, we say that the half line R+x =

{λx ; λ > 0 } is an extremal ray of C if x = x ′ + x ′′ with x ′, x ′′ ∈ C implies x ′, x ′′ ∈ R+x.
We denote by Ex(C) the set of x ∈ C for which R+x is an extremal ray of C.
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PROPOSITION 4. Let δ(k) ∈ {0, 1}r be the element of {0, 1}r whose k-th component
is 1 and other components are 0. Then one has

Ex(ΩV ) =
r⊔
k=1

Oδ(k) .

Proof. If X ∈ Oε with ε �= δ(k) for k = 1, . . . , r , then R+X is not an extremal
ray because of Proposition 3. Thus it is sufficient to show that R+Eδ(k) is an extremal
ray for k = 1, . . . , r . Suppose Eδ(k) = X′ + X′′ with X′,X′′ ∈ ΩV . By (V4), we have
X′
ii = x ′

iiIνi and X′′
ii = x ′′

iiIνi with x ′
ii , x

′′
ii ∈ R for i = 1, . . . , r . Since X′ and X′′ are

positive semi-definite, we have x ′
ii ≥ 0 and x ′′

ii ≥ 0. On the other hand, if i �= k, we have
x ′
ii + x ′′

ii = 0. Thus X′
ii = X′′

ii = 0, which together with the positive semi-definiteness
of X′ and X′′ implies that the off-diagonal (l, i)-components X′

li and X′′
li equal 0 also for

1 ≤ i < l ≤ r . ThereforeX′ and X′′ belong to R+Eδ(k), which completes the proof. �

3. Main result

We put nlk := dimVlk (1 ≤ k ≤ l ≤ r). For ε ∈ {0, 1}r , define σ(ε) = (σ1(ε), . . . ,

σr (ε)) ∈ Z
r by

(3.1) σk(ε) :=
k∑
i=1

εinki (k = 1, . . . , r) .

THEOREM 5. For ε1, ε2 ∈ {0, 1}r , one has Oε1 ⊂ Oε2 if and only if σk(ε1) ≤
σ2(ε

2) for all k = 1, . . . , r .

Proof. The key idea of the proof is to introduce the vector space rk(ε) (1 ≤ k ≤ r, ε ∈
{0, 1}r) below whose dimension is equal to σk(ε). For T ∈ h and k = 1, . . . , r , we set

Rk(T ) := (
Tk1 Tk2 · · · Tkk

) ∈ Mat(νk, ν1 + ν2 + · · · + νk;R) .
Namely, Rk(T ) is the r-th block raw of the triangular matrix T . Put

rk(ε) := {
Rk(T ) ; T ∈ h(Oε)

} ⊂ Mat(νk, ν1 + ν2 + · · · + νk;R) .
Then we have dim rk(ε) = σk(ε). Similarly, we define

Řk(T ) := (
Tk1 Tk2 · · · Tk,k−1

) ∈ Mat(νk, ν1 + ν2 + · · · + νk−1;R)
for k = 2, . . . , r and T ∈ h, and

řk(ε) :=
{
Řk(T ) ; T ∈ h(Oε)

}
⊂ Mat(νk, ν1 + ν2 + · · · + νk−1;R) .

Clearly, we have

(3.2) dim řk(ε) = σk(ε)− εk .

Let us show the ‘only if’ part of the statement. Assume that Oε1 ⊂ Oε2 . Since

Eε1 ∈ Oε2 , we can find T̃ ∈ h(Oε2) for which Eε1 = T̃ tT̃ because of Lemma 2 (iii).
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Keeping (2.1) in mind, we have a linear map

φ : h(Oε1) � T �→ T T̃ ∈ h(Oε2) .

We observe that φ is injective. Indeed, if φ(T ) = 0 for some T ∈ h(Oε1), then

0 = (T T̃ ) t(T T̃ ) = TEε1
tT = T tT ,

so that T = 0. Let T̃ [k] (k = 1, . . . , r) be the submatrix of T̃ defined by

T̃ [k] :=
⎛
⎜⎝
T̃11
...

. . .

T̃k1 · · · T̃kk

⎞
⎟⎠ ∈ Mat(ν1 + · · · + νk;R) .

Let us consider a linear map

φk : rk(ε1) � Rk(T ) �→ Rk(T )T̃
[k] = Rk(T T̃ ) ∈ rk(ε

2) (T ∈ h(Oε1)) .

In a similar way to the case for φ, we see that φk is injective. Therefore we obtain
dim rk(ε

1) ≤ dim rk(ε
2), which means that σk(ε1) ≤ σk(ε

2).
Next we show the ‘if’ part. Assume that σk(ε1) ≤ σk(ε

2) for k = 1, . . . , r . In order
to show Oε1 ⊂ Oε2 , it is sufficient to find T̃ ∈ h(Oε2) for which Eε1 = T̃ tT̃ thanks

to Lemma 2 (iii). Since Eε1 = (Eε1 T̃ ) t(Eε1 T̃ ) and Eε1 T̃ ∈ h(Oε2) for such T̃ , we can

assume further that the matrix T̃ satisfies T̃ = Eε1 T̃ without loss of generality. We shall

get T̃ by determining T̃ [k] recursively for k = 1, . . . , r so that

T̃ [k] tT̃ [k] =
⎛
⎜⎝
ε1

1Iν1

. . .

ε1
kIνk

⎞
⎟⎠ =: E[k]

ε1 ,(3.3)

T̃ [k]E[k]
ε2 = T̃ [k] ,(3.4)

and

(3.5) E
[k]
ε1 T̃

[k] = T̃ [k] .

Since ε1
1 = σ1(ε

1) ≤ σ1(ε
2) = ε2

1, we set T̃ [1] := ε1
1Iν1 which satisfies (3.3), (3.4) and

(3.5) with k = 1. Assume that T̃ [k−1] (2 ≤ k ≤ r) is determined. If ε1
k ≤ ε2

k , then we set

T̃ [k] :=
(
T̃ [k−1]

0 ε1
kIνk

)

for the required properties. Let us consider the case ε1
k = 1 and ε2

k = 0. By (3.2), we have
dim řk(ε

1) = σk(ε
1)− 1 < σk(ε

2) = dim řk(ε
2). Thus the linear map

ψk : řk(ε1) � Řk(T ) �→ Řk(T )T̃
[k−1] ∈ řk(ε

2) (T ∈ h(Oε1)) .

is not surjective. We take a non-zero element Ỹ of the orthogonal complement (Image ψk)⊥
⊂ řk(ε

2) with respect to the inner product defined by (Y1|Y2) := tr (Y1
tY2) (Y1, Y2 ∈

řk(ε
2)). Then we have

(3.6) 0 = (Ỹ |ψk(Y )) = tr (Ỹ tT̃ [k−1] tY )
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for any Y ∈ řk(ε
1). Since Ỹ tỸ ∈ RIνk by (V3), we can normalize Ỹ so that

Ỹ tỸ = Iνk .

On the other hand, we see from (V2) that Ỹ tT̃ [k−1] belongs to the space řk = řk(1, . . . , 1),
while we obtain Ỹ tT̃ [k−1]E[k−1]

ε = Ỹ tT̃ [k−1] by (3.5). Thus Ỹ tT̃ [k−1] ∈ řk(ε
1). Therefore,

putting Y = Ỹ tT̃ [k−1] in (3.6), we have Ỹ tT̃ [k−1] = 0. We set

T̃ [k] :=
(
T̃ [k−1]
Ỹ 0

)
,

so that (3.3), (3.4) and (3.5) are satisfied. In this way, we obtain T̃ = T̃ [r] ∈ h(Oε2) for

which T̃ tT̃ = Eε1 . �

4. Riesz distribution

In this section, we investigate the HV -orbits in ΩV in connection with the theory of
Riesz distributions, so that a refinement of the ‘if’ part of Theorem 5 is obtained (Theorem 9
(ii)). Let us recall the definition of Riesz distributions on the homogeneous coneΩV ⊂ ZV
and their basic properties. See [5] and [8] for the details. For s = (s1, . . . , sr ) ∈ C

r ,
let χs : HV → C

× be the one-dimensional representation of HV given by χs(T ) :=∏r
k=1 t

2sk
kk (T ∈ HV). Define Δs : ΩV → C by Δs(X) := χs(T ) (X = T tT ∈ ΩV , T ∈

HV ). Then Δs is an HV -relatively invariant function on the cone ΩV . Moreover, Δs
can be expressed as a product of powers of minors as follows. For p = 1, . . . , N and
S ∈ Sym(N,R), we denote by det[p] S the principal minor det(Sαβ)1≤α≤p, 1≤β≤p of degree
p. Put f1 := det[1] and

fk := det[ν1+···+νk−1+1]

det[ν1+···+νk−1] (k = 2, . . . , r) .

Then we haveΔs = ∏r
k=1 f

sk
k .

Keeping (V3) in mind, we define an inner product on each Vlk (1 ≤ k ≤ l ≤ r) by
(A|B) := (trA tB)/νl (A,B ∈ Vlk), so that

Xlk
tXlk = (Xlk|Xlk)Iνl (Xlk ∈ Vlk) .

We denote by dX the Lebesgue measure
∏

1≤k≤l≤r dXlk on ZV normalized by the in-
ner product. We define also d := (d1, . . . , dr) ∈ Z

r/2 by dk := 1 + (
∑
i<k nki +∑

l>k nlk)/2 for k = 1, . . . , r . Let μV be a measure on the cone ΩV given by dμV (X) :=
Δ−d(X)dX (X ∈ ΩV ). Then μV is invariant under the action of HV . For X ∈ Z , we
denote by xkk (k = 1, . . . , r) the real number for which Xkk = xkkIνk . It is shown in [2,
Theorem 2.1] that the integral

ΓV(s) :=
∫

ΩV
e−

∑r
k=1 xkkΔs(X) dμV (X)



Orbit Structure of the Closure of a Homogeneous Cone 113

converges if and only if 2�sk > pk := ∑
i<k nki for k = 1, . . . , r , and in this case

ΓV (s) = π(n−r)/2
r∏
k=1

Γ

(
sk − pk

2

)
,

where n := dimZV = ∑
1≤k≤l≤r nlk . Moreover, Rs := ΓV (s)−1Δs dμV defines a com-

plex Radon measure on ZV when ΓV (s) converges, and admits the analytic continuation to
whole s ∈ C

r as a tempered distribution.
For ε ∈ {0, 1}r , we define pk(ε) := ∑

i<k εinki (k = 1, . . . , r),

Ξ(ε) := {
s ∈ R

r ; sk = pk(ε)/2 (if εk = 0) , sk > pk(ε)/2 (if εk = 1)
}
,

and Ξ := ⊔
ε∈{0,1}r Ξ(ε).

THEOREM 6 ([8, Theorem B]). The Riesz distribution Rs is positive if and only if
s ∈ Ξ . Moreover, if s ∈ Ξ(ε), then Rs is a measure on the HV -orbit Oε .

Using the diffeomorphism qε : h+(Oε) � T �→ T tT ∈ Oε in Lemma 2 as a coordi-
nate map of Oε, we can describe the measure Rs on Oε for s ∈ Ξ(ε) as follows.

PROPOSITION 7 ([5, Proposition 3.10]). If s ∈ Ξ(ε), one has

dRs(X) =
∏
εk=1

{
2(tkk)2sk−pk(ε)−1 dtkk

Γ (sk − pk(ε)

2 )
·
∏
l>k

dTlk

πnlk/2

}
,

where X = T tT ∈ Oε with T ∈ h+(Oε).

We have a concise algorithm to know whether s belongs to Ξ for a given s ∈ R
r .

PROPOSITION 8 ([8, Proposition 6.1]). For s ∈ R
r , define uik ∈ R (1 ≤ i ≤ k ≤

r) by u1
k := sk (k = 1, . . . , r) and

uik :=
{
ui−1
k − nki/2 (if ui−1

i−1 > 0) ,

ui−1
k (if ui−1

i−1 ≤ 0)

for 2 ≤ i ≤ k ≤ r . Then s ∈ Ξ if and only if ukk ≥ 0 for all k = 1, . . . , r . In this case,
putting

εk :=
{

1 (if ukk > 0) ,

0 (if ukk = 0)

for k = 1, . . . , r , one has s ∈ Ξ(ε).
Let us recall the parameter σ(ε) = (σ1(ε), . . . , σr (ε)) ∈ Z

r defined by (3.1). We
note that σ(ε)/2 (ε ∈ {0, 1}r) belongs to Ξ(ε). Indeed, Proposition 7 tells us that Rσ(ε)/2

equals the image of the Lebesgue measure
∏
εk=1

∏
l>k dtkkdTlk on h+(Oε) via the map

qε : h+(Oε) → Oε up to a positive constant multiple.
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THEOREM 9. Let ε1 and ε2 be elements of {0, 1}r such that σk(ε1) ≤ σk(ε
2) for all

k = 1, . . . , r . For j = 1, . . . , r and t ∈ [0, 1], define s(j, t) ∈ R
r by

sk(j, t) :=

⎧
⎪⎨
⎪⎩

σk(ε
1) (k < j) ,

tσk(ε
1)+ (1 − t)σk(ε

2) (k = j) ,

σk(ε
2) (k > j) .

(i) For j = 1, . . . , r , there exists ε(j) ∈ {0, 1}r such that s(j, t)/2 ∈ Ξ(ε(j)) for all
t ∈ [0, 1).

(ii) One has Oε1 ⊂ Oε(r) ⊂ · · ·Oε(2) ⊂ Oε(1) = Oε2 .

Proof. We show the assertion (i) by induction on j . Let us consider the case j = 1. By
the assumption, we have ε1

1 = σ1(ε
1) ≤ σ1(ε

2) = ε2
1. If ε1

1 = ε2
1, then s(1, t) = σ(ε2)

for t ∈ [0, 1], so that the claim holds with ε(1) = ε2. For the case ε1
1 = 0 and ε2

1 = 1,
we have s1(1, t) = 1 − t > 0 for t ∈ [0, 1) and sk(1, t) = σk(ε

2) (k = 2, . . . , r). Thus
s(1, t)/2 ∈ Ξ(ε(1)) with ε(1) = ε2 again.

Assume that the claim holds for j = i < r . Let ϕ be any non-negative function on
ZV with compact support. Since Rs(i,t )/2 is a positive measure on Oε(i) for t ∈ [0, 1) by
the induction hypothesis and Theorem 6, we have

(4.1) 〈Rs(i,1)/2, ϕ〉 = lim
t→1−0

〈Rs(i,t )/2, ϕ〉 ≥ 0 .

Therefore the distribution Rs(i,1)/2 is positive, so that Theorem 6 tells us the existence of
ε(i + 1) ∈ {0, 1}r for which

s(i, 1)/2 ∈ Ξ(ε(i + 1)) .

Furthermore, (4.1) implies that Oε(i+1) = suppRs(i,1)/2 is contained in Oε(i) =
suppRs(i,t )/2 (t ∈ [0, 1)). We note that s(i + 1, 0) = s(i, 1) by definition. Let us

check that pi+1(ε(i + 1)) = ∑i
h=1 εh(i + 1)ni+1,h is equal to pi+1(ε

1). In view of
Proposition 8, we see that the h-th component εh(i + 1) of ε(i + 1) is determined from
sα(i + 1, 1) (α = 1, . . . , h), which is equal to σα(ε1) if h ≤ i. Thus εh(i + 1) = ε1

h for
h = 1, . . . , i, so that

pi+1(ε(i + 1)) = pi+1(ε
1) ≤ σi+1(ε

1) ≤ σi+1(ε
2) .

It follows that

pi+1(ε(i + 1)) ≤ si+1(i + 1, t) ≤ σi+1(ε
2) (0 ≤ t ≤ 1) .

Moreover, si+1(i + 1, t) > pi+1(ε(i + 1)) for all t ∈ [0, 1) if and only if σi+1(ε
2) >

pi+1(ε(i + 1)). Therefore we see that s(i + 1, t)/2 ∈ Ξ(ε(i + 1)) for all t ∈ [0, 1). The
assertion (i) is verified.

For the assertion (ii), it remains to check that Oε1 ⊂ Oε(r), which follows from
Rσ(ε1)/2 = Rs(r,1)/2 = limt→1−0 Rs(r,t)/2. �

Let Lj be the segment
{
s(j, t)/2 ; t ∈ [0, 1] } ⊂ R

r for j = 1, . . . , r . Theorem 9
(i) tells us that the union

⋃r
j=1 Lj gives the path from σ(ε2)/2 to σ(ε1)/2 in the set

Ξ = ⊔
ε∈{0,1}r Ξ(ε). In particular, putting ε1 := 0 and ε2 := ε for any ε ∈ {0, 1}r , we see
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that σ(ε)/2 is connected to 0 = σ(0)/2 by the path, while any s ∈ Ξ(ε) is connected to
σ(ε)/2 by a segment because Ξ(ε) is a convex set. As a result, we obtain the final result:

THEOREM 10. The parameter set Ξ ⊂ R
r is path-connected.

We note that Ξ is not a convex set in general. Indeed, if ΩV is an irreducible sym-
metric cone, the set {α ∈ R ; (α, . . . , α) ∈ Ξ } coincides with the so-called Wallach set,
which is of the form

{
0, d2 , . . . ,

(r−1)d
2

} ∪ ( (r−1)d
2 ,+∞)

with some positive integer d ([1,
Theorem VII.3.1]).

References

[ 1 ] J. Faraut and A. Korányi, “Analysis on symmetric cones,” Oxford Mathematical Monographs, Clarendon
Press, 1994.

[ 2 ] S. G. Gindikin, Analysis in homogeneous domains, Russian Math. Surveys, 19 (1964), 1–89.
[ 3 ] S. G. Gindikin, Invariant generalized functions in homogeneous domains, Funct. Anal. Appl., 9 (1975),

50–52.
[ 4 ] S. G. Gindikin, “Tube domains and the Cauchy problem,” Transl. Math. Monogr., 11, Amer. Math. Soc.,

1992.
[ 5 ] P. Graczyk and H. Ishi, Riesz measures and Wishart laws associated to quadratic maps, J. Math. Soc.

Japan, 66 (2014), 317–348.
[ 6 ] A. Hassairi and S. Lajmi, Riesz exponential families on symmetric cones, J. Theoret. Probab., 14 (2001),

927–948.
[ 7 ] H. Ishi, Representations of the affine transformation groups acting simply transitively on Siegel domains,

J. Funct. Anal., 167 (1999), 425–462.
[ 8 ] H. Ishi, Positive Riesz distributions on homogeneous cones, J. Math. Soc. Japan, 52 (2000), 161–186.
[ 9 ] H. Ishi, Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory, 11

(2001), 155–171.
[ 10 ] H. Ishi, On symplectic representations of normal j -algebras and their application to Xu’s realizations of

Siegel domains, Differ. Geom. Appl., 24 (2006), 588–612.
[ 11 ] I. I. Piatetskii-Shapiro, “Automorphic functions and the geometry of classical domains,” Gordon and

Breach, New York, 1969.
[ 12 ] M. Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 81 (1949), 1–223.
[ 13 ] A. D. Sokal, When is a Riesz distribution a complex measure? Bull. Soc. Math. France, 139 (2011),

519–534.
[ 14 ] M. Vergne and H. Rossi, Analytic continuation of the holomorphic discrete series of a semi-simple Lie

group, Acta Math., 136 (1976), 1–59.
[ 15 ] E. B. Vinberg, Homogeneous cones, Soviet Math. Dokl., 1 (1960), 787–790.
[ 16 ] E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340–403.

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464–8602
Japan



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /BGR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CHT (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /CZE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DAN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ENU (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ESP (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ETI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /GRE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HEB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HRV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /HUN (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /ITA (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFFff08682aff0956fd969b6587732e53705237793e306e51fa529b6a5f306b90693057305f002000410064006f0062006500200050004400460020658766f830924f5c62103057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LTH (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /LVI (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NLD (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /NOR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /POL (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /PTB (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUM (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /RUS (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SKY (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SLV (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SUO (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /TUR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /UKR (Use these settings to create Adobe PDF documents best suited for prepress printing of International Academic Publishing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


