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Summary

The hodograph method is extended to diabatic flows, which can be
thought of as flows with heat addition or subtraction by means of
sources or sinks distributed in the flow. First, a proof of the nonexist-
ence of limiting lines is given. The behavior of the flow near the
trangition line in a two dimensional Laval nozzle is discussed next.

Introduction

The problem of one dimensional, steady, diabatic flow, i.e. a flow
with heat addition or subtraction, is discussed at length in the litera-
ture, however, due to the serious limitations of the one dimensional
flow, a more general study is required to gain a better understanding
of problems associated with combustion and other problems in aero-
thermodynamies.

Certain problems of steady two dimensional diabatic flow, which can
be thought of as a flow with heat addition or subtraction by means of
sources or sinks distributed in the flow field, are discussed for an in-
viscid, nonheat conducting gas as described by the ordinary hydrodyna-
mic equations and the first law of thermodynamics. Previous attempts
have been made to discuss such a flow: In a series of papers, Hicks
and his coworkers [24]-[28]?, formulated the equations using different
representations (i.e. introducing Crocco’s vector, the N vector, ete.) and
discussed a few examples. In this work the emphasis is laid on in-
vestigating the hodograph method as a tool of attacking the problem.

The logical starting point of such an investigation is to discuss the
problem of limiting lines in diabatic flow. It is well-known, in problems
dealing with the potential flow past airfoils or inside nozzles, that the
mapping of the hodograph plane into the physical plane breaks down
at a certain Mach number: The continuation of the solution in the
hodograph plane may be regular but can not be mapped into the physi-
cal solution. Tarlor [19], F. and M. Clauser [9], Tollmien [20], Ringleb
[45], v. Karman [30], Tsien [63] and others have suggested that the
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breakdown is due to the appearance of a limiting line: The Jacobian
of the transformation from the hodograph plane to the physical plane
vanishes along a certain curve in the hodograph plane. The image of
this curve in the physical plane has a fold in the supersonic region and
it is the edge of this fold that is known as the limiting line. A general
discussion of the significance of limiting lines may be found in the
works of v. Karman [30], Tsien [58], Tsien and Kuo [54], Courant and
Friedrichs [10] and Craggs [11].

Nikolskii and Taganov [43] have shown that such a limiting line, if
it exists at all, would have to start at the sonic curve. But, it was
Friedrichs [17] who first furnished a rigorous mathematical proof that
limiting lines can not appear anywhere in analytic flows which depend
continuously on the Mach number and that, therefore, the breakdown of
potential flow must be due to other causes. Manwell [37] has shortened
the proof considerably and eliminated the difficult lemma supplied by
Flanders [17]. Morawetz and Kolodner [42] presented a proof which
dispenses with the condition of analyticity and requires only of existence
of the second derivatives of the stream function. v. Krzywoblocki[32],
[33] generalized Tollmien’s considerations and Friedrich’s proof to adia-
batic rotational and viscous fluids. A proof of the nonexistence of
transonic potential flow was given by Busemann [6]. Some methods of
handling this kind of flow were proposed by some of the authors men-
tioned above, Christianovich [8] and many others.

The previous investigations, except that of v. Krzywoblocki, were
restricted to isentropic flows. In the present paper the nonexistence
proof is carried out for diabatic flows by applying fundamentally the
reasoning of Morawetz and Kolodner.

Starting from the usual hydrodynamic equations for an inviscid,
nonheat conducting gas in a steady flow, together with the first law of
thermodynamics, the stream function and the potential function equations
are derived. Instead of choosing to work with the rate of heat added

(or subtracted) per unit mass (@=DQ/Dt), as previous investigators did,
the total heat added (or subtracted) per unit mass @ is used. This,
together with the condition of irrotationality, has the advantage of
linearizing the equations in the hodograph plane. After deriving the
generalized Cauchy-Riemann conditions, the characteristics equations are
derived, which show an interesting feature of the flow, namely, by a
special choice of the heat distributions, real characteristics may exist in
subsonic flow. Another feature of steady diabatic flows is furnished by
considering stream tubes: Sonic conditions do not necessarily occur at
the minimum . area of the tube. Due to this, regions in the flow are
designated by elliptic and hyperbolic instead of the usual subsonic and
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supersonic respectively and the equivalent of the sonic line in isentropic
flows by the parabolic line.

The nonexistence proof is carried out under certain assumptions
which are given in Section 2.2. In this and the remaining investiga-
tions @ and its derivatives up to the required order are assumed bounded,
but the funectional dependence of @ on ¢ is not specified for the sake
of generality. Specifically, what is proved here is that a limiting line
can not appear in a plane continuous flow past an airfoil or in a nozzle
of bounded curvature if the flow depends continuously on the velocity
(or Mach number) and has a bounded hyperbolic region. However, if
the profile has an infinite curvature at some point then a limiting line
appears. (Analogous theorems are given in [42].)

The problem of diabatic flow in a two dimensional Laval nozzle is
of some practical significance. An investigation of the region near the
transition line (parabolic line) is undertaken. The corresponding problem
in isentropic flow was discussed by Meyer [39], who sought to obtain
the velocity potential in the form of a power series in the position
coordinates of the physical plane. The case of the nozzle with a plane
surface of transition from subsonic to supersonic velocities was con-
sidered by Christianovich [8] and his co-workers. Frankl [13], Lighthill
[86] and Tomotika and Tamada [51] applied the hodograph method of
Moloenbroek-Chaplygin and undertook a detailed investigation of the
character of the flow near the transition line. Falkovich [12] proposed
a much simpler method to deal with some characteristic features of
transonic flows. By suitable transformations, he was able to show in a
simple way that, among other items of interest in the problem in ques-
-tion, the sonic line is a parabolic curve. Continuation of a potential
gas flow across the sonic line is discussed by Bers [3] and Germain [19].
The application of Tricomi’s equation has been treated by Germain and
Bader [20], Weinstein [65] and others, and some characteristic features
of the transonic flow were discussed by Gortler [22], Kiebel [33], ete.

Following Falkovich, the generalized Cauchy-Riemann conditions are
transformed from the {g, 6} plane to the {¢, ¢} plane. An accelerated
symmetrical flow is assumed in the nozzle, which imposes certain sym-
metry conditions on {¢, #} in terms of {¢, ¢}. Next, the behavior of
the flow near the parabolic line is approximated by a simplified form of
the equations, which turned out to be formally similar to the corre-
sponding equations in isentropic flows near the sonic line. Thus the
problem is reduced formally to the corresponding problem in isentropic
flow and consequently, all formal results derived in Ref. 12 hold for
both flows.

An important point which is brought up by this investigation is
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that the sonic line does not necessarily occur at the throat. However,
the throat plays the same role in changing the character of the equa-
tion that describes the flow from elliptic to hyperbolic; also, the para-
bolic line, similar to the sonic line in isentropic flows, is a parabola.
Throughout the paper the function dQ in the first law of thermo-
dynamics dQ=dE+pd(p~") is integrable in (z, y) plane. This is easy

to show since E=e¢,T(x, y), ¢,=constant, and P:Spd(p‘l) is a Riemann-

Stieltjes integral which has a meaning and exists in an interval
under consideration if the function p~'(z, %) is a function of bounded
variation. Since from the physical aspects of the fluid dynamics the
functions p and p~' are decent, regular bounded functions of bounded
variation (their graphs do not have infinite lengths in a finite interval
or they are not of non-rectifiable lengths in the intervals in question,
ete.) it is obvious that in problems of fluid dynamics in question one
does not need to refer to the entropy but may deal with the function
Q(x, y) since dQ@ is integrable. In the case of finite and well-defined
discontinuities one can refer to the notion of Lebesque-Stieltjes integral.
This can be showed formally in the steady flow conditions from the
first law of thermodynamics dQ=c,dT+pd(p™"), T=T(x, y), etc., with
h=E+pp~, dh=dE+p~'dp+pd(p~)=c,dT, dh=dQ+p~'dp, and from the
equation for the conservation of momentum without the mass and ex-
traneous forces ¢dg+p-'dp=0, resulting in qdg+c,dT'=dQ, which proves
that d@ is integrable. But, of course, it is not assumed that dQ((T, v)

is a perfect (exact) differential i.e., SEdQ(T’ v)#0, v=p~!, i.e., from the
first law of thermodynamics 8°Q/0T0v+6*Q[60v0T, or from dQ=c,dT—p-'dp,
§dQ(T, p)#0. But, of course, one may have j;dQ@, y)=0, i.e., 0°Q[0x0y
=0°Q/oyox.

Besides the references discussed above, the bibliography at the end
of the paper contains some papers on the hodograph transformations

like those of Bergman, Bers, Craggs, Germain, and others, with a
particular reference to the transonic regime.

1. Fundamental equations and transformations

§ 1.1. Basic equations

The diabatic flow equations are based upon the hydrodynamic equa-
tions for an inviscid, non-heat conducting compressible perfect fluid and
the first law of thermodynamies. With the use of Cartesian tensor
notation, these equations in a steady flow have the following form:

The equations of motion;
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(1.1.1) P, ;+0,:=0, ,7=1, 2)
the continuity equation and equation of state:
(1.1.2) (ou,) ,=0; p=RpT .

The first law of thermodynamics dQ=dE-+dW, (dQ=heat introduced;
E=internal energy, W=work done by the fluid) reduces for a perfect
gas to the following form: dW=upd(p™"), dE=c,dT and by expressing
dp from the equation of state; and using R=¢,—c,,

(1.1.3) e, AT =dQ-+p~'dp .
From eq. (1.1.3) the energy equation can be written in the form:
(1.1.4) wi(e, 1), =u,Q,+p~ " U,

Expressing the total differentials in eq. (1.1.3) as dT'=T ,dx;, etc. and,
since w;, «; are independent for ¢sj, one finds

(1.1.4a) T =Q+p"'p, -

Dividing equation (1.1.8) by 7T and defining the entropy dS=7"dQ,
one finds for constant ¢,

(1.1.5) e, I dT=dS+Rp~'dp .
Integration of equation (1.1.5) gives:
(1.1.6) ooyt =(ppi") exp [e; (S—S)],  r=¢,le,,

which can be written in the form:
1.1.7) p=cp’ exp (¢;'S); S:ST‘ldQ—l-const. .

This is the pressure-density-entropy relationship. Following previous
authors [62], the local “isentropic” velocity of sound is defined as:

(1.1.8) a?=0p/op)s=rp~'p=7RT .

§ 1.2. The stream function equation

In a steady, two-dimensional motion, the stream function is defined
as:

1.2.1)  pu=¢,; —pv=¢.; PC=PLHP; CEwE,
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Differentiating the third of equations (1.2.1) first with respect to 2 and
multiplying the result by (—wv), then with respect to y and multiplying
the result by u, using the first of equations (1.2.1) and adding the
products furnish the result:

(1.2.2) Wy —2uvY VP = (up ,—vp ) +pa(ug ,—vq ) .

Eliminating T in equation (1.1.4a) by means of the equation of state,
eliminating p, in the same equation by means of equation (1.1.1) and,
using equation (1.1.8) one finds

(1.2.3) ==, =Q+G—1) U .

Putting 7=w, y respectively, in equation (1.2.3), i.e., writing ---p,=
Q,+---, etc., using the last of equations (1.2.1) and multiplying the
first by u, the second by v and subtracting give the formula:

(1.2.4) up,—vp,=pa’[(r—1(Q,,—uQ,)—qugq,,—vq,,) —¢*»] ,

where the symbol w=wv_,—u,, denotes the vorticity. Calculating « and
v from the first of equations (1.2.1), differentiating these values with
respect to y and z, respectively, and subtracting, one finds

(1.2.5) UP,y— VP, =P+ Ly

Combining equations (1.2.4) and (1.2.5), gives

(1.2.6) & (po+¢,m+9,4) =0 —DQ,.,—uR,) —q(uq ,—vq,,) —w] .

Eliminating (up,,—vp,,) between equations (1.2.2) and (1.2.5) and adding
the result to equation (1.2.6), one obtains

(1.2.7)  (®—=u)¢ p— 2009 oy + (@ =) = p[(T ~1)(vQ . —uQ,,) —’w] .

This is one of possible forms of the stream funection equation.
By using equation (1.1.1) to eliminate p, from equation (1.1.4) one
finds: '

(1.2.8) wiepT) ot ue gty ;=u,Qs -
But since:
(1.2.9) : q0/0s=u,d|0x, ,

where {s, n} represent the orthogonal coordinates system running along
a streamline (s-tangential, n-normal); hence equation (1.2.8) furnishes:
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(1.2.10) 0/0s(c,T+3¢*°—Q)=0;
(1.2.10a) e, T+4¢*—Q=c,T,—Q,=const.

where the subseript ‘o’ refers to the stagnation conditions. Caleulating
¢, from equation (1.2.10a), i.e.,

(1.2.11) e, T=Q—Q,—%uu,+c,T, ,
and inserting this value into equation (1.1.4a) one obtains
(1.2.12) (CpTo),i——Qo,tzuj(uj,,;—ui,j) .

Let {=x, y in equation (1.2.12), multiply the results by v and (—wu),
respectively and add the products, thus obtaining:

(1.2. 13) wQ, v Q5+ v(CpTo),x - u(cpTo),y =¢o .

Denoting the angle of the inclination of the streamline to the horizontal
axis by 0 furnishes the well-known relation:

(1.2.14) 0/on= —sin 60/06x-cos 00/0y ,
or

(1.2.14a) q0/on= —v0|ox-+ud/oy .
Of course:

(1.2.15) d¢ldn=pq .

With the use of equations (1.2.14a) and (1.2.15), equation (1.2.13) reduces
to:

(1.2.16) w=p[dQ,Jd¢—dh,/ds],  ho=c,T, .

Inserting equation (1.2.16) into equation (1.2.7) furnishes another form
of stream function equation:

(1.2.17) (= U)oy — 2U0 g+ (02 =V 4y
=p[a*(dh,/dd—dQ,[d¢)— (r —1)dQ[d¢] ,
with
(1.2.17a) =g (¢ ) +()T -

§1.3. The ‘‘generalized’”’ potential equation

The concept of a function analogous to the velocity potential was
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used by v. Krzywoblocki [32]. The equation v,—u,=« is fulfilled if
one puts:

(1.8.1) U=¢.,+9; v=¢,+9; g.—9,=0,

where the function g=g(x, y) is defined by the last of equations (1.3.1);
the condition is that for an irrotational flow the trivial solution of (1.3.
1), i.e., g=0, must be assumed.

The first two equations (1.8.1) are squared and added, thus giving
an expression for ¢?, differentiating it with respect to x, and vy, respec-
tively; multiplying the first expression so obtained by » and the second
by v and adding the products, one obtains

‘ (1.3.2) q(Uq +v9,)) =UW'P 42UV oy + V0 L+ (V) (g ,+0g,y) -

Letting i=uw, y, respectively, in equation (1.2.3); multiplying the first
by u and the second by v and adding, and finally eliminating the ex-
pression p~'(up,,+wvp,) by substituting the first two equations (1.3.1) into
the continuity equation; one finds

(1.3.3) (@0t 92t 0,)=0—1)UQ,,+vQ,) +a(ug,.+vq,) .

Eliminating the last term in equation (1.3.8) by using (1.3.2), and
arranging terms, give the equation:

(1.3.4) (=)@ oy —2UVP o+ (A — )@y = (T —1)(Q , +7Q )
—(a*—u?)g .+ uv(g ,+9,,)—(@—v")g,, .

This is one of possible forms of the generalized potential equation of
diabatic flow. Other forms are listed below. Using equations (1.3.1)

and the new function uQ ,+vQ ,=DQ/Dt=Q in equation (1.3.4) furnishes
the formula:

(1.3.5) (@ —udu ,—uv@ ,+u,)+(—v),=7r—1)Q .

where @ is the rate of the convection of the total energy introduced.
Consider the function @ as function of u, v, i.e., Q=Q[u(x, v), v(z, V)],
then:

(1.3.6) Q,x:Q,uu,z_I-Q,uv,x; Q,y:Q,uu,y-I_Q»vv:y M
Inserting equations (1.3.1) and (1.8.6) in equation (1.3.4) gives:

1.3.7) [@—w——1uQ Ju.,—[uv+ G —1vQ . Ju,
—Juwv+G—-1uQ v+ —v*— (7 —1)v@Q ,Jv,=0 .

In the case of an irrotational flow: u,=¢..; %, =v,.,=¢@ . V,y=. 4
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For a rotational flow these derivatives should be derived from equation
(1.3.1).

§ 1.4. Hodograph transformation
Letting W= f(x, y)=F(u, v) be an arbitrary function, then:
(1.4.1) Fo=F @0t e Fo=F2+F 40,
and
(1.4.2)  fLo=JTF Y~ F,4); fo=d0 (T2, —F ),
where the Jacobian of the transformation, J,, is defined as:
(1.4.8) S =T Y0~ T, Yo -

Applying equations (1.4.2) to u, v, respectively, i.e., u =J;y,,; v,=—
JT'.., ete., and inserting the resulting expressions into equation (1.3.5)
and into the equation defining the vorticity, one obtains the following
system of equations:

(1.4.42) (@ —wy,,+uv(@,,=Y,.) + (@ — )z ,=G—1)J,.Q;
(1.4.4Db) z,—Y,=Jo .

The expressions for the total differentials d¢, d¢ are given by
(1.4.5a)  de=¢ ,dute dv=0.dx+¢,dy=(u—g)ds+@v—g)dy;
(1.4.5b) dy=9¢ ,du+¢ dv=¢ de+¢ dy=p(udy—vdx) .

Treating equations (1.4.5a, b) as an algebraic system in two unknowns
dx and dy and calculating da and dy one can obtain the partial deriva-
tives z,,; «,, ete.: ‘

(1.4.6a) = ,=[pue ,—w—9)¢JE; ,=[pue,,—w—9)¢ JE;
(1.4.6b) y,.=[pve,,+@—9)¢ JE; y,=[pve ,+(u—9)¢ JE;
(1.4.6c) E=pl¢"—gu+v)] .

Substituting these expressions into the system (1.4.4a, b) furnishes the
system:

(1 '4'73) ‘Oaz(uSD, % + 7)90, 'v) "I_ (q2 - a2)(7}¢,u - u¢,v) _g¢, u(ulu + ,vz__az)
+9¢, (uv+u*—a?)=(r —1)pl—g(u+v)]/.Q;
(1.4.70) (u—9)¢,u+W=9)¢, o+, —ug, )= —p[@*—9(u+v)]J o .
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Now:
. o(u, v)
(1.4.8) u=qcosl; wv=qsinf; D=2"12""—=
o(q, 0)
Then:
(1'4'9) SD,q:SO,uu,q"I_sD,vv,q; S",e:‘ﬁ,uu,e‘ﬂﬁ.v’l’,e y

calculating the derivatives wu ., u,, v, ete., by use of equations (1.4.8)
and inserting these values into equations (1.4.9); treating the system,
so obtained, as an algebraic system one can calculate the quantities ¢,
and ¢,. Application of the same procedure to the function ¢=¢(u, v)
=¢(q, 0) furnishes the following results

(1.4.10a) ¢ ,=¢,cos0—q'¢,sinf; ¢ ,=¢ , sinl-+q'¢,cos0;
(1.4.10b) ¢ ,=¢ ,co80—q "¢ ,sinl; ¢ ,=¢ sinf+g ¢ cos0.

The following discussion will be restricted to an irrotational flow only,
i.e., w=g=0. Use of equations (1.4.10a, b) in equations (1.4.7a, b) fur-
nishes a system of equations corresponding to Cauchy-Riemann equa-
tions in incompressible flow:

(1.4.11a) ?..=(eQ) (@ = 1) o+ (7 —1)ga~*J,Q;
(1.4.11b) Po=qp7'¢,q .

Identification of f and F with @ in equations (1.4.2) and the use of
equations (1.4.6a, b) together with relations similar to those in equations

(1.4.10) for @, and Q,, yield the following equalities for @Q:

(1.412)  Q=(pd) " (Qus.o—Q.8); Q=(00)"($Q0—$..Q0) -

Inserting the second equation (1.4.12) into the system (1.4.11a, b) fur-
nighes the system:

(1.4.13a) Pu=bbotcd; pe=ad;
(1.4.13Db) a=p7"'¢; b=(pg) [¢a*—1+(F—1)ga?Q ];
(1.4.18¢) a=—F—1)(pa®)"'Qp -

Differentiation of the first of equations (1.4.13a) with respect to 6,
and the second one with respect to ¢, gives the stream function equa-
tion in the hodograph plane:

(1.4.14) 0 a—C e —bi g a0 —bied s —Cref o= 0.
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§ 1.5. General considerations

The total differentials given in equation (1.1.8), considered as func-
tions of ¢, 8, can be written as

‘(1.5.1a) dT=T dq+T b , ---, ete.
hence, equation (1.1.8), after collecting terms, gives
(1.510) (6T~ Qu—p.)dq+(e,T.o— @ o—p~'p.)dI=0 .
Since ¢, 0 are two independent variables, equation (1.5.1b) gives
(1.5.1¢) T y=Q+p 7w T e=Qu+p "Dy -
Similar reasoning applied to Bernoulli’s equation (1.2.10a) gives
(1.5.2) g+e,T,—Q.,=0, ¢, T o— Q=0 .
Comparison of equations (1.5.1c) and (1.5.2) yields
(1.5.3) D,,=dpldg=—pq; =0,

hence, p=p(g). From equation (1.5.8) it is clear that p=p(q), from the
equation of state T'=T(qg), from equation (1.5.2) Q=Q(q) and therefore,
it follows from equation (1.1.7) S=S(q). Briefly, all the dependent
variables are functions of the velocity only. A more general proof of
this result is given in the Appendix.

From equation (1.5.2)

(1.5.4) dT|dg=c;*(dQldg—q) ,

and from the equation of state with the use of equations (1.5.8) and
(1.5.4)

(1.5.5) dpldg=—pa~[g+(r—1)dQ/dq] .

The above results show that, in equations (1.4.13a, b, ¢) ¢,=0, a,=a.(q)
and b,=b(q). Hence, the stream function equation (1.4.14) reduces to
the form

(1.5.6) Q)¢ io(a, 0)—bi(0)¢ 0elq, 0)+(dan/dg)¢ (q, 0)=0 .

§ 1.6. Characteristics

The equation of characteristics of equation (1.5.6) in the hodograph
plane is: :

1.6.1) a,(d0)* —by(dgy=0 ,
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(1.6.2) d0=+hdg; W=bai'=q¢[¢ga*—14+(r—1)qa%dQ/dq] .
Letting

1.6.3 J=0@, v) 0@, y) 8, v) _ _
(63 (g, 0)  8(u, v) 8(g, 0) 4

or, using equations (1.4.5a, b):

_[0(e, o) 0 (e, &) __
(164 J‘[a(x, y)d o(g, 0)

using equations (1.4.13a) in equation (1.6.4) furnishes the result:

(ea) [¢0f,a— 69,415

(1.6.5)  J=q¢%—F¢%); F=(pa)’[¢"—a’+(—1)qdQ/dg]=ad, .
Letting

(1.6.6) U=¢o—kdo; V=¢ot+kd,,
then the Jacobian
(1.6.7) J=q*UV,

vanishes if and only if U=0, or V=0.
Introducing the characteristic variables «, # by:

(1.6.8) 2da=pkq 'dg—d0l; 2dp=pkq'dg+do .
then equations (1.6.8) give

(1.6.9) dg=(pk)*q(da+dp); di=dpf—da .
If “f” is any function, then:

(1.6.10) Fo=l@atfba; Fe=FutptFbse,

by using equations (1.6.9) and (1.6.10) the operators 8/6a and 6/6p3 are
given by:

(1.6.11) 8/0a=(pk)~*q0/0q—0[00; 0]0p=(pk) q0/0q--0/00 .

From equations (1.6.6) with the use of equations (1.6.11) and keeping
in mind the results of Section 1.5, as well as equations (1.4.18a) and
(1.6.5), one finds:

(1.6.12) Us=—(ck)'q(dk/dg)d s ,
or applying equation (1.6.6):
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(1.6.13) U s=3(pk) *q(dk|dg)(U—-V) .
Similarly:
(1.6.14) V «=3%(0k)*q(dk/dq)(V—-TU) .

Since k=Fk(q), then from equations (1.6.11) one obtains:
(1.6.15) (dk|dq)=pkq~ 'k .=pkq 'k 5 ,

which, when inserted into equations (1.6.13), (1.6.14) yields:
(1.6.16a) Upg—3k~k U= —%p7kq(dk/dq) V;
(1.6.16D) Va—3k7k V=—3%p""k?q(dEk/dg)U .

Multiplying equation (1.6.16a) by 2k-*U and equation (1.6.16b) by 2k-*V
one finds:

1.6.17) (k~U?) 4=—BUV; (kV?),=—BUV; |
(1.6.172) B=p""k~*q(dk|dq) .

2. Discussion of the Jacobian
§ 2.1. Streamtubes in steady diabatic flow

Assuming that the flow in the downstream part of a nozzle is ac-
companied by a divergent shape of each streamtube of a cross section
A. Then the following equations are valid in a steady flow:

2.1.1) pgA=const.; dp/p+dglq+dAJA=0.

On eliminating dp/p by use of equation (1.5.5), equation (2.1.1) reduces
to:

(2.1.2) ¢ @a? =1+ —1)ga"dQ/dqldg=dA[A .
When A:AMIN, dA: 0, and
(2.1.3) K=ga*—1+(—1)ga*dQ/dg=0 ,

downstream of the throat dA/A>0, dg>0 (since the flow is assumed to
be an accelerated one), ¢>0. The locus of points along which 2*=K=
=0 will be denoted (equations 1.6.2, 1.6.5, 2.1.3) by the “parabolic
line”; on this line ¢=q¢,.

In the domain where dA >0, K>0, and

(2.1.4a) qa”[qg+(—1)dQ/dg] >0 ,
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or

(2.1.4b) q4-(r—1)dQ/dg >0 .

Clearly, K(q) in the neighborhood of the parabolic line is an increasing
function of ¢. It is dssumed that K(g) is an increasing function of ¢
in the vicinity of the parabolic line sufficiently large for the derivation
and validity of the proofs presented below.

Inspection of equation (2.1.2) shows that the value of M=qg/a=1
does not occur at the throat unless dQ/dg=0. But as far as the charac-
ter of the partial differential equation governing the flow is concerned,
the throat plays the same role as in the isentropic flow, elliptic upstream,
k<0, parabolic at the throat, k*=0 and hyperbolic downstream, £*>>0.

The system of characteristic used here reduces the problems of
diabatic flow formally to isentropic flow problems. Thus, the Jacobian
will be considered in the elliptic, parabolic and hyperbolic regions instead
of the subsonic, sonic and supersonic regions.

§ 2.2. Jacobian does not vanish in the elliptic domain

The assumptions analogous to those in [13] are made:

(a) A solution in the hodograph plane of the equations of a dia-
batic, irrotational, plane flow is given; i.e., we have a potential function
¢(g, 0) and stream function ¢(g, 0); the flow is assumed to follow con-
vergent-divergent streamtubes in a closed simply connected region D of
the ¢, f-plane;

®) ¢oger Lo $o exist and are bounded in D;

(¢) The boundary C of D intersects the “parabolic” line A=K=
k*=0 in exactly two points;

(d) p>0 throughout D.

@ and its derivatives up to the required order are assumed to be
bounded, and the flow is continuous.

When the governing equation is of an elliptic type, k*<0, and
equation (1.6.5) furnishes:

Pk =0; J=0.

The equality J=0 may hold at most at a finite set of discrete points
which will be the singular points of the hodograph transformation. This
is admissable. The equality can not hold along a certain line in D gince
this would imply that ¢,=¢ ,=0 and from equations (1.4.13a) ¢ ,=¢ =
0. This would mean that ¢(q, 9), ¢(g, 0) are constants or that « and v
are constant in the subdomain in question and this is excluded.
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§ 2.3. Jacobian does not vanish in the remaining domain

In the remaining cases the proof given in [42] can be applied
directly; this is done below with several modifications. The lemma
proved in [42] is valid in the present case, as well:

Lemma If J>0 on C then J>0 in D for ¢=g,.

Proof  From equations (1.6.5) and (1.6.17):

(2.8.1) B=p~k3qdk/dg="Lp*k *qd(k*)/dq .
But k*=p—2K, and:
(2.8.1a) d(k*)|dg= —2p~*Kdp|dq+p?dK|dq .

From equations (1.5.5) and (2.1.4b) it is obvious that dp/dg<0, and from
equation (2.1.8) that dK/dg>0, since K is an increasing function of gq.
Hence B>0 for ¢g=g,.

Assume that J<0 somewhere in the region of ¢>g¢q, of D.

Since J is continuous and D is closed, there is a maximum gy.x>q,
for which J=0. Addition of equations (1.6.8) shows that there exists
a maximum value «*=(a*+/*) of (a+pf) for which J=0, and, for r=
(a+p)>7*, J>0 since J>0 on C by assumption. By equation (1.6.7)
either U=0 or V=0 for r=7*. Suppose that U=0 at this point. From
equation (1.6.17), kU*=0 at <*, but £'U*>0 for c>7r*. Hence for
a=a*, f>p*, k'U*>0; hence, by the mean value theorem k~'U* at
(a*, B>F%) is equal to (8—p*)(k~'U?) g, with the derivative evaluated at
(a*, B), f*<pB<p. Since (k'U»>0 at (a*, B), ('U?) >0 at (a*, p);
but then by equation (1.6.17a) since B>0, one has UV<0 at (a*, f),
that is J<O0 at (a*, B) by equation (1.6.7). Since (a*+pf)>7*, this con-
tradicts J >0 for z>* and hence U can not vanish for ¢>¢,. Similarly
V can not vanish for ¢>¢, and thus J can not vanish for ¢>g¢,.

Now suppose that J=0 at a point P where ¢(P)=q,; let a(P) and
B(P) be the coordinates of this point in the characteristic coordinates:
system. By equation (1.6.17), since J>0 and hence UV >0 for ¢>gq,,
(k-'U? 1is a decreasing function in the direction of increasing f along
the line a=a(P). Since £k*U*>0 and continuous for ¢>gq,, £'U? must
be bounded away from zero for ¢=gq,. Hence |[k2?U| is also bounded
away from zero on a=a(P), f=pB(P).

From the second of equations (1.1.13a) and equation (1.6.7) one
obtains:

(2-3.2) kP =g (T PU 41 )

since ¢, is bounded and %#—0 for a=«a(P), f—B(P), from equation (2.3.
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2) is seen that |k'?¢ | is also bounded away from zero for a=u(P),
B=pF(P) with f being sufficiently close to A(P).
Expanding %*(g) around ¢=gq,, one finds:

(2.3.3) B@=(—g¢.)F(q) ,
where ¢,<¢,<¢ and F{(g,) is bounded. This implies, that
2.3.4) k-llz:(q_Q*)—1’4EQI) ’

with F(q,) being bounded. Consequently, the expression |(g—q,) "¢

,ql’
using

(2.3.5) 70,0~ (g —q.) "¢, >8>0 ,

is bounded away from zero for a=a(P), f=B(P) for f sufficiently close
to B(P).

Since J=0 at P, from equation (1.6.5) =0, ¢,=0 and from (1.4.
13a) ¢,,=0.

Since it was assumed that ¢, and ¢, exist and are bounded in D,
then, from the mean value theorem:

(2.3.6) $.0=(0—2:)¢,0(@, 0)+(0—0[PD,00(g, 0) ,

for some 6, I[P]<6<0, and some ¢, ¢,<g<q. For every point along
the parabolic line one has a=a(P); hence along this characteristic

coordinate there is always a=a(P), da(P)=0 and from equation (1.6.8)
one gets:

(2.8.7) 6| ,=pkq'dq/, .

Hence by the mean value theorem:
q —
(2.3.8) 0—0(P)=L rkq~'dg=(¢—q.)S @) ,
for some g, ¢,<g<q, and f(3) is bounded. Hence, for

(2.3.9) $.0=1¢.0@ O)+F @00, ONa—a.) ,
or
(2.3.10) ¢=Fiq, 0)(g—a.) »

with F), being a bounded function of ¢ and . But then [(g—g,) "¢, |—0
for a=a(P), f—p(P), and this contradicts (2.8.5). Thus J>0 for g=q,,
as well as for ¢>q,, and the lemma is proved.
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§ 2.4. The Jacobian does not vanish at the wall

The proofs given in [17] and [42] are directly applicable in the
present case with C,=q,.

3.  On some characteristic properties of the laval
nozzle in diabatic flow

§ 3.1. Basic equations

The basic equations are the “generalized” Cauchy-Riemann condi-
tions in the hodograph {g-0}-plane derived in Section (1.4). These
equations can be written in the following form:

(3.1.1) P0=0P"Pi; =0T R 05
where

(8.1.1a)  R=R(Q)=q¢ a1+ —1)qa’Q,] ,
From:

(3.1.2) do=0,dg+ed0; do=¢ dg+¢.d0 ,

one obtains:

(8.1.3)  pgddg=¢,d¢—¢de; —pgddi=¢,dP—¢,de ,

Partial derivatives of the functions g=q(¢, ¢) and 6=0(¢, ¢); can be
calculated by means of eqs. (3.1.3):

(BL4)  —Age=90 Agy=¢s A0,=¢.,; —A0,=9¢,,
with A=pg*J. Substitution of egs. (3.1.4) into egs. (3.1.1) is J+0 gives:
(3.1.5) 0,,—pq7'q,y=0; 0,,—qp~'h’q,,=0% .

Eqs. (8.1.5) are of the same type as eqs. (8.1.1), i.e., they are of an
elliptic type if A’<0 and of a hyperbolic if A*>0. Introducing a new
independent variable »=7(q) by

23 /
(3.1.6) | n:[g/z Sq (—h2)1’2dq:|z °
q
this gives
(3.1.7) 0,0=7,099/dn; q,4="7da/dy .

3) For @Q=0, the second equation (3.1.5) does not reduce to the form (1.9) in (3:2),
which shows that there are obviously some misprints in [12].



132 M. Z. v. KRZYWOBLOCKI and H. A. HASSAN

Basically, the integral in eq. (3.1.6) is an indefinite one and by means

of the elementary formula g ‘dé=const. + Sm «-d&, one obtains:

(3.1.8) dv/dq= _(_kzv—l)llz .

Inserting egs. (3.1.7) and (3.1.8) into eqs. (3.1.5) furnishes a new system
in {¢, ¢} coordinate system:

(3.1.9) 7,4+0(0)0 ,=0; 77,,—b(7)0,=0,
where
(3.1.9a) b()y)—_—qp—l(_h?-)?—l)ll:z .

This is a function of 7 since p and A’ are functions of ¢ only and con-
sequently functions of 7 only as a result of (3.1.6). It is clear that
considering only real values of 7, one has:

(3.1.10a) elliptic regime: #?<0;
g Qs
I (=" dg={"F@d=Fun(a.~) 20, Fun(@20, 0.>q; hence 70

(3.1.10D) parabolic regime: ¢=gq,, »=0.
(3.1.10c¢) hyperbolic regime: A>>0

4 Q% 2/
I:gq (_h2)1/2dq]2/3:(ii)2’3 |:S (hZ)uqu:i 3§0 , with (:L-’sz _1; 7 <0.
q q

Equations (3.1.9), formally identical to those obtained in [12], are the
fundamental equations for the investigation of two-dimensional, diabatic
flow of an inviscid, non-heat conducting gas when the magnitude of the
velocity increases in such a way that the character of the equation
governing the motion changes from elliptic to hyperbolic as the gas
passes through the “parabolic” line.

§ 3.2. The variable coefficient and the equation of characteristics

The coefficient b(7) is considered in more detail. In particular its
value for =0, i.e., on the “parabolic” line is of interest. Since A*(7=
0)=0, one has to use I’'Hospital’s rule to evaluate lim,.b(7). Since
Ple-0x and q=q, are finite, one may consider the limit of the expression

Iimn—w( - (Izh???'l) or limq—w*( - qzhzv—l) *

It is:
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(3 2. 1) qu—)q*( - qzhzv—l) - limq—fq*(qzhz).q/ qu—»q*( - d’?/ dq ) ’
or with the use of eq. (3.1.8):
(3.2.2)  limg . [¢* (=A%) limy,, [(—2 ) "] =1limg,,(¢*h) , -

It was established in Section (2.1) that the function ¢*4%*(¢) is, in the
sufficiently large vicinity of the “parabolic” line, an increasing function
of g, i.e., (¢°»*),,>0, which implies that lim,_ () exists and is different
from zero. The equation of charaecteristics in the hyperbolic regime of
the hodograph plane are given by eq. (1.6.2), it can be represented as:

(3.2.3) 0= iShdq—I—Cl .
From eq. (3.1.8) one gets

(3.2.4) 7(dy/dy=—k; (—7)"™(dy/dg)=Ph ,
or

(3.2.5) 6= iShdq—I—Cl: +2/3(—7)"+C .

This is identical to the result in [12], i.e., the characteristics in the
plane are semicubical parabolas with the cusps on the axis of abscissas.

§ 3.3. Differential equations of motion of a gas in the neighborhood
of the transition line

Following [12] the flow is assumed to satisfy the following conditions:

(i) The nozzle and the flow are symmetrical with respect to the
horizontal axis; a straight line perpendicular to the axis of symmetry
and directed away from the axis intersects streamlines with constantly
increasing curvatures and therefore encounters particles of the gas
having constantly increasing velocities. This is physically sound; it im-
plies that the parabolic (transition) line is convex to the hyperbolic
region.

(ii) The point of intersection of the parabolic line with the axis of
symmetry is taken as the origin in the {¢, ¢}-plane.

The above assumptions impose certain conditions on the functions
7(¢, ¢) and O(g, ¢), namely:

(3.3.1)  %(e, )=n(¢, —¢); 0O(¢, $)=—0(p, —¢); 7(0, 0)=0.

The functions 7 and 6 are assumed to be represented in power
series; since 7 is an even function of ¢, one has:
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(3.3.2) 7= 2imeo Dm0 a9, A =0;
similarly, ¢ being an odd function of ¢:

(8.3.3) 0= a0 Xm0 O™ P+ .
From egs. (3.1.9) one obtains:

(3.3.4) 7,67.0=0,60,4 .

Inserting egs. (3.3.2) and (3.8.3) into eq. (8.3.4) and equating the terms
of like powers in ¢ for m=n=0 furnishes the result b,=0. In the
neighborhood of the origin of coordinates, that is, where ¢ and ¢ are
small magnitudes such that the terms of higher order in powers of ¢
and ¢ may be neglected, egs. (3.3.2) and (3.3.3) give the order of the
functions 7 and 6 and their derivatives:

(3.3.5) 7=0(¢); 0=0(¢¢9); 7.,=001);
7,6=0¢); 0,=0¢); 0,=0().
Now, considering egs. (3.1.9) near the origin, making use of eqgs. (8.8.5)
one gets 7 ,~8 ,~0(¢) and 79 ,~0 ,~0(¢) which implies that () must
be of the order 0(1) in order to preserve the same “weight” in all the

terms of the same equation i.e., b(y)=b(0); thus, near the origin, the
system (3.1.9) may be approximated by the system:

(3.3.6)  7,+H(00,=0; 77,—b7(0)0,,, HO)#O0.

Letting b(0)¢=¢, eqs. (3.3.6), after dropping the bar, reduce to:

(3.3.7) 9.6+0,=0; 79,—0,=0.
The solution of these equations is given by
(3.3.7a) 0=App—(A%6)F*; n=Ap—(4[2)}*,

where A is a constant. This is again identical to the result in [12],
i.e., formally the problem reduces to the one discussed by Falkovich
[12]. Similarly, all the subsequent formal derivations and results of
Falkovich, for the case of an isentropic flow are valid in the present
case. The author found some misprints in N. A. C. A. translation of
Falkovich’s paper which are given in the Appendix. Thus all the
characteristics properties of Laval nozzle remain valid for the case of
diabatic flow with the only difference being that the “sonic” line in an
isentropic flow has to be substituted by the “parabolic” line in a diaba-
tic flow. Moreover, in a diabatic flow the value of the coefficient A is
given by:
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(3.3.8) A=[—q (=177 g]om0,y0 -

In Section 1.1. it was shown that (—A**)"*>0 at the origin; now,
u,>0, hence A<O.

Appendix
1. Misprints in [12]

Eq. (1.9) should read: 6 ,—pp "¢ (¢°a?—1)=0;

Eq. (4.1) should read: 0=A¢—1/64%); ,

Eq. (5.4) should read: 60=1/124%¢°; 7=—1/4A¢%;

Eq. (5.5) should read: 60=-—2/34}*; 7=—A*;

Eq. (5.7) should read: 2f—2tf'+¢'=0; [ff'—3g9+2t9’ 0
Eq. (5.8) should read: ¢=1/3[(f+4)f —4tf];

Eq. (5.10) should read: f=—A4; for t=—%A4,;

Eq. below (5.11) should read: A,<A,<1/4A,.

2. Discussion of Q

Concentrating the attention on a thermodynamic system which con-
sists of a streamline and letting ¢ represent the heat added per unit
mass and per unit length along the streamline, then the First Law of

Thermodynamics (see equation 1.1.8) applied to this system can be
written as

(@) dQ=q¢ds=c,dT—p~'dp

where ‘s’ is the running’ coordinate along the streamline. Hence
(b) o={aq={vds+q.

Q is therefore the total heat added above a certain reference point.

Choosing this reference point at stagnation then, Q=0 for ¢=0, (s=0)
and therefore Q,=0.

The generalized Bernoulli’s equation (equation 1.2.10a) was given as
© 1/2¢*+-¢,T—Q=const. .
For ¢=0, Q=0 and therefore, equation (c) reduces to
@ 1/24*+¢,T—Q=¢,T,

The quantity ¢’ may be related to the rate of heat added or sub
tracted per unit mass, Q. Equation (a) glves
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(e) 0Q/os=q’ ,
but, @=DQ/Dt=¢dQ/ds and therefore,

() ¢ =Q/q

Isentropic flow is defined as dQ=¢'ds=0 and therefore Q=0. In
this case equation (d) reduces to the familiar Bernoulli’s equation in
isentropic flow.

An interesting situation arises on considering the physical signifi-
cance of Q=c (const.). A function ¢ such that, ¢=0 for all s=s,

0<s,<s, and Q= Ssq’dszc does not exist. However, Q=c¢ is justified
[}

mathematically if one considers Q:SdQ as a Lebesgue-Stieltjes integral.

This situation may simulate the presence of a flame front in the flow
domain.

3. A remark on the results of section 1.5

The results given in Section 1.5 are, in fact, a consequence of
Kelvin’s Circulation Theorem. A proof of this statement is given below.
The circulation I" is given by

(a) j; u,da;
hence,
(b) %’; - 9§ (Du,/ Dt)das, + j;utD(dxi)/Dt

=— j;p-l(aplaxi)dxi—l— §u¢dui (by using eq. 1.1.1)
=—$aplp+12d(@) .

I'=0 implies that =0 by applying Stokes theorem to equation (a).
Hence, equation (b) gives, for »=0, 3§dp/p=0 since d(g?) is an exact

differential. The vanishing of j;dp/p implies that dp/p is an exact dif-

ferential and therefore, p=p(p). Hence, equation (1.1.6) gives S=8(p),
the equation of state gives T'=T(p), the First Law of Thermodynamics
gives Q=Q(p) and finally, Bernoulli’s equation gives p=p(¢). This shows
that Q=Q(p(¢))=F(g) or ¢=q(Q).

Equations (1.2.16) and (1.2.10a) show that the condition of irrota-
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tionality implies that the constant of integration in Bernoulli’s equation
(eq. 1.2.10a) is independent of the stream function. Since the form of
the functional relationship Q=Q(z, ¥) was not used in the proof given
above, it follows that any function Q=Q(z, y) transforms into Q=Q(q)
in the hodograph plane. Hence Q(z, y) is arbitrary.

p=p(p) also follows from Silberstein’s theorem which states that
“an irrotational flow of an inviscid non-heat conducting fluid subject to
conservative forces is either baratropic, isochoric or isobaric”. This
theorem was given in his paper published in the Bulletin Internationale
de I’Academic des Sciences de Cracovie Comptes Rendus in 1896.

The above outlined relation Q=Q(g¢) may be subject to a radical
change when the boundary value problem is considered. In this ecase
one has to satisfy the usual geometric boundary conditions and the “a
priori” given heat distribution Q=@(z, y), which due to =0, must
result in Q=Q(g) only. The question whether this can be always satis-

fied seems to be a difficult one and is beyond the scope of the present
work.
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