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Introduction

The purpose of this paper is a trial to discuss the theory of algorithms
in terms of models. The author assumes that the algorithms are the
procedures represented by flow-charts.

A number of mathematicians have given various sorts of definitions
to algorithms, and many proofs of equivalence between those definitions
have been given. The author proposes that such equivalency-proofs are
equivalent to give models in a certain sense. The notion of the flow-
charts plays an important part in accomplishing his aim, and he owed
this notion to Kalznin’s paper. However, he attempts a generalization of
it, and makes a slight modification.

The author expresses his deep gratitude to Dr. H. Saeki for his useful
suggestion,

1. Graphs

1.1. The definition of Graphs

Definition 1. Let M and N be two arbitrary sets. If at most two
elements of NN are associated with every element of M, we call such a
mapping 2-valued. Moreover, if associated elements range over all
elements of N, we call it a total mapping.

Definition 2. Let S be a set of finite arbitrary symbols that contains
at least two elements. If i and o, two elements of S, are different from
each other, a total 2-valued mapping from S—{o} on S—{i} is called a
graph whose ground is S. If o, 0, and i, three elements of S, are
different from each other, a total 2-valued mapping from S—{o,, 0,} on
S—{i} is called a logical graph with the ground S. In both cases, i is
called the input, o, 0, and o are called outputs. Then we write I'{S}
to mean that the ground of I" is S. By a general graph I' we shall
mean that I” is a graph or a logical graph.

Definition 3. Let I'{S}, I"{S’} be two general graphs. I" and 1"
are called isomorphic if there is a one-to-one correspondence - from S
on &', and if I'(y(s))=+(I’(s)) for all sc S.

Definition 4. We write s, or s—t simply, to mean that I'(s)=(¢t)
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for a mapping I". Such an expression is called a formula of I'. The
left member of s—t is s, and the right member is . .

If a symbol s is contained in the ground of I', it is called a point
of I" and we use the expression s”. Especially the input of I" is written
i’, the output o,

1.2. Insertions and combinations

Let I"{S.}, I',{S,} be two general graphs. If S;NS, is not empty,
we take an arbitrary set S; which contains as many elements as S,, and
satisfies that S,N S, is empty. Then we take a one-to-one correspondence
o from S, on S;. The definition (Iy(s))=I"%(y(s)) (s€S.) gives us a
general graph I'}{S;} which is isomorphic to I,, and we shall take it in
place of I7.

When we consider many graphs at the same time in the Definition
5,6,7,8 we shall assume that their grounds are disjoint after the
procedure in the preceding paragraph. As the proof of the Lemma 1,
2, 3, 4 can be obtained by investigations of their formulas, they are
omitted. '

Definition 5. Let I" be a graph, and 4 a general graph. The
mapping, whose formula consists of

I’s formulas, 4’s formulas and o"—i’

is called the combination of I" and 4, and is written /- 4.

Lemma 1. I'-4 is a graph when I' and 4 are graphs, but is a
logical graph when 4 is a logical graph.

Definition 6. Let I'{S}be a general graph, and se S. If there is
at most one formula whose left member is s, s is called a mathematical
point. If otherwise, s is called logical.

Definition 7. Let 4 be a graph. When I” is a general graph, and
when s is 2 mathematical point of I', we suppose that the formulas
which contains s as its member, are

h,—s, ++-, h,—s, s—k . o (2)
Then the insertion of 4 to I' at s is the graph whose formulas are
the formulas of I" except (2), 4’s formulas,
h,—t’, « -, h,—i, 0'—k .

The insertion is written I’(j).

Lemma 2. Under the same assumption as Definition T, F(j) 18
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a graph iof I" is a graph, and it is a logical graph if I' is a logical
graph.

Definition 8. Let /" be a general graph, and s” be logical. Suppose
that
h,—s, -, h,—s, s—k,, s—k, (4)
are the formulas which contain s as their members.
When 4 is a logical graph, we define that the insertion F(S; kj’ k2>
is the graph whose formulas consist of

I’s formulas except (4), 4’s formula,
h—i, -, h.—i’, o —k,, oj—k, .

If no confusion is expected, we simply denote F(j).

Lemma 3. Under the same assumption as in Definition 8, F(j)

is a graph +f I' is a graph. F<j) 18 a logteal graph if I' is a logical
graph.,

The points of I’(Zr> consist of the points of I" except s and the
points of 4. Then we shall understand that the points of the insertion
are written s, or s according as they belong to I" or 4.

In the following Lemma 4 and 5, we shall suppose that I and 6,
(h=1, -+, r) general graphs. When s, -+, s, are some points of I’, we
correspond 8, to s;(h=1, ---, r), supposing that @, is a graph or a logical
graph according as s, is mathematical or logical.

Lemma 4. F(81)<82>, that s, the insertion of 0, at s, to I'( S
6./\0, 0,

18 a graph or a logical graph according as I' is a graph or a logical

graph. Its formulas coincide with those of F(g;)(gi), and do mnot
contarn any formula t%'—u®, where t and u are neither o nor i.
Lemma 5. E=I" (51)(5:) (5:) 18 & graph, and any change of
the order of imsertions doesn’t alter the formulas of 5. Moreover, 5
has no formula t°r—ur (k£m) where t and u are neither o nor i.
The proof of Lemma 5 is easily done By the induction on n. We

can use the symbol F(gl 52 T §”> without ambiguity.
1 2 n

2. Flow-charts

2.1. Mathematical Structures -

Let M={m,} be a set of arbitrary subjects. A function with one
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variable, whose variables and values range over M, is called a function
in M. A predicate with one variable, whose argument a range over M,
is called a predicate in M. Suppose that F'={f.} be an arbitrary set of
functions in M containing the identity function, and P={p,} be an
arbitrary set of predicate in M.

Definition 9. A mathematical structure F isvthe union of such
M, F and P as above, and ¥ is written {F, P, M.

2.2. Flow-charts. |
Let F be a mathematical structure <F, P, M, and I'{S} be a graph.

Definition 10. If s is a logical point, there are two formulas each
of which has s as its left member. We indicate arbitrarily that one of
them is the true-formula (or--formula), the other is the false formula
(or—-formula), Then, we proceeds the same indications to all logical
points of I°, and the set of all formulas, +-formulas and—-formulas is
called a chart whose ground ts S. Different indications of-+and—-
formulas give us different charts., From now on, we shall properly
consider charts, and not graphs,

Definition 11. Let F be a chart. We associate an element of F
with a mathematical point of F, and an element of P with a logical
point, one by one. When 2 is such a correspondence, any pair (s, 2(s"))
is called a block. s” is called the point of the block. Hereafter s”
means A(s”). To indicate a block, we shall write only its points.

Definition 12. A flow-chart over a mathematical structure ¥ is a
chart whose ground is the set of blocks, and we call them a F'C(¥) (or
FC(F, P, M)) for the sake of brevity.

Definition 13. We can similarly define logical charts and logical
flow-charts (abbreviated LFC) by making use of logical graphs. But in
addition to the definition of charts, we must indicate that one output is
the true output (+-output), and the other the false output (—-output).

2.3. Computations.

Let F be a FC(F). We can define a function by F according to the
following procedure.

1) We take an element m of M, and substitute it to the variable
of i,

2) If ¥ is a function, and if i"—s”, i"(m) is substituted to the

variable” of 3. When there is no i”(m), the procedure stops.

1) Here, “variable” is replaced to “argument,” if 87 is logical.
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8) If i” is a predicate, there are the+-formula i*—s* and the
formula i"—t”. We substitute m to the argument of i*. If i"(m) is
true, m is substituted to the variable of s*, If i“(m) is false, m is
substituted to the variable of #*. When we can decide whether i*(m)
is true or not, the procedure stops.

4) We follow the same procedure to s”(m), t"(m) as i"(m) in 2)
and 3). ‘

5) If we can reach o”» after some steps, and if the value y of
07(m)* is decided, y is defined as the value gained by F' from given m.
But if we can not reach o”, or we have no value of o”(m), we cannot
gain any value by F' from m.

By a LFC we can define a predicate when we adopt 1), 2), 3), 4) and
5'). After some steps, if we can reach of, and o%(m) is m, we assume
that the predicate is true for given m. If we can reach o”, and o”(m)
is m, we assume that the predicate is false. If we have neither of the
previous cases, we don’t know whether true or not.

Definition 14. The computation _from a given element m by a FC
(or a LFC) F' is the succession of the procedures 1), 2), 3), 4), 5) or 5’) as
above. By Comp (m, F'), we shall understand the computation from m
by F.

Definition 15. The route of the computation is the sequence of
blocks through which the computation is carried out. Its end is the
block in whose next block the computation is impossible any more.
En (m, F') is the number of blocks from the input to the end of Comp (m, F').
By Res, (m, F') we shall mean the value gained in the n-th block of the
route of Comp (m, F'). Bl,(m, F') is the n-th block of the route of
Comp (m, F').

Definition 16. The value gained by Comp (m, F') is written F(m).
The funection or the predicate defined by a FC or by a LFC F is also
written F'(x).

2.4. Insertions and Combinations of FC’s.

The insertions and the combinations of a chart are defined similarly
as the cases for graphs. But, when we define the insertion of a logical
chart 4 to I" at a logical point s”, we have to modify the definition
slightly. That is, if s"—t’ is the+-formula, and s"—u’ is the—-formula,
we must take of—t" and o?’—u’ in place of oi—k,, oi—k, in the Defini-
tion 8.

2 As oF is necessarily mathematical, of is a function,
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3. Models
3.1. The definition of models.

Definition 17. Let & be a mathematical structure {F, P, M». By
(F), we shall understand the set of the functions and predicates defined
by FC(¥).

We shall take another mathematical structure S=<@, Q, N>. Given
a one-to-one mapping ¢ from M in N, we can define the function ¢f
and the predicate by the predicate pp by the stipulation that

(@f)p(m))=q(f(m)) for all me M.
(pp)(@(m))=pp(m)  for all me M .

Where f is a function in M, and p is a predicate in M,

Definition 18. (8) is a model of (F) by ¢, if the following con-
ditions hold:

(1) for each function fe (), there exists a function g(x) € {8) such
that

9(p(m))=(pf)(p(m)) for all me M .

(2) for each predicate pe (F), there exists a predicate q(x)e (8)
such that

9(p(m))=(pp)(p(m)) for all me M .
The symbol (FHS,(S) is used when (S) is a model of (F) by o.

3.2. A Special Case of Models.

We shall consider the models in the special case where F is the
identical mapping, before we proceed to consider the general case.

In this section 3.2., we shall understand & is {F, P, M), and G is
{G,Q,M>.

Lemma 6. {FYSL8) if and only if {FYS(SY, where the mapping
@ 1s identical.

Proof. (1) Let {FY<,(8). Then, for each function fe (F), there
is a function g(m)e (9) such that g(m)=j(m) for all me M. Hence
fe(s).

Similarly we can prove that every predicate p e {F) is also contained
in {9).

(2) Let {(FY=(8). Then, every fe (F) is contained in {S). Hence,

3 flx)=g(x) means “That there exists f(x) is equivalent to the fact there exists
g(@); and g(x)=f(x), if there exist f(x) and g(x). p(x)=q(x) means “if p(x) is true, q(x)
is true; and if q(x) is false, g(x) is false.”

49 S means set-theoretic inclusion.
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(1) in Definition 1 is satisfied by taking f as g. Similarly, we have (2)
in Definition 1. q.e.d.

In the following, we assume that all structures contain the identity
funection.

Theorem 1. (FYS(S) if and only if FS(S), PS(S).

Proof. (1) Let (F)S(S). Itis easily seenthat fe (F) and p e (9)
for every fe F and pe P. So fe(8), pe(8). Hence, FS(8), PS(S).

(2) ‘Let F&(S), P<(S). That is, all fie F and p, € P are defined
by FC(S)’s. By [fi], [p.] we shall understand FC(S)’s defining f, and p,
respectively. Therefore the assumption is as follows:

Fm)=[£\](m) for all f,eF and all me M.
pu(m)=|[p.](m) for all p,e P and all me M.

Let F' be an arbitrary FC(¥) and its blocks be b, .-, b, (Assume
that b,=i", b,=o0”.) Then we construct

K:F(fi by e ﬁ) .

(6. [b] --- [b,]

In order to prove K(m)=F(m) for all me M, we carry out Comp (m, F)
and Comp (m, K) for an arbitrary m e M.

If the substitution of m to i* gives us no result, Comp (m, [i*]) also
gives us no result by (A). By Lemma 5, there is not a formula 5" 1—
b'®(g=1) where these blocks are neither o nor i. Then Comp (m, K)
doesn’t reach o', and so doesn’t reach o, Hence there is no value
of K(m).

Next we assume that i“(m) gives us any result. Then we shall prove
the following (1) and (2) for all & less than En(m, F'):

(1) If Bl,(m, F)=b, Bl,(m, K)=o0® for some p.

(2) And Res, (m, F)=Res, (m, K).

The proof can be done by induction on & less than En (m, F'). For k=1,

Bl (m, F)=i*, and Res, (m, F)=i"(m) .

Then, o%Ym)=i"(m) by (A). Hence Comp (m, K) reach of"! and
Bl, (m, K)=0'1 for some p. Therefore we have (1) and (2) for k=1,
We assume that (1) and (2) can be proved for some k less than
En (m, F'). If Bl (m, F)=c.
Res,y; (m, F')=c(Res, (m, F))

=0 (Res; (m, F)) (by (A))

=0'“(Res, (m, K)) . (by (2))
Then, when o'® is ¢-th block of the computation, we have

(4)
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(2) If Bl (m, F)=c¢, Bl (m, K)=0"
(2) Res;,, (m, F)=Res, (m, K).
Hence (1) and (2) are proved.

By (1) and (2), we can conclude “If r=E(m, F') and Bl, (m, F)=e,
then BI, (m, K)=0" for some s.,” Therefore Comp (m, K) can reach
o*=o'"" if Bl (m,F)=0". But Comp(m, K) cannot reach o%, if
Bl (m, F')+#o".

On the contrary, if Comp (m, F') has no end, Comp (m, K) has no
end either, as (1) and (2) are true for all integer =. q.e.d.

3.3. General Cases.

Let us suppose that F=<F, P, M), $=<G,Q, N), and that a one-
to-one mapping @ from M in N which is not identical.

If Fis a FC(¥), we replace each function f in F' to ¢f, and each
predicate p to op. Let @F be the so-gained FC. Then we have

Theorem 2. (@F)(p(m))=@(F (m)) for all me M.

Proof. The points of F'’s blocks are equals to those of @F"’s blocks.
If i"(m) gives us no result, i**(p(m))=q(i"(m)) gives us no result either.
If otherwise, it is sufficient to show for all me M

(1) BlL (m, F)=Bl, (pm, oF)

(2) Res, (pm, pF)=p(Res (m, F))
where k is an integer less than En (m, F').

It is easily done by the indieation on k. For n=1,

Bl (m, F)=i, T =p(i%) .

Then we have

Res, (p(m), p(F"))=o(i*)(@p(m))
=p(i"(m))=p(Res, (F, m)) .
If (1) and (2) are true for some k less than En (m, F'), then
Blyu(m, F')=Bl, (pn, pF)=c
is trivial by the definition of @F. Hence

Res,.; (p(m), pF') =c(Res, (p(m), pF'))
=c(p(Res; (m, F))
=@c(Res, (m, F'))
=g(Res; (m, F)) .
Hence we have proved (1) and (2). Hereafter we can discuss as in

Theorem 1. g.e.d.
By the similary way as Theorem 2, we can prove
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Theorem 3. (pL)(p(m))=p(L(m)) for every LFC(F)L.

Lemma 7. {(FHS LPpF)
Here, by (pF), we mean {pF, pP, pM) where pF={of;fc F}, pP=
{pp; p € P}, pM={p(x); x€ M}.

Proof. Le us suppose that f can be defined by a FC(¥)F. Then,
of can be defined by a FC(pF) by Theorem 2. So we can take ¢f as g,
and pp as ¢ in the definition 18, where a predicate pe (F). g.e.d.

By Definition 18, we can prove easily;

Lemma 8. (FYSAS) if and only if (pFHS(9).

Then we have,

Theorem 4. (FHS(8) if and only if oFS(G, Q, pM) and pP<
(G, Q, pM). '

4. Expansion of Models.
4.1. Models by an Equivalence Class.

Let ~ be an equivalence relation in a set M. By %, we shall
understand the class containing x.

Definition 19. Let f be a function in M. When there exists a
function g in M/~ such that
y=f(v)=y=g&)  for all zeM,
we call f a class-function by~, and g is written f.
Similarly, if p is a predicate in M, and if there exists a predicate g
in M/~ such that
p(x)=q(%) for all ze M,

we call p a class-predicate by~, and ¢ is written .
Let ¥ be a mathematical structure {F, P, M)>. If every element f,
of F' is a class function, and if every element p, of P is a class predicate,

{fi} is written F, and {p,} is written P.

Lemma 9. Under the assumption above, every function f of (F)

is a class function, and there exists a function f in (F, P, M/~) such
that '
y=Ff(@)=y=f&)  for every xec M. (1)

Similarly every predicate p of (F) is a class predicate, and there
exists a predicate p in (F, P, M/~) such that

p(x)=D(%) for every xe M. (2)

Conversely for every element in (F, P, M/~ there exists a function
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f or a predicate p such that (1) or (2) holds.

Proof. When a function ge (F) is a defined by a FCF, we replace
all f, in F to fy, and all p, in F to §,. We write the so-gained FC F,
If § is a function defined by F, we can prove

y=g(x)=y=g@)  for all xzeM,

by a similar way as Theorem 2.
A predicate pe {(F), we can discuss similarly.
The converse is shown by taking a f(x) for f a p(x) for p. q.e.d.

4.2, Models by a Normal Mapping.

Definition 20. A many-valued mapping @ from M on N is said
normal when: o(m,)#qo(m,) for m,#m,.

Then the element x of M, for which @(x)=n holds, is determined
uniquely for every element in N. In other words, there exists the
inverse mapping @' of .

If we define ~, by the rule that

My~ Ny=@ (M) =7 (1)
~, is an equivalence relation in N. When we suppose that # is the class -
containing %, the mapping &, defined by the stipulation @(m)=p(m), is
a one-valued mapping from M on N/~q@. If  is one-to-one,

(F, P, M)SH{PF, pP, N|~,) .

Definition 21. Let us suppose that F=<F, P, M), $=<G, Q, N,
¢, P are the same as in the preceding section. (S) is called a model of
{F), when G and @ contain class functions by ~,, and class predicates
by ~, respectively, and when

(F, P, MYS#G, Q, N/~,)
In this case, we use the symbol (F)S.(9).

Theorem 5. Let ¢ be a normal mapping from M on N, and &
be one-to-one. Then, (FYSAS) if and only if every fre F and every

Pu€ PP is contained in (G, Q, N/~,).

Proof. (F, P, MYS;(G, Q, N/~,) if and only if (@F, P, N/~,)<
(G, Q, N/~,) by Lemma 8. Hence we have the conclusion by Theorem
4, g.e.d.

Theorem 6. Let us suppose that @ is a normal mapping from M
on N, and {FHS,(S).
If y=g(x) for a gec{8), there exists a function f e((ff)} such that
P () =f(p7'(x)).
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As the proof is easily seen from the Definition 21, it is omitted.
The theorem points out the common character between two models in
3.1. and 4.2.

5. An Application.
5.1, Turing Machines

By an alphabet A we shall mean a set of finite symbols. We consider
a tape of infinite length divided into squares, and we write finite symbols
of A on it according to the rule that one symbol is written in one square,
A sequence of symols (containing blank spaces) is called a tape description.
We define the coordinates of the type as follows:

1) We choose a square as the origin arbitrarily and let its coordinate
be 0,

2) the coordinates of the right squares to the originare1,2, 3, ...
respectively from left to right,

3) the coordinates of the left squares to the origin are 1, 2,8, .-
respectively from right to left.
By a description we shall understand a pair of a tape description Y and
a integer 7, {Y; r>.

A Turing machine (abbreviated to TM) is a FC(F, P, M ), Where F, P
and M are as follows:

1) M is the set of descriptions.

2) F is a finite set of functions with the following types.

2.1.) aN; (where a is an symbol in 4)

aN(<' b br-—lbrbr+1 vy 7'>):<' . br—-labr+1 vy ’I">
2.2.) NR, NL:

NR(KY, 7)=<Y, r+1}>;  NLKY, r)=<Y,r—1).
23.) NN
NNKY, r))=<Y, r>.

In the above, b; is the symbol of coordinate ¢ in Y, and Y is a tape
description, and » is an arbitrary integer.

3) P is a finite set of predicates a ((Y, #)). This means a symbol
a in A is written in the square of Y with the coordinate #.

5.2. We can give the answer, “Yes,” to the problem whether any
digital-computer M with the inner program can be done the same behaviour
as a TM or not,

First, we give the outlone of the structure of M. It has an inner
memory S divided to sections of the same bits. Each section is numbered
with an integer called an address. S is separated to parts, one is the
instruction part I (including working spaces), the other the data part D,
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The author’s idea is summerised as follows:

L1 [ [r] | ' [ ]
b D

1) D is considered as the tape of the TM, and each symbol in 4 is
coded to a symbol in M, for example a 2-adic integer. Then, they are
written in D, a symbol for an address. The end of the description and
the address R between D and I are marked with a special symbol.

2) But a special bit of each address in D is preserved to write the
mark of the working order. That is, only a symbol of a particular co-
ordinate is concerned with every function or every predicate. The bit is
used to indicate it. _

3) We give a FC in terms of M’s instructions which is performing
the same behaviour as every function or as every predicate, respectively.
But in the case when we consider NL, we check whether there is a space
of D to the left of the working address. These FC’s gives us the desired
FC by Theorem 4.

4) The FC given 4) is written in the form of the program of M.

Summing up, if the instructions of M enable us to check what a
symbol is, and to change a symbol to another, we have a programm of
M. But the weakest point of M is its limitation of the memory-capacity
for I and D. To cancell the weak point, we have to use the tapes of
M for either the tape of TM or the instructions of M, otherwise for both.
We can also give a programm according to that idea.
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