A generalization of algorithms and
one of its applications (I)

By Nobuo Zama

(Received November 15, 1966)

Introduction

After Turing had invented his famous Turing machine, some math-
ematicians have given definitions of various sorts of algorithms, i.e.
effective procedures which transform a word to another. The equivalency
between these algorithms are shown in application of abstract flow-
charts given by Kaluznin.

On the other hand, von Neumann gave two sorts of models of the
self-reproducing machine, which have powers to construct the machine
itself just like those given at first.

In this paper, the author will show that the investigation of self-
reproducing machines will become more easier by the adoption of
generalised algorithms which transform a finite set to another.

The concept of operaters is invented to confine the information
about a flow-chart to a finite set. We can prove that this concept
enables us to perform an algorithm within a finite set itself.

1. The definition of algorithms

Let M be a set of arbitrary subjects, P be a set of predicates
P(X) whose arguments range over M, and F be a set of functions
F(X) whose variables range over M. A mathematical structure & is
the union of such M, F and P as above. & is written {F, P, M).

A FC(F, P, M) is, roughly speaking, a flow-chart constructed from
elements of F and P. The details of FC(F, P, M) are given in [3].
The set of functions and predicates defined by FC(% ") is written (&)
or {(F, P, M). An algorithm over .# is a function defined by FC(<),
and the set of algorithms over &# is written Alg(.%).

The theorem 1, which plays the fundamental role in this paper, is
proved in [3]. So we shall apply it without any proof here.

Theorem 1. Let & =(F, P, M) and < =<{G,Q, M) be two
mathematical structures. Then

(FI2ALV=G=(F") and FSF(F)

2. The definition of s-algorithms

2.1. The definition of finite sets

110 N. ZAMA

Let us consider finite numbers of arbitrary subjects a, b, ¢, +--.
Let A be the set of these subjects, and we call it an alphabet.

A word on an alphabet A is a finite sequence of elements in A,
admitting the repetition of the same symbols, and we write them
a,a,-++. Every subject in a word W is called the component of W, If
a word W, is a consecutive part of W,, we call W, is a subword of W,.
Let W(A) be the set of all words on A.

If we define the predicate ~ in W(A) by the rule that

W~ Wy= all components W, are contained in W, and all components
of W, are contained in W,

~ 1is an equivalence-relation in W(A). Therefore, we can devide W(A)
into equivalence-classes by ~. W(A)/~, the set of so-gained quivalence-
classes, is written M(A). Every element of M(A) is called a finite set
on A, and M(A) is called the family of finite sets of A. When a class
in M(A)=W(A)/~ contains a word W, we call W is the representative
of the class. When S is contained in M(A), we write S e M(A).

Let S,,S.e M(A). If every representative V of a class S, in W(A)/~
is a subword of a suitable representative U of S,, S, is called a subset
of S,, and write S,cS,.

When VeM(A), every component of the representative of V is
called an element of V. If a is an element of V, we write ae V. The
finite set Ve M(A), whose elements are a,,:--,a,, is written {a,, a,,---}.

2.2, The definition of s-algorithm over A

When X is an arbitrary set in M(A), {a particular finite set P is
contained in X)) is a predicate whose argument is X. We write it
PUX).

When X is the same as above, the transformation {Construct a
new set in M(A) by the change of a particular subset P of X to a
particular finite set @ € M(A), and if X doesn’t contain P, do nothing)
is a function whose variable is X. We write it [P—Q](X).

Let F be the set of some functions with the types [P—Q](X),
where P, Qe M(A). Similarly, let P be the set of some predicates
with the type P ?2(X) where Pe M(A). Then we have a mathematical
structure & =<{F, P, M(A)). We call every element in Alg(.7") is a s-
algorithm over & .

We write F(R)=S or RLS when a s-algorithm F' transforms R
to S.

When M e M(A), we shall understand that M is a representative of
M as a class in W(A)/~. Let M, NeM(A), the notation M+ N means
the set whose representative is the word connected M to N. Similarly,
M— N means the set whose representative is the word rejected N from

A generalization of algorithms and one of its applications (I) 111

M (where Mc N).

Let a, be A. We understand ¢?(X) means the predicate (X e M(A)
contains a), [a—b](X) means the function (Transform a in X to b; but
do nothing, if X doesn’t contain a.). [—b](X) means (Add b to X.),
[a—](X) means (Erase a in X).

Theorem 2. Let Alg(F") be s-algorithms over & =(F, P, M(A)>.
Then, we can choose a mathematical structure & =<{G, Q. M(B)>, with
the mext condition, where B is an extention of A,*

1) @G s the set of some functions with the type [a—b(X) where

a,beB,

2) Q 1is the set of some predicates with the type al(X), where ac B;

3) Alg(z)cAly(Z).

Proor: It is sufficient that Fc (%) and Pc{z). Therefore, we
must show that P?(X) and [P—Q](X) are written in the form of FC(z).

(a) PUX). Let P={a,, --+,a,}. If these a,’s are all
different from each other, we have only to make certain
whether X contains a; (i=1, .-, n), one after another. If
X contains some numbers of the same a;, these a,’s must
be transformed to ¢ after we make certain each a;(tg A).

After the operation, all of ¢’s are transformed to a;’s. o

(b) [P—QIX). Let P={p,--+,p,),Q={q,,---,q). Fig- 1.

If m=mn, [P-Q](X) can be done by the repetitions of [pi—¢.](X),
[p:—@1(X), -+, [P~)(X).

If m>n or m<mn, we must add the function of the type [p:—](X)
or [—q,](X). q.e.d.

3. Operaters and machines

3.1. Operaters and their operations
Every s-algorithm must be defined by a FC. We shall condiser
whether the informations about every F'C can be contained in a finite
set. This plan can be realised by introducing the concept of operaters.
3.1.1. The elements of P must be classified to two distinct classes
in the following:
the one is the class of simple element: «a, b, ¢, -- -,
the other is the class of operaters: a(),8(), v(), ---.
3.1.2. The operation of each operaters.
To every operater a() in P, some sets consisting of at most two

Note: *) An alphabet B is called an extention of A when B contains A.
**) In this Fig., + means (Yes), — means (No).

Note: The symbol () is considered as one symbol involved empty parenthesses.
If no confusion is expected, we shall omitt the parentheses.

112 N. Zama

elements in P are corresponded. Let them be {a,, b}, « « «, {as, b}, €55+ +, Cpe
These elements a;, b;, ¢;,’s can be either simple elements or operaters.
We call them the operands of a(). Then «() operates to one of
them at a time, for example {a,b}. As the result of operation of
a(), we have a(a,b), »-+,a(a,b),. After this, a() recovers the
form before the operation, and the operand is vanished. If a()
operates an element ¢, we have a(c), «-- ,(¢)y and then a() also
recovers similarly.

The set {a, a(a, b)), + -+, &(a;, b),} is written Pr(a(), ai, by), and
we may use the representation

a(aly bi)-—’{ay a(aly bl)ly c Y a(aly bl)k} .

or

a(e)—{a, ale)y, -+, a(e,):}

3.1.3. Suppressors of operaters

Some indicated pairs of an operater a() and an element a disturb
the operation of a(), that is a() is considered as a simple element
in this case. We call a is the suppressor of a(), and write a=S,(a()).

3.2. Operations of M.

3.2.1. A step of operations of M.

Let M be the finite set of elements in P, and a,(), -+, a;() be
the operaters in M. When «,() has its operand (a;, b)) or ¢ in M,
the set {a(), a,b} or {a(), ¢} is called a suitable pair. If M
contains the set of suitable pair P, ---, P,, the operation of all these

operaters for their operands are carried out simultaneously. Then M
is transformed to

M1:(M+Pr (P1)+~-°+PI‘ (Pz))—(P1+"'+Pn)-

We shall use the notation M—M, in such a case. Such a procedure is
called a step, and M, is the result of the step.

3.2.2. The operation by M.

The repetition of the steps, starting from a set M, is called the
operation by M. If there is no operand for any operaters after some
steps, we call that the operation ends in the step and that the so-gained
set in the last step is the result of M. The result of M is written
Res (M). If Res(M)=P, we write M—P.

3.2.3. The consistent operation.

If there are more than two ways to make suitable pairs in a step
of an operation in M, the step can be carried out in either way. So
the result can not be decided uniquely in such a case.

Particularly, a stepis called consistent, when the result of the step is

A generalization of algorithms and one of its applications (I) 113

uniquely determined. When all steps of an operation in M are consistent,
we call the operation is consistent.

Lemma. Every consistent procedure is an Alg (%), when the
mathematical structure & is taken suitably.

Proor. We suppose that Q is the alphabet which contains the
elements of P and the letters S,,---,S, representing the suitable pairs.

Let M =M(Q).
Let F be the set of the next three sorts of functions.
1) [Si—P,(S)(X) (1=1,---,8)

where P,(S;) indicates the result of the suitable pair S,.
2) Ha(), P}-S)(X) (e=1,---,5)

where {a(), P} indicates a certain suitable pair. Such functions are
made for all suitable pairs.

3) [Si—{a(), PH(X) (¢=1,---,59)

where {a(), P} is the suitable pair corresponded to the letter S,.

Let P be the set of such predicates {a,(), P}? (X) and S;? (X).
If &7 =(F, P, M), every consistent operation is written in the form of
Alg (7). For example one step of the operation is written in the form
of F'C with the Fig. 2.

{0‘1,51113 (Ul)}?

! S2?
ll
1

Continued to the block

(S1,S: are suitable pairs of o2.

containing i)
Fig. 2.

When there exists a suppressor for an operater, the blocks {«,,S, ()} ?
must be prepared. q.e.d.

3.3. Machine.

We assume that P is an alphabet involving operaters. Let II be

114 N. ZAmMA

an arbitrary set of operaters in P. When N is a set of simple
elements, and the operation of these operaters are defined, the operation
of IT+ N is called the operation of machine /I with the input N. If
Res (II+N)=P, we may write N, I—P. And we write II(N)=@Q,
where @ is the set of simple operaters in P.

The operation of M described in the preceeding section is the
operation of IT, with the input S,, where II, is the set of the
operaters in M and S, is the set of the simple elements in M.

Theorem 3. We assume that F is a s-algorithm over A. Then
we can take such a II of operaters that

(X)=F(X),
if we define suitably the operation of operaters in II.

ProoF. When & ={F, P,M(A)>, let F e Alg(~#). According to
theorem 2, we can assume that F contains only functions with types
[a—b](X), and that P contains only predicates a?(X) without loss of
generality (a, be A).

When F' is defined by a FC(<"), let b, ---, b, be all its blocks, b,
the input, and b, the output. Corresponding to all of their mathematical
blocks, we prepare the operater g,, -, 0, . Similarly, to all logical
blocks, we prepare of, o5, ---,0F,0;. We take II={o,, ¢}, and define
their operations as follows.

1) When b, is mathematical, we assume that b, contains a function
[a—b](X).

L 0 w(@)—{on, b, s}

3(8, 0u)—1{8, (0.)} .

where (0,) is the operaters corresponded
bm a? b, to the next mathematical block of b,. So
_ . if it is logical, (o,) must be replaced to
R R
‘ Y In this case o, operates as follows:
N L {¢y Oy Oy M*}
[] —1{$, 0, D, 5, M*}
Fig. 3. '_’{@', (an)y b, M*}'

2) When b, is logical, b, contains a function a? (X).
The operations of operaters must be defined as follows:

A generalization of algorithms and one of its applications (I) 115

a=8,(0:,())
of(@)—{of, s, a}
#(af, S)-—>{¢, (gp)y ¢}
#(07, t)—1{s, a0}
oy (07)—{or, s}
#(07, 8)—{g, (d,)}

where g, is an element which has not any operand, and (g,) means just
like the above. The operaters give us the next operation:

¢? 0.?_! o-i-’ a’ M*——)¢’ 0'l+’ O.l_7 S’ a’ M*_—>¢’ (0-1))’ o-l—’ t! a’ M*
'_')¢y (O.p)y (1,, M*y 00
where a is contained,
?, O-i'-y oy, M'—>¢, gy,s, M"”¢’ Oy, M

where a is not contained.
We can define such an operation that gives no operands for all

operaters at last. Then, the operation stops, and we have the desired
result. g.e.d.

Corollary 1. Ewvery machine B is written in the form of {s, 0}
with any change of its working function, where ¢ makes all operaters
besides 0,. That is, there is such a machine {3, 0.} that {¢,0.}(X)=Y
whenever II(X)=Y,

ProorF. Let II(X)=Y. We can consider the operation as a s-
algorithm which transforms X to Y. According to the theorem 8, such
a machine E(X)=1I(X), where E is the machine {, o,}. g.e.d.

Definition. In the preceding corollary, ¢ is called the Sundamental
operater of E.

Corollary 2. Let E={o, ¢} be any such a machine as in Corollary
1. If we can find such x that ¢(x)—{s,0,0}, and x is not an operand
to other operaters appearing in the operation,

¢, E—-E+E.
where ¢ is the fundamental operater.

Corollary 3. Let us assume the same assumption as above. If
Y is the input of B, and Y is not the operand of ¢, then

@+ Y)—E+E(Y) .

116 N. Zama

PROOF. ¢ doesn’t operate in the first step of the operation. So, if
% is an operand of ¢, ¢(x) is gained at first, and then the operation of
E to Y is carried out. g.e.d.

Definition. If II is a machine and Z is its input, I is called a
self reproducing machine when

Z,[I—E2 and EDZ.

38.4. The machine of polygons.
Let E={t,, -++, t,} be a set of arbitrary subjects and we call every
element of E is a vertax. Under the condition that -is not an element
of E, ti—t;(i,j=1,-++,n:i=]) is called a side. Any finite set of a side
is called a polygon.

The operation, which we construct a polygon {t;—t;, «+ -, ty=—st;}
starting from E, is a s-algorithm. So we can write it in the form
of such a machine II as

H(E)={ti—t;, +++, ti—sti}

Then, by the corollary in the preceding section we have such a machine
that

(x_l_E)’ E'_)H—l_{tw— tjy cc tk—’tl} .

where & is a particular set of elements which 2, n—I+11.

References

(1) A.W. Burks: Programming and the theory of automata. Computer programming
and formal systems, Edited by P. Eraffort and D. Hirschberg. pp. 100-117. 1963.

(2) S. Beer: Towards the cybernetic factory. International tracts in computer
science and thechnology and their application, Vol. 9. Principles of selforganization,
pp. 25-80. 1962.

(3) N. Zama: On Models of Algorithms and Flow-charts. Commentatiorum mathem-
aticorum universitatis Sancti Pauli, Vol. 14. pp. 123-134. 1966.

