On some algebraic formulation of algorithms

By Nobuo ZAaMA

(Received July 10, 1968)

Introduction

This paper is the subsequent part of the author’s paper [1] and [2].
Recursive functions can be defined by flow-charts, as is well known.
The flow-charts can be considered not only as formulas which are written
to define functions and predicates but also as diagrams. The author
intends to develop a theory to discuss flow-charts, and he adopts the
concept of category to describe their properties.

In this paper, the author writes only the most fundamental pro-
perties of the category which consists from flow-charts, but more useful
developments might be expected. As an application of general discus-
sion, the generalized notion of universal algorithms will be given.

1. Recursive structures

1.1. The definition of recursive structures.

Let M be an arbitrary set. By F we denote an arbitrary set of
univalent functions whose ranges and domains are M or subsets of M.
We also assume F contains such the identity function e(x) that e(x)=2«
for all xe M. By P we denote an arbitrary set of predicates whose
arguments are elements of M. We can give the flow-chart* whose
blocks are filled with functions of F and predicates of P. We shall
denote the set of these flow-charts by <{F, P|M). Using such flow-
charts, we can define predicates and functions. By (F, P|M) we denote
the set of these functions and predicates, and call it the recursive
structure over {F, P|M), sometimes simply recursive structure over M.
M is called the base of (F, P|M).

In this paper the number of variables of functions in M are
disregarded, since if more than two variables are necessary, it is enough
to consider the set of pairs of elements of M.

The following lemmas 1, 2, 3, are fundamental in this paper, but the
proofs are omitted here since they are in the author’s paper [2]. Refer
the paper about the details of the flow-charts.

Lemma 1. Let (F, P|M) and {(G,Q|M) be two recursive struc-
tures over M. Then

* We shall understand flow-charts and logical flow-charts in the paper [2] by a word
“flow-chart” if there is not any notice.

54 N. Zama

(F, PIM)2(G, QIM)S(F, PIM)26G and (F, P|M)=2Q .

1.2. Mappings of recursive structures.

We consider two recursive structures .& =(F, P| M), £ =(G, Q|N),
where N in allowed to be equal to M. Let ¢ be a mapping from M in
N. If fis a function of % and p is a predicate of % , we can define
@f, op by the following rule:

(@fp@)=o(f(x)) (for all xe M) P
T ——= f(x)
(pp)@(@)=p®) (for all xe M)

The diagram in the left shows the meaning
of therule. By @F we denote the set {¢pf; fe F},
and by @P the set {pp; pe P}. Let o(F, PIM) ox) — = o(f(z))
be (@F, pP|N). Then we have the following of
lemma according to Lemma 1.

Lemma 2. (G, Q|N)D@(F, P M)
(@, QINY)D@F and (G, QINYDpP .

Let a function or a predicate fe (F, P|M) be defined by a flow-
chart F. By @F we shall understand the flow-chart which is made by
substituting feF in F to ¢f, pe P in F to op. Then we have the
following lemma:

Lemma 3. Let F be a flow-chart of (F, P|M). Then
(PF)p@)=p(F(x) (if F is a function)
(PF)(p@)F(x) (if F defines a predicate)

where F(x) is the result of the computation of F for an element .

In the following, we shall assume that a mapping @:. % —% is a
mapping from & in ¥ which assigns elements of M to elements of
N, functions in F to functions in @, and predicates in F to predicates
in G. A mapping ¢: % —% is a homomorphism if and only if

1) o&fc@G (for all feF), OpeQ (for all peP);
2) (@) @(x))=@(f(»)) (for all functions f in &7).
(@p)(D(x)) = p(x) (for all predicates p in &).

A homomorphism is called an isomorphism if and only if it is a one-
to-one correspondence.

Theorem 1. When & is (F,P|M) and Z is ((G,QIN»,
Q. F —< 1is a homomorphism if and only if

(4

Fig. 1.

On some algebraic formulation of algorithms 55

1) o(f)(@@)=20(f(®)) (feF, not for all fe. &),
(0p)(@(x))= () (peP, not for all pe .7).

2) If f is a predicate or a function in & , @f is defined. Then
if f is a predicate or a function in F by a flow-chart f, Of is defined
by of.

Proof. a) If 1) and 2) hold, @ is clearly homomorphism according
to Lemma 2.

b) Conversely, let us assume
that @ is a homomorphism. Then
we have 1) since fe F and pec P are true false

defined by the flow-charts of Fig. 2. [) l [o |
Next, @F ¢ G according to Lemma 2. : '
And 0.7 <z by Lemma 3. q.e.d. Fig. 2.

Theorem 1 means that a homomorphism of recursive categories can
be induced by the mapping between their bases. When & ={(F, P|M)
and £ =(G, Q|N). By »: M—N we shall understand a mapping from
M in N. For feF and pe P, we define @f, @p as follows:

(21)(@(®))=P(f(x))
(@p)(P@))=p() .

If fe & is defined by a flow-chart F, we define @f by the flow-chart
@F. Then @ is a homomorphism by Theorem 1, and we shall write
it by [¢]. Then we have easily the following lemma.

Lemma 4. Let @: 5 —< be a homomorphism. If ¢ is a map-
ping from M in N defined by @, 0=|[p].

2. Recursive categories

2.1. The definition of recursive categories.

A recursive category R is the category whose class of objects is
the class of the recursive structures over a set M. If <, and <2,
are objects in R, the morphism from Z, to .2, is the set of the homo-
morphisms from .2, in <Z,. We shall write [<Z,, &Z,] to denote the
morphism from 2, to “#,. lg, is the identity mapping from <2, on
itself.

When &2 ,=(F, P|M) and #,=(G, Q,| M), every homomorphism ¢
from <%, in &2, is induced by a mapping ¢ : M—M. ¢ can be con-
sidered as a function in M. Then we have the next theorem.

Theorem 2. Under the above assumption, if @ is a function in

56 N. Zama

Ry PRSP

Proof. For all fe F and pe P, ¢f and @p can be defined by flow-
charts in .<#,. Therefore, when F is a flow-chart of ., oF is in
.. q.e.d. ' ' : ’

That is, we must consider @ which is not contained in “#,, when
we wish to observe a recursive category. This facts leads us to the
concept “degrees of unsolvability ”, but the author will give an an-
nouncement about it in another paper.

In spite of it, morphisms and functors of a recursive category can
be written as flow-charts by taking new functions and predicates other
than the members of F and P.

2.2. Flow-chart as diagrams.

Let F' be a flow-chart of {F, PIM)». A flow-chart is a figure which
is made by connecting blocks with arrows, and every blocks contains
either a function or a predicate. So we have the following definition.

A scheme is a triple (I, M, d), where I is the set of vertices, M is
a set of arrows, and d is a function from M to I. The function d
shows the origins and the ends of arrows. It 4 and J are vertices,
and if arrow m is k—j, d(m)=(i, 7). If F(3) is a function from I to
Fand P, & can be considered as the pair (3, F). That is, F(1) shows
the function or the predicate corresponding to the vertice i. We shall
write flow-charts as such pairs, for example (3, F). F(i) is called a
content of <.

Let 2,=(F, P\|M) and ,=(F,, P,\M) be two recursive struc-
tures in a recursive category R. According to Theorem 1, @ : B — B,
is the function from flow-charts in <2, to flow-charts in .2, as follows.

1) If feF, of is a flow-chart F,=(3, G,)

2) If peP, opis a flow-chart F,=(3,, G,)

3) If F=(3, F)e 2,, the flow-chart of o(F) is (3%, G)
where > * is the insertion of 3,’s
and >},’s to 3. The insertion is
the substitution of a block ¢ by a [::I
flow-chart (3}, G), for example as TS
Fig. 3.) oo

We define an ordering of vertices * E C i
in a flow-chart arbitrarily, and write N
0,1,2, --- to denote them. E

Theorem 2. Let F=(3,, F) be Fig. 3.
a flow-chart in 7 . If @ is a homo-
morphism, @ can considered as a fumction from F to 0.7 . Then
@ can be written as a flow-chart whose contents are funmctions or

On some algebraic formulation of algorithms 57

predicates as follows:
the function Very (i)=the next vertices of the vertice Ty

the function Ins; (¢, G)=the insertion of a flow-chart G
to the vertice © in F.

the predicate Cony (i) & F' contains the vertice .

(Note: These functions and predicates have two or three variables.
But as each of them are of different types, no confusion is expected
in the substitution).

Proof. If we wish to give ¢F, we must test all vertices ¢ of F,
and substitute each content f to @f. The procedure can be written in
the form of a flow-chart. q.e.d.

The same theorem as Theorem 2 holds about homomorphisms between
recursive structures over different bases.

3. Functors between recursive categories

8.1. Remarks about functions.

We shall consider functors between two recursive categories in the
following. The concept of recursive categories can be regarded as an
abstraction of so-called algorithms. Therefore, functors will be formula-
tions of meta-mathematical concepts about algorithms, and some ex-
amples will be given in the following.

The functor “Hom” is considered to define equivalency of algorithms
in terms of a category. “lUuiv” is used to give a definition of universal
algorithms.

3.2. Hom.

Consider two recursive categories R, and R,. Let @ be a univalent
mapping from £ on &, where <& and % are the bases of %, and R,
respectively.

If $om, is defined by the following rule, where <2, and ', are
objects in #,,

Som, Z,=p(F# 1)
Som, (D)NP(F# 1)) =OF>) .
Theorem 3. Hom, is a functor.

Proof. 1) 1_=[p], 14,,1=[9#,)]. Therefore Hom,(1,)=1,4p.
2) Let @,: #,—#, and @, : #,—#;. Then,

58 N. ZAama

oomy, (D,)(P(F#,)) = () TSN
Dom, (BN P(F) =P F7s) - o o o
o, (2,) Hom, (0,)((57,) = (@(7y) - Pew) = glet)— lara)
On the other hand, as 9,0, &#,—<Z,, we have

Dom, (0,0.)(P(Z) =p(s) .

Hom, (9,0,)= Hom, (9,) Hon, (@) &7 qg.e.d.

4. Universality

4.1. Universal structures.

By & we shall understand a recursive structure (F, P|M). Let
(¢, F') be a pair of xe M and a flow-chart e % . The function Comp
is defined by the rule that

Comp .- (%, F))= (F (), e(x))

where F' is a flow-chart. If F is a logical flow-chart, Comp ((x, F')) is
(true, e(x)) or (false, e(x)) whether F(z) is true or not. Let U, be the
set of all pairs (z, F'), F,={Comp,}, and P be empty. Then we have
a recursive structure U,=(F,, P,|U;). U, is called a universal closure
of F.

Lemma 5. For every flow-chart F, of U, we have
Fu((w’ F)):Comp (ﬂ'}, F) .
if the left side can be defined.

Proof. According to the definition of the funection “Comp”, the
values of the F,((%, F)) must be (F(x), e(z)). For (I'(x), e(x)) we have
only the value (F(x), e(x)) after any computation. q.e.d.

Theorem 4. If ¢ is the mapping: F—U that o(x)=(x, e(x)),
FDOU,.
Proof. By Lemma 2 and Lemma 4.

4. The functor “lUniv”.

Let R be a recursive category, and .<Z be its object. By U,(<#)
we shall understand the universal closure for <. If @: B —F, is
a homomorphism, the rule that

(¢, F)=(0(), OF)

On some algebraic formulation of algorithms 59

@(Comp . ((x, F)))=Comps (P(%), O(F))

gives us a homomorphism 0 :U(H#,)—U(H#,). We have a category
U,(R) whose objects are U,(<#)’s, and whose morphisms are the set
of @s. The category is much different from a recursive category, since
the bases of its objects are different each other.

If the mapping Univ is defined by the rule that

1) Uuiv (FZ)=U,(A).

2) Univ (9)(#,)=U(A#,), where @ : R —F, is a morphism of R,
we have easily,

Theorem 5. Univ is a functor from R to U,R).

4.2. Comp as a function of flow-

state. ‘:] W

Let F' be a flow-charts, and 7 be

one of its vertice. We substitute

an element m eI to the content

f@) of i. By F(m;i) we shall

understand the figure, and it is cal- ‘:j l:l_j
Fig. 4.

led a flow-state.

Theorem 6. The function Comp can be written as a flow-chart
whose contents are following functions and predicates:
1) functions.
a) Pu((m, F))=F(m,1),
where 1 is the beginning vertice of F.
b) 902(F(m9 '51))=F(m’, 12),
where the next vertice of i along the arrow is 1,
m' s the value gained in the vertice 1.
e) @F(m,i)=F(m, 1),
where the mext vertice of 4, along the truth arrow s .
d) §D4(F(my %)) =F(m, 1,),
where the mext vertice of i, along the false arrow s 1.
2) predicates.
a) Pred (F(m; i,))the contents of the vertice 1 18 a predicate.
b) True (F(m; ,))pi(m) s true, where p; 18 the predicate
in the vertice 7.
¢) False(F(m; ©,))&pi(m) is false, where p; is the predicate
in the vertice .
d) End (F(m; ©))}=ythe vertice i is the end-vertice.
e) Et (F(m;7))Sthe vertice i is the true-end vertice.
f) EBf (F(m; 7)) the vertice i is the false-end vertice.

Proof. The computation of f to an element m M is consisted in

60 N. ZaMA

the following procedures;
a) substitution of m to the beginning vertice,
b) decision whether a vertice is the end vertice or not,
¢) decision whether the content of a vertice is a function or a
predicate,
d) substitution of an element to the variable of the content of a
vertice,
e) decision whether the content is true or not, if the content is
a predicate,
f) decision of the vertice to go in the following step.
These procedures can easily be written as a flow-chart with the func-
tions and predicates in the above. The idea of the flow-chart is given
in Fig. 5. q.e.d.

4.3. Universal structures.

Generally speaking, the function “Comp” can not be considered as
a function in a recursive structure .# . But in special cases, “Comp”
can be given as a flow-chart of & .

If a recursive structure .# is isomorphic to U(F), & is called
universal. That is, .# is universal if and only if there is an isomor-

begin l

the end ?

()

No Yes

Is the content of
end

the vertice is a

predicate ?

X

true ?

7

Suhbstitution

Go to the Go fo the next
next vertice +Go to the next vertice of the
vertice of the false arrow
true arrow l
(a) ¥

(a) ®

Fig. 5.

On some algebraic formulation of algorithms 61

phism: & —U(F).

Lemma 5. If & is a recursive structure, U(U,(F)) is isomorphic
to U(F).

Proof. The base of U, (U,)) consists of elements of ((x, F'), Fy)
where F, is a flow-chart in U,(%). By Lemma, we can only define Comp -
by F,. If o, F), Fp)=(@,F), ¢ is an isomorphism U,(U/(%))—
U(Z). q.e.d.

A flow-chart can be written as a pair (35, F') as mentioned in the
section 2.2, so it can be written as a '
sequence of symbols. That is, arrows can
be written as i,—1,, so a flow-chart can be
given as a sequence of such formulas as

T F(il)‘_"iz; F('Lz) .

For example, the flow-chart of the Fig. 4
can be written;

1; fU@)—2; Do) 2; Da()—3; fol@): 25 Po(®)—Fu(®)2 - -+ .

Flow-states can also be written in similar form as above. By W(F)
we shall understand the sequence corresponded to a flow-chart & . If
we call such sequences flow-words, the functions and predicates in
Theorem 6 can be rewritten as a functions and predicates of flow-words.
Moreover, these functions and predicates are of the following types;
1) functions each of which substitutes a specified consecutive part
of a word to other specified word,
2) predicates each of which states that a word contains a specified
word as its consecutive part, :
3) the functions f;(x) each of which is a content of F,
4) the predicates p;(x) each of which is a content of F.
Let W be a set of flow-words of a recursive structure F. By U we
shall understand the set of the functions to define “Comp”, and by V
the set of the predicates to define it.

Theorem 7. A recursive structure 2 is universal, if and only
if there is such an isomorphism @ that

PRy (U, VIW)

Proof. R is universal if and only if @(Comp,)e @(Z#). Anditis
equivalent to (1). q.e.d.

4.5. Strictly universal categories.
In the preceding part, we didn’t restrict the type of functions

62 N. Zama

and predicates to define a recursive category. If we restrict the type
of functions or predicates in a structure (F, P|M) to 1) and 2) in 4.4.
where M is the set of word, we call the category as a recursive struec-
ture of words. The category, whose objects are recursive structures
of words, is called the recursive category of words.

Let %7 be a recursive structure of words, and <% be a recursive
structure. If <Z is universal and @(Comp_,) e % where ¢ is the iso-
morphism in Theorem 7, we call &2 is strictly universal.

If there is an isomorphism 2,— 7, where <2, and ., are recur-
sive structures, .2, is isomorphic to .<7,. If every object of a recursive
category 22, is isomorphic to an object of another category #,, we
call &2, is isomorphic to ,.

By Theorem 7, we can easily have the next theorem:

Theorem 8. If Z is a strictly universal recursive structure, 7
18 isomorphic to a recursive structure of words.

If every object of a recursive category is strictly universal, we
call that the category is strictly universal.
By Theorem 7, we also have:

Theorem 9. A recursive category N is strictly universal if and
only if it is isomorphic to the recursive category of words. ‘

References

[1] Mitchell, B., Theory of Categories. Academic Press, 1965.

[2] Zama, N., On models of algorithms and flow-charts, Commentarii mathematici Universi-
tatis Sancti Pauli XIV (1966) 123-134.

[8] Zama, N., On a generalization of algorithms and one of its applications (I), ibid XV
(1967) 110-116.

