The existence of indiscernibles which do not spread and their undecidabilities

by

YUKIHIRO NISHIKAWA

(Received March 30, 1974)

It is well known that every \sum_{1}^{1} or \prod_{2}^{1} predicate is absolute, which is due to J. R. Shoenfield. Under the hypothesis of the existence of some strong infinite cardinal (e.g. $\exists \kappa(\kappa \rightarrow (\aleph_1)^{<\omega})$), R. M. Solovay [3] and J. Silver [2] proved that there exists a Δ_3^1 definable real number not in L, where L is Goenel's construtive universe. This real is denoted by 0^* [3].

In this paper we discuss about the cardinal of sets of $(0^{\sharp})^{M}$ for countable transitive model M of $\exists X(X=0^{\sharp})$.

We always treat countable transitive models of ZFC which satisfy $\exists X(X=0^s)$. These are denoted by letters $M, N \cdots$.

In what follows $\Gamma(X, \alpha)$ has the same meaning as in [3]. And by $(A)^{M}$ we shall represent the relativization of A with respect to M.

We define the upper bound of X by the minimum countable ordinal α for which $\Gamma(X, \alpha)$ is not well founded.

In this paper we shall prove the following theorems.

THEOREM 1. If $\exists X(X=0^*)$ and $\exists \kappa (\kappa \text{ is inaccessible})$, then for every countable ordinal α we have a countable transitive model M such that $\exists X(X=0^*), (0^*)^M \neq 0^*$ and $(OR)^M > \alpha$, where OR is the class of all ordinals. And for such M there exists the upper bound of $(0^*)^M$.

COROLLARY. If $\exists X(X=0^*) \ \exists \kappa (\kappa \ is \ inaccessible)$, then $\operatorname{Card} \{(0^*)^M; M \ is \ a \ countable \ transitive \ model \ of \ \exists X(X=0^*)\} \geq \aleph_1$.

THEOREM 2. If $\exists \kappa(\kappa \to (\aleph_1)_2^{<\omega})$ and Martin's axiom hold, then $\operatorname{Card} \{(0^{\sharp})^{\mathsf{M}}; M \text{ is a countable transitive model of } \exists X(X=0^{\sharp})\} = 2^{\aleph_0}.$

THEOREM 3. If $\exists \kappa(\kappa \to (\aleph_1)_2^{<\omega})$ and Martin's axiom hold, then $\operatorname{Card} \{(0^{\sharp})^{\mathtt{M}}; M \text{ is a countable transitive model of } \exists X(X=0^{\sharp}) \text{ such that } \alpha < (OR)^{\mathtt{M}} \text{ and (the upper bound of } (0^{\sharp})^{\mathtt{M}}) < (\alpha^{+})^{\mathtt{L}} \} = 2^{\aleph_0}, \text{ for } \alpha \text{ such that } (\aleph_1)^{\mathtt{L}} < \alpha < \aleph_1, \text{ where } \alpha^{+} \text{ is the minimum cadinal greater than } \alpha.$

§ 1. Preliminaries

In this and next sections we assume that $\exists X(X=0^*)$ and $\exists \kappa(\kappa)$ is inaccessible). We shall prove some Lemmas.

LEMMA 1. For every countable ordinal α , there exists a countable transitive model M of $\exists X(X=0^*)$ such that $(OR)^N > \alpha$.

Proof. Let κ be an inaccessible cardinal. Then $\langle R(\kappa), \varepsilon \rangle \vDash \exists X(X=0^*)$ holds, where $R(\kappa)$ is the set, the rank of which is less than κ . Let N be a countable elementary substructure of $\langle R(\kappa), \varepsilon \rangle$ such that $\alpha \cup \{\alpha\} \subseteq |N|$. And M be the transitive model isomorphic to N. Then M is the required.

LEMMA 2 (J. R. Shoenfield). Every \sum_{1}^{1} or \prod_{2}^{1} predicate is absolute. Proof. See [1].

LEMMA 3. Let $P = \langle |P|, \langle p \rangle$ be a partially orderd set in L. Then, for every $G(\subseteq |P|)$ generic over L, we have $0^* \notin L[G]$.

Proof. Assume that $0^* \in L[G]$. Then for some α $0^* \in L_{\alpha}[G]$. We take γ such that $\langle L_{\gamma}, \varepsilon \rangle$ is isomorphic to $\Gamma(0^*, \alpha + \omega)$. Now we have $0^*, \alpha + \omega \in L_{\gamma}[G]$ and, on the other hand $L_{\gamma}[G] \models ZFC$, because G is generic over L_{γ} .

Thus we can perfom the construction of $\Gamma(0^*, \alpha + \omega)$ and so construct the transitive model isomorphic to $\Gamma(0^*, \alpha + \omega)$ within $L_r[G]$. So $L_r \in L_r[G]$. This is a contradiction.

LEMMA 4. Let $P = \langle |P|, \langle p \rangle$ be a partially ordered set in L_{\aleph_1} . Then there exists $G(\subseteq |P|)$ generic over L.

Proof. The set of dense subsets of |P| in L is countable, because the power set of |P| in L is countable (cf. [2] or [3]).

LEMMA 5. If $\exists \kappa (\kappa \rightarrow (\aleph_1)_2^{<\omega})$ holds, then $\operatorname{Card}(P(\alpha) \cap L[X]) \leq \aleph_0$, where $X \subseteq L_\alpha$ and $\alpha < \aleph_1$.

Proof. See [2] or [3].

LEMMA 6. If G is generic over L and G' is generic over L[G], then $L[G] \cap L[G'] = L$.

Proof. See Lemma 1.2.5. of [4].

Next we define the following two predicates. $P(M,R) \equiv M = \langle \omega, \varepsilon_M, =_M \rangle \land \varepsilon_M \subseteq \omega_{\Lambda}^2 =_M \subseteq \omega^2 \land M \models ZFC \cup \{\exists X(X=0^*)\} \land \exists F[(F \text{ is a total function from } \omega \text{ to } \omega) \land \forall x(M \models \text{ ord } (x) \rightarrow \exists y(x=F(y))) \land \forall xy(\langle xy \rangle \in R \leftrightarrow M \models (\text{ord } (F(x)) \land \text{ ord } (F(y)) \land F(x) < F(x))], \text{ which is a predicate. } Q(M,R) \equiv M = \langle \omega, \varepsilon_M, =_M \rangle \land \varepsilon_M \subseteq \omega_{\Lambda}^2 =_M \subseteq \omega^2 \land M \models ZFC \cup \{\exists X(X=0^*)\} \land (\varepsilon_M \text{ is a well founded relation}) \land \exists F[(F \text{ is a total function from } \omega \text{ to } \omega) \land \forall xy(\langle xy \rangle \in R \leftrightarrow M \models (\text{ord } (F(x)) \land \text{ord } (F(y)) \land F(x) < F(y))], \text{ which is a predicate.}$

And we define a partially orderd set $P_{\alpha} = \langle |P_{\alpha}|, \langle p_{\alpha} \rangle$ for a countable ordinal α by the followings; $|P_{\alpha}|$ is the set of finite functions $\omega \rightarrow \alpha$ and $<_{P_{\alpha}}$ means the usual inclusion.

Every generic set $G(\subseteq |P_{\alpha}|)$ is a total and surjective mapping [4]. And if α is an ordinal and G is a total function $\omega \rightarrow \alpha$, then we define the binary reration R_G on ω by $\langle xy \rangle \in R_G \equiv G(x) < G(y)$.

§ 2. Proofs of Theorems

Proof of THEOREM 1. Let α be an arbitary countable ordinal. We can take a countable transitive model N of $\exists X(X=0^*)$ such that $\alpha < (OR)^N$ by Lemma 1. Let N be a model isomorphic to N such that $|N| = \omega$. And we can take $G(\subseteq |P_{(OR)^N}|)$ generic over L by Lemma 4.

Now we have $P(N, R_G)$ by the definition of P and construction of N. Then $\exists MP(M, R_G)$. And we have $\exists MP(M, R_G) \equiv L[G] \models \exists MP(M, R_G)$ by Lemma 2. Thus we have a model M in L[G] such that $L[G] \models P(M, R_G)$. For such M we have the transitive model M isomorpic to M.

Then $(0^*)^M \neq 0^*$ by Lemma 3. And the existence of the upper bound $(0^*)^M$ is an immediate conclusion of the uniqueness of $0^*(\text{cf. [3]})$. Thus proof of Theorem 1 is completed.

And Corollary is an immdiate conclusion of Theorem 1.

Proof of THEOREM 2. Let α be a countable ordinal such that $(\aleph_1)^L < \alpha$ and $\alpha = (OR)^N$, for some countable transitive model N of $\exists X(X=0^*)$, the existence of which is assured by Lemma 1.

And we put $X = \{(0^*)^M; M \text{ is a countable transitive model of } \exists X(X=0^*) \text{ such that } M \in L[G] \text{ for some } G(\subseteq |P_{\alpha}|) \text{ generic over } L\}.$

In order to prove Theorem 2, it is sufficient to show $\bar{\bar{X}}=2^{\aleph_0}$. Now assume $\bar{\bar{X}}<2^{\aleph_0}$.

Let $\{(0^*)^{M_7}\}_{r<\beta}$ be an enumeration of X, where $\beta < 2^{\aleph_0}$, $M_r \in L[G_r]$ $(\gamma < \beta)$ and $G(\subseteq |P_\alpha|)$ is generic over $L(\gamma < \beta)$. Let F_r be the set dense subsets of $|P_\alpha|$ in $L[G_r]$. From $\exists \kappa (\kappa \to (\aleph_1)_2^{<\omega}) \ \overline{F}_r \leq \aleph_0$ by Lemma 5. Then $\bigcup_{\gamma < \beta} \overline{F}_r < 2^{\aleph_0}$. By Martin's axiom there is $\bigcup_{\gamma < \beta} F_r$ -generic set $G(\subseteq |P_\alpha|)$, which is generic over $L[G_r]$ for all $\gamma(\gamma < \beta)$.

Let N be a model isomorphic to N such that $|N| = \omega$. We have have $P(N, R_G)$ and so $\exists MP(M, R_G)$. We have $\exists MP(M, R_G) \equiv L[G] \models \exists MP(M, R_G)$ by Lemma 2. Then we have $L[G] \models \exists MP(M, R_G)$. Then we have a model M in L[G] such that $L[G] \models P(M, R_G)$. and let M be the model which is transitive and isomorphic to M.

Then $(0^*)^M = (0^*)^{M_{\gamma}}$ for some $\gamma(\gamma < \beta)$. So $(0^*)^M \in L[G] \cap L[G_{\gamma}]$. Hence $(0^*)^M \in L$ by Lemma 6.

Then the upper bound of $(0^*)^M$ does not exist from the fact that $L \models \aleph_1 < \alpha$ and $L \models \alpha \leq \text{(the upper bound of } (0^*)^M\text{)}.$

So $(0^*)^M = 0^*$. This contradicts to Lemma 3. Then $\bar{\bar{X}} = 2^{\aleph_0}$

Proof of Theorem 3. Let α be an arbitrary countable ordinal such that $(\aleph_1)^L < \alpha$.

We put $X = \{(0^{\sharp})^{M}; M \text{ is a countable transitive model of } \exists X(X=0^{\sharp})$

such that $\alpha < (OR)^M$ and (the upper bound of $(0^*)^M > (\alpha^+)^L \}$, $Y = \{(0^*)^M, M$ is a countable transitive model of $\exists X(X=0^*)$ such that $\alpha < (OR)^M$, $M \in L[G]$ for some $G(\subseteq |P_\alpha|)$ generic over L and (the upper bound of $(0^*)^M > (\alpha^+)^L \}$ and $Z = \{(0^*)^M : M$ is a countable transitive model of $\exists X(X=0^*)$ such that $\alpha < (OR)^M$ and $M \in L[G]$ for some $G(\subseteq |P_\alpha|)$ generic over $L \}$.

If $M \in L[G]$ for some $G(\subseteq |P_{\alpha}|)$ generic over L, then the upper bound $(0^{\sharp})^{M}$ exists and (the upper bound of $(0^{\sharp})^{M}) < (\aleph_{1})^{L[G]}$ by Lemma 3 and the definition of 0^{\sharp} . $(\aleph_{1})^{L[G]} = (\alpha^{+})^{L[G]} = (\alpha^{+})^{L}$ by the definition of P_{α} .

Then we have $Z = Y \subseteq X$. Therefore, in order to prove Theorem 3 it is sufficient to show $\overline{Z} = 2^{\aleph_0}$. Now assume $\overline{Z} < 2^{\aleph_0}$.

Let $\{(0^*)^{M_7}\}_{\gamma<\beta}$ be an enumeration of Z where $\beta<2^{\aleph_0}$, $M_\gamma\in L[G_\gamma]$ and $G_\gamma(\subseteq|P_\alpha|)$ is generic over L. Let F_γ be the set of dense subsets of $|P_\alpha|$ in $L[G_\gamma]$.

From $\exists \kappa(\kappa \to (\aleph_1)_2^{<\omega}) \ \overline{\bar{F}}_7 \leq \aleph_0$ by Lemma 5. Then $\bigcup_{\gamma < \beta} \overline{\bar{F}}_{\gamma} < 2^{\aleph_0}$ By Martin's axiom there exists $\bigcup_{\gamma < \beta} F_{\gamma}$ -generic set $G(\subseteq |P_{\alpha}|)$.

We have a countable transitive model N such that $\alpha < (OR)^N$ by Lemma 1. We have a model N isomorphic to N such that $|N| = \omega$. And $Q(N, R_G)$ by the definition of Q. $\exists MQ(M, R_G)$ is a $\sum_{i=1}^{n} p$ redicate. $\exists MQ(M, R_G) \equiv L[G] \models \exists MQ(M, R_G)$ by Lemma 2.

Then we have a model M in L[G] such that $L[G] \models Q(M, R_G)$ and the transitive model M in L[G] which is isomorphic to M.

And $(0^*)^M = (0^*)^{M_{\gamma}}$ for some $\gamma(\gamma < \beta)$. So $(0^*)^M \in L[G_{\gamma}] \cap L[G]$ Hence $(0^*)^M \in L$ by Lemma 6.

Then the upper bound of $(0^*)^M$ does not exist from the fact that $L \models \aleph_1 < \alpha$ and $L \models \alpha \leq \text{(the upper bound of } (0^*)^M)$ So, $(0^*)^M = 0^*$. This contradicts to Lemma 3.

Then $\bar{Z}=2^{\aleph_0}$. Q.E.D.

Finally the author wishes to express the thanks to Prof. Nishimura, Mr. Eda and Mr. Takano for their useful advices.

REFERENCES

- [1] Shoenfield, J. R.; Mathematical logic, Addison Wesley, 1967.
- [2] SILVER, J.; Some applications of model thory in set theory, Annals of Math. Logic 3 (1971) p 45-110.
- [3] SOLOVAY, R. M.; A nonconstructive Δ_3^1 set of integers, Trans. Amer. Math. Society 127 (1967) p 50-75.
- [4] ———, A model of set-theory in which every set of reals is Lebegue measurable, Annals of Math. 92 (1970) p 1-56.

Tokyo University of Education