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It is well known that every 3; or II; predicate is absolute, which
is due to J. R. Shoenfield. Under the hypothesis of the existence of
some strong infinite cardinal (e.g. 3£(k—(3},)5*)), R. M. Solovay [3] and
J. Silver [2] proved that there exists a A} definable real number not
in L, where L is Goenel’s construtive universe. This real is denoted
by 0% [3].

In this paper we discuss about the cardinal of sets of (0%)* for
countable transitive model M of IX(X=0%).

We always treat countable transitive models of ZFC which satisfy
1X(X=0%. These are denoted by letters M, N ---.

In what follows I'(X, «) has the same meaning as in [3]. And by
(A)" we shall represent the relativization of A with respect to M.

We define the upper bound of X by the minimum countable ordinal
a for which I'(X, «) is not well founded.

In this paper we shall prove the following theorems.

THEOREM 1. If 31X(X=0* and 3k(k 18 inaccessible), then for every
countable ordinal o we have a countable transitive model M such that
1X(X=0%, (09"-0* and (OR)">a, where OR is the class of all ordinals.
And for such M there exists the upper bound of (0%)™.

COROLLARY. If 3X(X=0% 3k(t s inmaccessible), then Card {(0*)";
M s a countable transitive model of 1X(X=0%)}=W..

THEOREM 2. If 3k(k—(W)5*) and Martin’s awxiom hold, then
Card {(0)"; M is a countable transitive model of IX(X=0%)}=2%o,

THEOREM 3. If 3c(k—(¥W)5*) and Martin’s axiom hold, then
Card {(0™; M is a countable transitive model of IX(X=0% such that
a<(ORY" and (the upper bound of (0H)")<(at)*}=2%, for a such that
(W) <a<W;, where at is the minimum cadinal greater than «.

§1. Preliminaries

In this and next sections we assume that IX(X=0% and 3x(x is
inaccessible). We shall prove some Lemmas.
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LEMMA 1. For every countable ordinal o, there exists a countable
transitive model M of 3IX(X=0% such that (OR)">a.

Proof. Let k be an inaccessible cardinal. Then <(R(k), &)k
31X(X=0% holds, where R(x) is the set, the rank of which is less than
k. Let N be a countable elementary substructure of {R(k), &) such
that aU{a}=|N|. And M be the transitive model isomorphic to N.
Then M is the required.

LEMMA 2 (J. R. Shoenfield). Ewvery > or II; predicate is absolute.
Proof. See [1]. '

LEMMA 3. Let P={|P|,{p)> be a partially orderd set in L.
Then, for every G(Z|P|) generic over L, we have 0*¢ L[G].

Proof. Assume that 0*c L[G]. Then for some a 0*c L,[G]. We
take v such that (L, ¢) is isomorphic to I'(0¥, «+®). Now we have
0* ¢+we L,[G] and, on the other hand L,[G]=ZFC, because G is
generic over L. _

Thus we can perfom the construction of T'(0*, «+®) and so con-
struct the transitive model isomorphic to I'(0%, @ +w) within L,[G]. So
L,e L,|G]. This is a contradiction.

LEMMA 4. Let P={|P|,{p) be a partially ordered set in Ly,.
Then there exists G(<|P|) generic over L.

Proof. The set of dense subsets of | P| in L is countable, because
the power set of | P| in L is countable (cf. [2] or [3]).

LEMMA 5. If 3k(k—(N)5?) holds, then Card (P(a)N LIX])=NR.
where XS L, and a<W;.
Proof. See [2] or [3].

LEMMA 6. If G is generic over L and G’ is gemeric over L[G],
then L[G]N L[G']=L.

Proof. See Lemma 1.2.5. of [4].

Next we define the following two predicates. P(M, R)=M=
w, ey, =) NexS W=y SO ANMEZFCU{AX(X=0)}AIF[(F is a total
function from w to w) AVe(M=ord (x)—3Ay(x=F(y))) AVey({zy) € R—~ME
(ord (F'(x)) Aord (F(y)) NF(x)<F(x)))], which is a predicate. Q(M, R)=
M=Lw, ey, =4y NeyS o=y SOP ANMEZFCU{AX(X=09)}A(ex is a well
founded relation) AIF[(F is a total function from ® to w) AVay({xy) €
R—ME=(ord (F(x)) Aord (F(y)) A F(x)< F(y))], which is a predicate.

And we define a partially orderd set P,={| P,|, {p.y for a countable
ordinal @ by the followings; | P,| is the set of finite functions w—«
and <p, means the usual inclusion.



The existence of indiscernibles which do not spread and their undecidabilities 69

Every generic set G(&| P, |) is a total and surjective mapping [4].
And if « is an ordinal and G is a totol function w—a, then we define
the binary reration R; on w by {ay) € R;=G(x)<G(y).

§ 2. Proofs of Theorems

Proof of THEOREM 1. Let « be an arbitary countable ordinal.
We can take a countable transitive model N of 3X(X=0%) such that
a<(OR)" by Lemma 1. Let N be a model isomorphic to N such that
|[N|=w. And we can take G(S|Pogn|) generic over L by Lemma 4.

Now we have P(N, R;) by the definition of P and construction of N.
Then IMP(M, R;). And we have IMP(M, R;)=L|G]=3IMP(M, R;) by
Lemma 2. Thus we have a model M in L[G] such that L[G]= P(M, R,).
For such M we have the transitive model M isomorpic to .

Then (0%)*£0* by Lemma 3. And the existence of the upper
bound (0¥)* is an immediate conclusion of the uniqueness of 0%cf. [3]).
Thus proof of Theorem 1 is completed.

And Corollary is an immdiate conclusion of Theorem 1.

Proof of THEOREM 2. Let a be a countable ordinal such that
(R)*<a and a=(OR)", for some countable transitive model N of
1X(X=0%, the existence of which is assured by Lemma 1.

And we put X={(0%"; M is a countable transitive model of 3 X(X=0%)
such that Me L[G] for some G(<|P,|) generic over Lj}.

In order to prove Theorem 2, it is sufficient to show X=2%, Now
assume X< 2%, ;

Let {(0*)"r},., be an enumeration of X, where g<2%, M, e L[G,]
(¥<pB) and G(&| P.|) is generic over L(¥<pB). Let F, be the set dense
subsets of |P,| in L[G,]. From 3Ix(c—(3.)s*) Fjg}to by Lemma 5.
Then U,<; F,<2%. By Martin’s axiom there is J,<; F)-generic set
G(<| P,|), which is generic over L[G,] for all 7(v<p).

Let N be a model isomorphic to N such that | N|=w. We have
have P(N, R;) and so iMP(M, R;). We have IMP(M, Ry)=L[G]=
AMP(M, R;) by Lemma 2. Then we have L[G]=3IMP(M, R;). Then
we have a model M in L[G| such that L[G]=P(M, R;). and let M be
the model which is transitive and isomorphic to M.

Then (0%)*=(0%)*r for some Y(v<pB). So (0Y*ec LIG]N L[G,]. Hence
(0%” e L by Lemma 6.

Then the upper bound of (09" does not exist from the fact that
L=, <a and LE=a=(the upper bound of (0%)*).

So (0%*=0% This contradicts to Lemma 3. Then X=2%

Proof of THEOREM 3. Let a be an arbitrary countable ordinal
such that (W)*<a. ‘

We put X={(0)"; M is a countable transitive model of IX(X=0%
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such that &« <(OR)" and (the upper bound of (09*)<(a*)"}, Y={(0%", M
is a countable transitive model of 3X(X=0%) such that a<(OR)",
Me L[G] for some G(<|P.|) generic over L and (the upper bound of
0 <(a*)*} and Z={(0)»"; M is a countable transitive model of
1X(X=0% such that a<(OR)" and M e L[G] for some G(<| P, |) generic
over L}.

If Me L[G] for some G(<|P.|) generic over L, then the upper
bound (0%)” exists and (the upper bound of (0%)*)<(3,)*® by Lemma 3
and the definition of 0% (¥,)"“=(a*)"“=(a*)" by the definition of P,.

Then we have Z=Y=X. Therefore, in order to prove Theorem 3
it is sufficient to show Z=2%, Now assume Z< 2%,

Let {(0"7},.; be an enumeration of Z where 8<2%, M,c L[G,]
and G/(<|P,|) is generic over L. Let F, be the set of dense subsets
of |P,| in L[G,]. B

From 3k(r—(R)s*) F,<W, by Lemma 5. Then U,.; F,<2% By
Martin’s axiom there exists U,<s F;-generic set G(S| P, |).

We have a countable transitive model N such that a<(OR)" by
Lemma 1. We have a model N isomorphic to N such that |N|=wo.
And Q(N, R;) by the definition of Q. 3IMQ(M, R;) is a >, predicate.
AMQ(M, R;)=L[G]|=3IMQ(M, R;) by Lemma 2.

Then we have a model M in L[G] such that L[G]EQ(M, R;) and
the transitive model M in L[G] which is isomorphic to M.

And (0)"=(0%)*r for some Y(v<pB). So (0¥*e L[G,]nL[G] Hence
(09" e L by Lemma 6.

Then the upper bound of (0%)* does not exist from the fact that
LE=W.<a and LiE=a=(the upper bound of (0%)*) So, (0¥)*=0% This
contradicts to Lemma 3. :

Then Z=2%. Q.E.D.

Finally the author wishes to express the thanks to Prof. Nishimura,
Mr. Eda and Mr. Takano for their useful advices.
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