Comment. Math.
Univ. St. Pauli
XXIII—1, 1974

Gentzen-type formal system representing properties
of functions®

by
Toshio NISHIMURA

(Received March 30, 1974)

§ 0. Introduction

First, we shall roughly explain the system given in this paper,
which is mainly based on the 2-valued logic. By some little modifi-
cations, we shall be able to give the systems based on the 3-valued
logic presented by S. C. Kleene [2] or J. McCarthy, which will be
treated in the forthcoming paper.

Now let F or G be a function of type a—B or B— respectively,
then we shall denote the composition of ¥ and G by

F-G (F-G (x)=G(F(2))) .
And if F and G are compatible and of the same type, then the join
of F and G shall be denoted by
FVvG.

Let P be a formula, then P has a truth value. The function @ which
has always the value ¢ (the empty-set) represents the truth value
‘false’, and the identity function I the ‘true’. (In 3-valued case we
shall take the totally undefined function 2 as another value ‘undefined’).
Then a formula P can be considered as if it is a function, (¢f. 1.5.4)
and the composition

P.F
has the value F if P is'true and @ if P is false. (In 3-valued case,
if P is undefined then the value is totally undefined function 2).

if P(x) then y else f(x)
has the value y if P(x) is true and f(z) if P(x) is false. Thus, this
can be represented by the composition
P(»)-yV 7 P(x)-f(2) ,
where 7 P(x) represents the negation of P(x). And the program
F; G;

* This is partly supported by CUDI foundation.
37

38 T. NISHIMURA

loop: if P then begin H; K; goto loop end

can be representd by
F.G-(V (P-H-K)”>7P,
n=0
where A°=1, A""'=A-A--- A and Y, A"=A"V A\ AV ...

n+1 times

Now let A and B be formulas. Then the composition A-B means
‘A and B’, because I[-I=1I, I.0=0, ¢-I=0 and &-0=0 And AVB
means ‘A or B’ because I\VI=1I, IVO=I, &\/I=1 And OV O=0.
The program
.=1; s:=0;
loop: if 7%>N then begin s:=s-+a; 1:=1+1; goto loop end
shall give the result s:=a,+ --- +ay. This is represented by the
expression of the form

(i:=1)(s:=0) SZO(7(i>N)(s:=s+a,.)(i:=i+1))”(i>N)cs:=a1-|- eetay

which is called a sequent. This can be proved in our system. ‘FcG’
means that G is an extension of F. In the 2-valued case, for formulas
A and B, ‘Ac B’ means that A implies B, and so is the same as A—B
in the Gentzen’s original form.

We shall consider the following recursive definition of the function
F (of type a) :
F(x, y)=if p(x) then y else h(F(k(x), ¥)) .
It is well-known that F' can be defined as the least fixed point V-, /™(?)
(denoted by 0F'), under the following definition of the function f of
type a—«a
F(@)=1(9)=90
fr (@)=if p(x) then y else h(f™(D)(k(x), ¥)
(represented as p(x)-yV 7 p(x)- b(f™(@)(k(x), 1))
We shall consider another function G of the same type as F, which
is defined by the following:
G(x, y)=if p(x) then y else G(k(x), h(y)))
Then

Gz, y)=09(x, y)=0V SZO (@) yV 7 p(x) g™ (@)(k(x), h(y)))

In order to prove that F' is the same function as G, it is sufficient to
show the following two sequents: ‘

Gentzen-type formal system representing properties of functions 39

of (@, y) Cog(x, y) and dg(x, y) Cof(w, v)

In our system, the notation ‘<’ plays the similar role to the
Gentzen’s original notation ‘—’. Rules of inference shall be given
symmetrically for the left hand-side and the right hand-side of c.

In this paper, we shall give the formal system and its interpre-
tation. From this we can easily obtain the plausibility of the system.
And similarly to [4], we can obtain ‘the completeness theorem’ and
‘the cut-elimination theorem’. Concerning to formal systems represent-
ing properties of functions, Platek, D. Scott [5] and M. Takahashi
gave several axiomatized system, but Gentzen-type formulation in-
cluding compositions of formulas and functions has not been given as
yet. Gentzen-type formulation shall give the following profits to us:

(1) This will make us easy transformation to 3-valued cases
from 2-valued case.

(2) This will suggest that the back-tracking is a powerful method
in order to obtain the proofs for equivalence or correctness of programs.
In fact, the theorem-prover [1] based on our system are now working
as a powerful processor, which processed most problems presented in
‘Inductive Methods for Proving Properties of Programs’ by Z. Manna,
S. Ness and J. Vjillemin [3].

- §1. Formal system and its interpretation

In this section we shall give the formal system and its interpre-
tation.

1.1. Constant symbols for types are o and ¢. Types are defined
by the following. (1) o or ¢ is a type. (2) If @« and B are types, so
is @a—B. (3) Types are obtained only by applying (1) and (2) (Extreme
clause). In what follows, we shall often omit the extreme clause. A
predicate-type is defined by the following. (1). « is a type, then a—¢
is a predicate-type. (2) If « is a type and B is predicate-type, then
a—f(is a predicate-type. Types other than predicate-type are called
‘object-type’.

1.2. Basic symbols other than those for types are following:
functional (abbreviated by fl) constants of type a @, ete.; free fl
variables of type a F,, G, ete.; bound variables of type a X,, Y, ete.;
overall-functional (abbreviated by ofl) constants K, L etc.; free ofl
variables U, V etc.; index constants 0 etc.; free index variables a, b, ¢
etc.; index functions +, -,’ ete.; logical connectives -, \, 7, V,d,3,V, =;
other symbols c etc.. Especially, @, is the constant of type a for
every type a and T, for every predicate-type a.

1.8. Now we shall give mathematical domains, in which our
formal system will be interpreted.

40 T. NISHIMURA

Let D_, be the domain of individuals. The totally undefined
function on D_, is denoted by @, or . We put

={a* | We have ac D_, such that a*(x)=a for ever xe D_I}U{a)}
For a, be D,, the relation a b is defined by
a Cob = dom (¢) cdom (b) and a(x)=b(x) for every xze D, .

Then we have wC and ac for every ae D,.
We put D,={<), ¢}, where {) denote the empty word and ¢ the
empty set. And the relation —, is defined by

$CP, 6CL) or (Hal)

We shall often use the notation I or @ instead of {) or ¢ respectively,
because, as we shall see in 1.5, (> shall play the same role as the
identity function I and ¢ as the @ which has always the value ¢.

Supposing that the domains D,, D, and the relations c,, C; are
already defined, we put

a—»ﬁ“‘{Fa—»ﬂ l Fa_,g D “"Dg and dom (Fa._,,g)ZDa}
Now we shall define the relation F, ;C,.,G..s by
F, . y(h)CsGaps(h) for every he D,

F,,,_,,g is said to be monotonic, if F, x(h)C,F,.s(g) for every h, ge D,
such that hc,g9. Then D,., is defined by

D, .;={F | monotonic Fe D,_,}

Next, let .7~ be the set of all types and & be U,.-D,. We define
the set & by

& ={f|f is an fl defined on & and for every ac.7 the restric-
tion of f to D, (denoted by f | D,) is an fl of type a—a}

Let N be {0,1,2 ---} and we consider the number theoretic
functions corresponding to the index-functions.

Let @;.; be the function such that @ ,[h]=®} for every he D,
where 0f=w and 9f=¢ In what follows, we shall often omit type-
subscript (i.e. F instead of F,).

1.4. We shall assign an element of D, (or &) to every fl (or
ofl)-constant or every fl (or ofl)-variable of type @ and an element of
N to every index-constant or-variable as follows. We denote this
assignment by o.

P(P)=D%

?(f)e D, for every free fl-variable or fl-constant f of type «
P(f)e & for every free ofl-variable or ofl-constant f
»(0)=0 for the index constant 0

Gentzen-type formal system representing properties of functions 41

@(a)e N for the index variable a

o(f)=f* for the index-function f, where f* is the corresponding
number theoretic function. (In what follows, ®(F) is represented by
E*)

1.5. FI’s, ofl’s, indices and formulas and the extension of the
assignment over these are defined by the following. In what follows,
we denote one assigned to a formal expression E by E*

1.5.1. An fl-constant of type a (ofl-constant) or a free fl-variable
of type a (free ofl-variable) is an fl of type a (ofl). An ofl is an fl.
An fl of type ¢ is called a formula.

1.5.2. If F or f is an fl of type a—pB or «a respectively, so is
F(f) of type B. Especially, if f,, ---, f, and F are of types a,, ---, a,,
and a,—(a,— -+ (a,—RB))) respectively, F(f)(f) -+ (f.) is of type B,
abbreviated by F(f, ---, f,). If F is an ofl and f is an fl of type «a,
then F(f) is an fl of type a. (F(f))* is F*(f*).

1.5.3. Let F and G be fl's of type a—B and B— respectively.
The F-G (abbreviated by FG) is the fl of type a—v. If For G is an
ofl, then F'G is the fl of the same type of another. (FG)* is F*G*
(the composition of F* and G*) i.e. '

(FG*=F*G*={{foy | 3h((fhpe F* and <hg)eG*)}

1.5.4. If Pis a formula and F is an fl of type a (an ofl), then
PF or FP is an fl of type a (an ofl). (PF)*=(FP)*=the direct product
of P* and F*. Thus (PF)*=(FP)=F or ¢ according to P*={) or
P*=¢. This shows that in our system { > or ¢ plays the same role
as the ofl I* or @* respectively. We shall often use I* or &* instead
of { Yor ¢ respectively. Especially, if F'is also a formula, so is PF
or FP. In this case, PF (FP) means ‘P and F’, because I*I*=I*,
I*@*=0*, O*I*=0* and 0*0*=0* |

1.5.5. If P and @ are formulas, so are 7 P, PVQ, PO@ and P=Q.
7I*=0*, 70*=1I%, (PVQ)*=P*UQ*, (PDQ)*=(YPV@)* (P=Q)*=
(PO@)*V(Q@DP)* .

1.5.6. Let F be a formula, g a free fl-variable of type « and A
a bound fl-variable of type « not contained in F. Then 32 F[h/g] and
VhE'[h/g] is a formula, where F[h/g] denote the result obtained by
replacing & for g. (3hF[h/g])* has the value @* if (F[f/g])*=0* for
every fe D,, otherwise I*. (VhF[h/g])* has the value I if (F[f/g])*=TI*
for every fe D,, otherwise @*.

1.5.7. An index-constant or a free index-variable is an index. If
f is an m-ary index-function and ¢, ---, ¢, are indices, then f(¢,, ---, t,)
is an index. (f(tlr R M)k :f*(ti*y s, 1)

1.5.8. Let R be an fl of type a—a (or an ofl). Then R’ is of
type a—a and 0R of type a (or an ofl), where ¢ is an index. (RY)*=

42 T. NISHIMURA

RE*" and (0R)*=V -, R*(9*)

1.5.9. Formulas of the forms @,PQ, and R,7 PR, are said mutually
disjoint. If formulas P and @ are mutually disjoint, then fl’'s APB
and AQC are mutually disjoint. Two fl’s are said compatible if they
are mutually disjoint. And any two of F™(®), F*(®)) and oF are
compatible. Any two of formulas are always compatible. If fand g
are compatible, so are AfB and AgB, or F(f) and F(g). Clearly, if
two fI’s A and B are mutually disjoint, then one of A* and B* is #*. And

F*™(@*)C F*(@*)CoF* for m=<n
(VRP[R/g])* (P f/9])* @R PLflg])*
And if f*cg*, then A*f*B*cA*¢g*B* and F*(f*ycF*(9*). Thus, if
A and B are compatible fl’s, then A* —B* or B*c A*,

1.5.10. If S and T are compatible fl’s of type « (or ofl), then
SV T is an fl of type a (or ofl). Then (SV T)*=the join of S* and
T*, so one of S* and T*. .

Let Fy, -+, F, and G,, ---, G, be sets of fl’s of type a or ofl, in

which any two of F’s or Gs are compatible. Then the figure of the
following form is called a sequent.

E" ...’FMCGIY ...,Gﬂ’

where it may happen that m=0 or #=0. This is interpreted by
Frn---NFyc.GfU---UGE

§ 2. Proof-figure

In what follows, Greek capital letters, I, II ete. shall represent
finite set of fl’s such as F, ..., F,. A proof-figure is a tree con-
structed by sequents, in which every uppermost sequent is an axiom
and by a rule of inference upper sequents and a lower sequent are
connected.

2.1. We can give various assumptions as axioms, but we shall
give here only logical axioms as the most basic ones. Logical axioms
are sequents of the following form.

‘1. ®cA, where @ is the particular constant.

2. I',F I',cA, F A, ,

3. I', AP,---P,B, I',CA,, AP, --- P, B, A,, where P, is a formula.

It is clear that the logical axioms are true under any interpre-
tations, because 9* is the least element, F* cF* and A*P¥ ... P*B*c—
A*P¥ ... PXB*

2.2. Rules of inference

2.2.1. Rules of Replacement

(1) IF, FI, ®VF or F\V® can be replaced by F and conversely.

(2) OF or F@ can be replaced by @ and conversely.

Gentzen-type formal system representing properties of functions 43

(8) 7I or 7@ can be replaced by @ or I respectively and
conversely.

(4) P=Q, PoQ, 7(P-Q), 7(PVvQ) or 7 /P can be replaced by
(POQAN@QDP), 7PVQ, 7PV7Q, 7P-7Q or P respectively and
conversely.

(5) If @ occurs in the left hand-side, then the left is replaced
by @. @ in the right is omitted.

In every rule of replacement, a true sequent is transformed to
the true because A is replaced by B such that A*=B*,

2.2.2. Rules of inference with respect to logical connectives.

(1) v-left . \/-right
I, AFB,I',cA I, AGB, I',cA I'cAAFB, AGB, A,
T, A{FVG)-B, I,CA T CA, A {FVG}-B, A,

These rules of inference shall give the true lower sequent from the
true upper sequents under any interpretation, because F' and G are
compatible.

(2) o-left o-right
I, A-F«®)-B,I"',cA n=0,1,2 -.-- I'cA, A-FY®)-B,A, A-0F-B
I, A-oF-B, I',CA I'cA, A-0F-BA,

It is easily shown from the compatibility of F"(®) and 0F that these
rules of inference are reasonable.

(3) v-left V-right
I, A-Plg/n]-B, I', A-VhP-BCA I'cA, A-P[f/h]-B, A,
I, A-VRP-B, I',CA I'cA, A-VhP-B, A,
where g is an arbitrary fl of the where f is an arbitray free varia-
same type as h. ble of the same type as k& not

contained in the lower sequent.

It is clear that v-left is the reasonable inference. We shall show
v-right is so. If (YRP)*=I*, (A-P[f/h]-B)*c(A-YhP-B)*. Provided
(VhP)*=0*, we have g€ D, such that P*[g/h]=@*. Considering a new
assignment @’ which assigns ¢ to f and the original one to other than
f, we have @'(P[f/h])=0* and ¢'(E)=9@(E) for E which does not con-
tain f. Then, if the lower sequent is not true under @, so is it under
@’. And so the upper sequent is not true under @’. This contradicts
to the assumption that the upper one is true under any interpretation.

(4) 3-left 3-right
r, A-P[f/h]-B, I'yCA I'cA, A-Plg/h]-B, A, A-3LP-B
I, A-ahP-B, I',CA I'cA,, A-3hP-B, A,

where f satisfies the condition in where g satisfies the condition in
V-right. v-left.

44 T. NISHIMURA

It will be shown by the quite similar way to in (3) that these are
reasonable.

2.2.8. Practical rules of inference

We can add at will some practical reasonable rules, e.g.

I', I',cA, C, A, I, C, I',CA, A,
['1’ Z_'2(——-_A1) AZ

and

Aly M) AmCBly) Bn Fca
AF, ..., A, FCcBG, ---, B,G

where A, --+, A, B, --+, B, are of type a—8 and F and G of j3ype
B—7.

From the facts given in the above, we shall see the following
plausibility theorem.

THEOREM 1 (Plausibility). Let I"CA be a provable sequent. Then
it 18 true wnder any interpretations.
Similarly to [4], we can obtain the following important theorem.

THEOREM 2 (Completeness and Elimination of redundance). Let a
sequent I'CA be true under any interpretation. Then it is provable
by applying only rules in 2.2.1 and 2.2.2.

REFERENCES

[1] IwaMARU, Y., NAGATA, M., NAKANISHI, M. and NISHIMURA, T.; Implementation of
Gentzen-Type Formal System Representing Properties of Functions, This Journal.

[2] KLEENE, S. C.; Introduction to Metamathematics, D. Van Nostrand Company, Inc.,
Princetor, New Jersey, 1952,

[8] MaNNA, Z., NEss, S. and VJIILLIEMIN, J.; Inductive Methods for Proving Properties of
Programs, Proceedings of An ACM Conference On Proving Assertion About
Programs, New Mexico State University, New Mexico, January 6-7, 1972.

[4] NisHIMURA, T.; Gentzen-Style Formulation of Systems of Set-Calculus, This Journal.

[5]1 Scorr, D.; A Type-Theoretical Alteratives to CUCH, ISWIM, OWHY, Proceeding of
An ACM Conference On Proving Assertions About Programs, New Mexico State
University, New Mexico, January 6-7, 1972. '

The University of Tsukuba

