Gentzen-type formal system representing properties of functions*

bv

Toshio NISHIMURA

(Received March 30, 1974)

§ 0. Introduction

First, we shall roughly explain the system given in this paper, which is mainly based on the 2-valued logic. By some little modifications, we shall be able to give the systems based on the 3-valued logic presented by S. C. Kleene [2] or J. McCarthy, which will be treated in the forthcoming paper.

Now let F or G be a function of type $\alpha \rightarrow \beta$ or $\beta \rightarrow \gamma$ respectively, then we shall denote the composition of F and G by

$$F \cdot G \quad (F \cdot G(x)) = G(F(x))$$
.

And if F and G are compatible and of the same type, then the join of F and G shall be denoted by

$$F \vee G$$
.

Let P be a formula, then P has a truth value. The function Φ which has always the value ϕ (the empty-set) represents the truth value 'false', and the identity function I the 'true'. (In 3-valued case we shall take the totally undefined function Ω as another value 'undefined'). Then a formula P can be considered as if it is a function, (cf. 1.5.4) and the composition

$$P \cdot F$$

has the value F if P is true and Φ if P is false. (In 3-valued case, if P is undefined then the value is totally undefined function Ω).

if
$$P(x)$$
 then y else $f(x)$

has the value y if P(x) is true and f(x) if P(x) is false. Thus, this can be represented by the composition

$$P(x) \cdot y \vee \nearrow P(x) \cdot f(x)$$
,

where 7P(x) represents the negation of P(x). And the program

$$F$$
; G ;

^{*} This is partly supported by CUDI foundation.

loop:

if P then begin H; K; goto loop end

can be representd by

$$F \cdot G \cdot \left(\bigvee_{n=0}^{\infty} (P \cdot H \cdot K)^n\right) \nearrow P$$
 ,

where
$$A^0 = I$$
, $A^{n+1} = \underbrace{A \cdot A \cdots A}_{n+1 \text{ times}}$ and $\bigvee_{n=0}^{\infty} A^n = A^0 \vee A^1 \vee A^2 \vee \cdots$

Now let A and B be formulas. Then the composition $A \cdot B$ means 'A and B', because $I \cdot I = I$, $I \cdot \Phi = \Phi$, $\Phi \cdot I = \Phi$ and $\Phi \cdot \Phi = \Phi$ And $A \lor B$ means 'A or B' because $I \lor I = I$, $I \lor \Phi = I$, $\Phi \lor I = I$ And $\Phi \lor \Phi = \Phi$.

The program

$$i:=1$$
; $s:=0$;

loop: if 7i > N then begin $s := s + a_i$; i := i+1; goto loop end

shall give the result $s:=a_1+\cdots+a_N$. This is represented by the expression of the form

$$(i\!:=\!1)(s\!:=\!0)\bigvee_{n=0}^{\infty}(\, { extstyle /}\, (i\!>\!N)(s\!:=\!s\!+\!a_i)(i\!:=\!i\!+\!1))^n(i\!>\!N)\!\subset\!s\!:=\!a_1\!+\cdots\!+\!a_N$$

which is called a sequent. This can be proved in our system. ' $F \subset G$ ' means that G is an extension of F. In the 2-valued case, for formulas A and B, ' $A \subset B$ ' means that A implies B, and so is the same as $A \rightarrow B$ in the Gentzen's original form.

We shall consider the following recursive definition of the function F (of type α)

$$F(x, y) = \text{if } p(x) \text{ then } y \text{ else } h(F(k(x), y)).$$

It is well-known that F can be defined as the least fixed point $\bigvee_{n=0}^{\infty} f^n(\Phi)$ (denoted by ∂F), under the following definition of the function f of type $\alpha \rightarrow \alpha$

$$f^{\scriptscriptstyle 0}(\varPhi) = I(\varPhi) = \varPhi$$
 $f^{\scriptscriptstyle n+1}(\varPhi) = \text{if } p(x) \text{ then } y \text{ else } h(f^{\scriptscriptstyle n}(\varPhi)(k(x), y)$ (represented as $p(x) \cdot y \lor \nearrow p(x) \cdot h(f^{\scriptscriptstyle n}(\varPhi)(k(x), h))$)

We shall consider another function G of the same type as F, which is defined by the following:

$$G(x, y) = \text{if } p(x) \text{ then } y \text{ else } G(k(x), h(y))$$

Then

$$G(x, y) = \partial g(x, y) = \Phi \vee \bigvee_{n=0}^{\infty} (p(x) \cdot y \vee \nearrow p(x) \cdot g^{n}(\Phi)(k(x), h(y)))$$

In order to prove that F is the same function as G, it is sufficient to show the following two sequents:

$$\partial f(x, y) \subset \partial g(x, y)$$
 and $\partial g(x, y) \subset \partial f(x, y)$

In our system, the notation ' \subset ' plays the similar role to the Gentzen's original notation ' \rightarrow '. Rules of inference shall be given symmetrically for the left hand-side and the right hand-side of \subset .

In this paper, we shall give the formal system and its interpretation. From this we can easily obtain the plausibility of the system. And similarly to [4], we can obtain 'the completeness theorem' and 'the cut-elimination theorem'. Concerning to formal systems representing properties of functions, Platek, D. Scott [5] and M. Takahashi gave several axiomatized system, but Gentzen-type formulation including compositions of formulas and functions has not been given as yet. Gentzen-type formulation shall give the following profits to us:

- (1) This will make us easy transformation to 3-valued cases from 2-valued case.
- (2) This will suggest that the back-tracking is a powerful method in order to obtain the proofs for equivalence or correctness of programs. In fact, the theorem-prover [1] based on our system are now working as a powerful processor, which processed most problems presented in 'Inductive Methods for Proving Properties of Programs' by Z. Manna, S. Ness and J. Vjillemin [3].

§ 1. Formal system and its interpretation

In this section we shall give the formal system and its interpretation.

- 1.1. Constant symbols for types are o and c. Types are defined by the following. (1) o or c is a type. (2) If α and β are types, so is $\alpha \rightarrow \beta$. (3) Types are obtained only by applying (1) and (2) (Extreme clause). In what follows, we shall often omit the extreme clause. A predicate-type is defined by the following. (1). α is a type, then $\alpha \rightarrow c$ is a predicate-type. (2) If α is a type and β is predicate-type, then $\alpha \rightarrow \beta$ is a predicate-type. Types other than predicate-type are called 'object-type'.
- 1.3. Now we shall give mathematical domains, in which our formal system will be interpreted.

Let D_{-1} be the domain of individuals. The totally undefined function on D_{-1} is denoted by Φ_0 or ω . We put

 $D_0 = \{a^* \mid \text{We have } a \in D_{-1} \text{ such that } a^*(x) = a \text{ for ever } x \in D_{-1}\} \cup \{\omega\}$ For $a, b \in D_0$, the relation $a \subset_0 b$ is defined by

$$a \subset_0 b \Leftrightarrow \operatorname{dom}(a) \subset \operatorname{dom}(b)$$
 and $a(x) = b(x)$ for every $x \in D_0$.

Then we have $\omega \subset_0 a$ and $a \subset_0 a$ for every $a \in D_0$.

We put $D_{\ell} = \{\langle \rangle, \phi\}$, where $\langle \rangle$ denote the empty word and ϕ the empty set. And the relation \subset_{ℓ} is defined by

$$\phi \subset \phi$$
, $\phi \subset \langle \rangle$ or $\langle \rangle \subset \langle \rangle$

We shall often use the notation I or Φ instead of $\langle \rangle$ or ϕ respectively, because, as we shall see in 1.5, $\langle \rangle$ shall play the same role as the identity function I and ϕ as the Φ which has always the value ϕ .

Supposing that the domains D_{α} , D_{β} and the relations \subset_{α} , \subset_{β} are already defined, we put

$$D'_{\alpha \to \beta} = \{F_{\alpha \to \beta} \mid F_{\alpha \to \beta} : D_{\alpha} \to D_{\beta} \text{ and } \text{dom}(F_{\alpha \to \beta}) = D_{\alpha}\}$$

Now we shall define the relation $F_{\alpha \to \beta} \subset_{\alpha \to \beta} G_{\alpha \to \beta}$ by

$$F_{\alpha \to \beta}(h) \subset {}_{\beta}G_{\alpha \to \beta}(h)$$
 for every $h \in D_{\alpha}$

 $F_{\alpha\to\beta}$ is said to be monotonic, if $F_{\alpha\to\beta}(h)\subset_{\beta}F_{\alpha\to\beta}(g)$ for every $h,g\in D_{\alpha}$ such that $h\subset_{\alpha}g$. Then $D_{\alpha\to\beta}$ is defined by

$$D_{\alpha o \beta} = \{F \mid \text{monotonic } F \in D'_{\alpha o \beta}\}$$

Next, let \mathscr{T} be the set of all types and \mathscr{D} be $\bigcup_{\alpha \in \mathscr{T}} D_{\alpha}$. We define the set \mathscr{T} by

 $\mathscr{F} = \{f \mid f \text{ is an fl defined on } \mathscr{D} \text{ and for every } \alpha \in \mathscr{F} \text{ the restriction of } f \text{ to } D_{\alpha} \text{ (denoted by } f \upharpoonright D_{\alpha} \text{) is an fl of type } \alpha \rightarrow \alpha \}$

Let N be $\{0, 1, 2, \cdots\}$ and we consider the number theoretic functions corresponding to the index-functions.

Let $\Phi_{\alpha\to\beta}^*$ be the function such that $\Phi_{\alpha\to\beta}^*[h] = \Phi_{\beta}^*$ for every $h \in D_{\alpha}$, where $\Phi_{\alpha}^* = \omega$ and $\Phi_{\alpha}^* = \phi$ In what follows, we shall often omit type-subscript (i.e. F instead of F_{α}).

1.4. We shall assign an element of D_{α} (or \mathscr{F}) to every fl (or ofl)-constant or every fl (or ofl)-variable of type α and an element of N to every index-constant or-variable as follows. We denote this assignment by φ .

$$\varphi(\Phi_{\alpha}) = \Phi_{\alpha}^*$$

 $\varphi(f) \in D_{\alpha}$ for every free fl-variable or fl-constant f of type α $\varphi(f) \in \mathscr{F}$ for every free ofl-variable or ofl-constant f

 $\varphi(0)=0$ for the index constant 0

- $\varphi(a) \in N$ for the index variable a
- $\varphi(f)=f^*$ for the index-function f, where f^* is the corresponding number theoretic function. (In what follows, $\varphi(E)$ is represented by E^* .)
- 1.5. Fl's, ofl's, indices and formulas and the extension of the assignment over these are defined by the following. In what follows, we denote one assigned to a formal expression E by E^*
- 1.5.1. An fl-constant of type α (off-constant) or a free fl-variable of type α (free off-variable) is an fl of type α (off). An off is an fl. An fl of type ℓ is called a formula.
- 1.5.2. If F or f is an fl of type $\alpha \rightarrow \beta$ or α respectively, so is F(f) of type β . Especially, if f_1, \dots, f_n and F are of types $\alpha_1, \dots, \alpha_n$ and $\alpha_1 \rightarrow (\alpha_2 \rightarrow \dots (\alpha_n \rightarrow \beta))$ respectively, $F(f_1)(f_2) \cdots (f_n)$ is of type β , abbreviated by $F(f_1, \dots, f_n)$. If F is an ofl and f is an fl of type α , then F(f) is an fl of type α . $(F(f))^*$ is $F^*(f^*)$.
- 1.5.3. Let F and G be fl's of type $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ respectively. The $F \cdot G$ (abbreviated by FG) is the fl of type $\alpha \rightarrow \gamma$. If F or G is an ofl, then FG is the fl of the same type of another. $(FG)^*$ is F^*G^* (the composition of F^* and G^*) i.e.

$$(FG)^* = F^*G^* = \{\langle fg \rangle \mid \exists h(\langle fh \rangle \in F^* \text{ and } \langle hg \rangle \in G^*)\}$$

- 1.5.4. If P is a formula and F is an fl of type α (an ofl), then PF or FP is an fl of type α (an ofl). $(PF)^*=(FP)^*=$ the direct product of P^* and F^* . Thus $(PF)^*=(FP)=F$ or ϕ according to $P^*=\langle \ \rangle$ or $P^*=\phi$. This shows that in our system $\langle \ \rangle$ or ϕ plays the same role as the ofl I^* or Φ^* respectively. We shall often use I^* or Φ^* instead of $\langle \ \rangle$ or ϕ respectively. Especially, if F is also a formula, so is PF or FP. In this case, PF (FP) means 'P and P', because $I^*I^*=I^*$, $I^*\Phi^*=\Phi^*$, $\Phi^*I^*=\Phi^*$ and $\Phi^*\Phi^*=\Phi^*$
- 1.5.5. If P and Q are formulas, so are $\nearrow P$, $P \lor Q$, $P \supset Q$ and $P \equiv Q$. $\nearrow I^* = \emptyset^*$, $\nearrow \emptyset^* = I^*$, $(P \lor Q)^* = P^* \cup Q^*$, $(P \supset Q)^* = (\nearrow P \lor Q)^*$ $(P \equiv Q)^* = (P \supset Q)^* \lor (Q \supset P)^*$.
- 1.5.6. Let F be a formula, g a free fl-variable of type α and h a bound fl-variable of type α not contained in F. Then $\exists hF[h/g]$ and $\forall hF[h/g]$ is a formula, where F[h/g] denote the result obtained by replacing h for g. $(\exists hF[h/g])^*$ has the value Φ^* if $(F[f/g])^* = \Phi^*$ for every $f \in D_\alpha$, otherwise I^* . $(\forall hF[h/g])^*$ has the value I if $(F[f/g])^* = I^*$ for every $f \in D_\alpha$, otherwise Φ^* .
- 1.5.7. An index-constant or a free index-variable is an index. If f is an n-ary index-function and t_1, \dots, t_n are indices, then $f(t_1, \dots, t_n)$ is an index. $(f(t_1, \dots, t_n))^* = f^*(t_1^*, \dots, t_n^*)$
- 1.5.8. Let R be an fl of type $\alpha \rightarrow \alpha$ (or an ofl). Then R^t is of type $\alpha \rightarrow \alpha$ and ∂R of type α (or an ofl), where t is an index. $(R^t)^* =$

 R^{*t^*} and $(\partial R)^* = \bigvee_{n=0}^{\infty} R^*(\Phi^*)$

1.5.9. Formulas of the forms Q_1PQ_2 and $R_1 \nearrow PR_2$ are said mutually disjoint. If formulas P and Q are mutually disjoint, then fl's APB and AQC are mutually disjoint. Two fl's are said compatible if they are mutually disjoint. And any two of $F^m(\Phi)$, $F^n(\Phi)$) and ∂F are compatible. Any two of formulas are always compatible. If f and g are compatible, so are AfB and AgB, or F(f) and F(g). Clearly, if two fl's A and B are mutually disjoint, then one of A^* and B^* is Φ^* . And

$$F^{*n}(\Phi^*) \subset F^{*n}(\Phi^*) \subset \partial F^*$$
 for $m \leq n$
 $(\forall h P[h/g])^* \subset (P[f/g])^* \subset (\exists h P[f/g])^*$

And if $f^* \subset g^*$, then $A^*f^*B^* \subset A^*g^*B^*$ and $F^*(f^*) \subset F^*(g^*)$. Thus, if A and B are compatible fl's, then $A^* \subset B^*$ or $B^* \subset A^*$.

1.5.10. If S and T are compatible fl's of type α (or ofl), then $S \vee T$ is an fl of type α (or ofl). Then $(S \vee T)^*$ = the join of S^* and T^* , so one of S^* and T^* .

Let F_1, \dots, F_m and G_1, \dots, G_n be sets of fl's of type α or ofl, in which any two of F's or Gs are compatible. Then the figure of the following form is called a sequent.

$$F_1, \cdots, F_m \subset G_1, \cdots, G_n$$

where it may happen that m=0 or n=0. This is interpreted by $F_1^* \cap \cdots \cap F_m^* \subset_{\alpha} G_1^* \cup \cdots \cup G_m^*$

§ 2. Proof-figure

In what follows, Greek capital letters, Γ , Π etc. shall represent finite set of fl's such as F_1, \dots, F_m . A proof-figure is a tree constructed by sequents, in which every uppermost sequent is an axiom and by a rule of inference upper sequents and a lower sequent are connected.

- 2.1. We can give various assumptions as axioms, but we shall give here only logical axioms as the most basic ones. Logical axioms are sequents of the following form.
 - 1. $\Phi \subset \Delta$, where Φ is the particular constant.
 - 2. Γ_1 , F, $\Gamma_2 \subset \Delta_1$, F, Δ_2
 - 3. Γ_1 , $AP_1 \cdots P_m B$, $\Gamma_2 \subset \Delta_1$, $AP_{i_1} \cdots P_{i_k} B$, Δ_2 , where P_i is a formula.

It is clear that the logical axioms are true under any interpretations, because Φ^* is the least element, $F^* \subset F^*$ and $A^*P_1^* \cdots P_m^*B^* \subset A^*P_1^* \cdots P_n^*B^*$

- 2.2. Rules of inference
- 2.2.1. Rules of Replacement
- (1) IF, FI, $\Phi \vee F$ or $F \vee \Phi$ can be replaced by F and conversely.
- (2) ΦF or $F\Phi$ can be replaced by Φ and conversely.

- (3) 7I or 7Φ can be replaced by Φ or I respectively and conversely.
- (4) $P \equiv Q$, $P \supset Q$, $\gamma(P \lor Q)$, $\gamma(P \lor Q)$ or $\gamma \nearrow P$ can be replaced by $(P \supset Q) \land (Q \supset P)$, $\nearrow P \lor Q$, $\nearrow P \lor \nearrow Q$, $\nearrow P \cdot \nearrow Q$ or P respectively and conversely.
- (5) If Φ occurs in the left hand-side, then the left is replaced by Φ . Φ in the right is omitted.

In every rule of replacement, a true sequent is transformed to the true because A is replaced by B such that $A^* = B^*$.

2.2.2. Rules of inference with respect to logical connectives.

$$(1) \qquad \qquad \lor \text{-left} \qquad \qquad \lor \text{-right} \\ \frac{\varGamma_1, \ AFB, \ \varGamma_2 \subset \Delta \quad \varGamma_1, \ AGB, \ \varGamma_2 \subset \Delta}{\varGamma_1, \ A \cdot \{F \lor G\} \cdot B, \ \varGamma_2 \subset \Delta} \quad \frac{\varGamma \subset \Delta_1 AFB, \ AGB, \ \Delta_2}{\varGamma \subset \Delta_1, \ A \cdot \{F \lor G\} \cdot B, \ \Delta_2}$$

These rules of inference shall give the true lower sequent from the true upper sequents under any interpretation, because F and G are compatible.

It is easily shown from the compatibility of $F^n(\Phi)$ and ∂F that these rules of inference are reasonable.

$$egin{array}{ll} ext{(3)} & orall ext{-left} \ rac{arGamma_1, \ A \cdot P[g/h] \cdot B, \ arGamma_2, \ A \cdot orall h P \cdot B \subset \Delta}{arGamma_1, \ A \cdot orall h P \cdot B, \ arGamma_2 \subset \Delta} \end{array}$$

where g is an arbitrary fl of the same type as h.

$$rac{ au ext{-right}}{arGamma \subset \Delta_1, \ A \cdot P[f/h] \cdot B, \ \Delta_2}{arGamma \subset \Delta_1, \ A \cdot orall h P \cdot B, \ \Delta_2}$$

where f is an arbitray free variable of the same type as h not contained in the lower sequent.

It is clear that ∀-left is the reasonable inference. We shall show \forall -right is so. If $(\forall hP)^* = I^*$, $(A \cdot P[f/h] \cdot B)^* \subset (A \cdot \forall hP \cdot B)^*$. Provided $(\forall hP)^* = \Phi^*$, we have $g \in D_a$ such that $P^*[g/h] = \Phi^*$. Considering a new assignment φ' which assigns g to f and the original one to other than f, we have $\varphi'(P[f/h]) = \Phi^*$ and $\varphi'(E) = \varphi(E)$ for E which does not contain f. Then, if the lower sequent is not true under φ , so is it under φ' . And so the upper sequent is not true under φ' . This contradicts to the assumption that the upper one is true under any interpretation.

(4)
$$\exists$$
-left \exists -right $\underline{\Gamma_1, A \cdot P[f/h] \cdot B, \Gamma_2 \subset \Delta}$ $\underline{\Gamma \subset \Delta_1, A \cdot P[g/h] \cdot B, \Delta_2, A \cdot \exists hP \cdot B}$ $\underline{\Gamma \subset \Delta_1, A \cdot \exists hP \cdot B, \Delta_2}$ where f satisfies the condition in \forall -right. \exists -right $\underline{\Gamma \subset \Delta_1, A \cdot P[g/h] \cdot B, \Delta_2, A \cdot \exists hP \cdot B}$ where g satisfies the condition in \forall -left.

where g satisfies the condition in ∀-left.

It will be shown by the quite similar way to in (3) that these are reasonable.

2.2.3. Practical rules of inference

We can add at will some practical reasonable rules, e.g.

$$\frac{\varGamma_{1}, \varGamma_{2} \subset \Delta_{1}, C, \Delta_{2} \qquad \varGamma_{1}, C, \varGamma_{2} \subset \Delta_{1}, \Delta_{2}}{\varGamma_{1}, \varGamma_{2} \subset \Delta_{1}, \Delta_{2}}$$

and

$$\frac{A_1, \cdots, A_m \subset B_1, \cdots, B_n \qquad F \subset G}{A_1 F, \cdots, A_m F \subset B_1 G, \cdots, B_n G}$$

where $A_1, \dots, A_m, B_1, \dots, B_n$ are of type $\alpha \rightarrow \beta$ and F and G of type $\beta \rightarrow \gamma$.

From the facts given in the above, we shall see the following plausibility theorem.

THEOREM 1 (Plausibility). Let $\Gamma \subset \Delta$ be a provable sequent. Then it is true under any interpretations.

Similarly to [4], we can obtain the following important theorem.

THEOREM 2 (Completeness and Elimination of redundance). Let a sequent $\Gamma \subset \Delta$ be true under any interpretation. Then it is provable by applying only rules in 2.2.1 and 2.2.2.

REFERENCES

- [1] IWAMARU, Y., NAGATA, M., NAKANISHI, M. and NISHIMURA, T.; Implementation of Gentzen-Type Formal System Representing Properties of Functions, This Journal.
- [2] KLEENE, S. C.; Introduction to Metamathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1952.
- [3] MANNA, Z., NESS, S. and VJILLIEMIN, J.; Inductive Methods for Proving Properties of Programs, Proceedings of An ACM Conference On Proving Assertion About Programs, New Mexico State University, New Mexico, January 6-7, 1972.
- [4] NISHIMURA, T.; Gentzen-Style Formulation of Systems of Set-Calculus, This Journal.
- [5] Scott, D.; A Type-Theoretical Alteratives to CUCH, ISWIM, OWHY, Proceeding of An ACM Conference On Proving Assertions About Programs, New Mexico State University, New Mexico, January 6-7, 1972.

The University of Tsukuba