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We shall give Gentzen-style formulation for systems of infinitary
set-calculus. The first system will be given in §1. This system con-
tains only the operators -’ (concatenation), ‘4’ (sum) and ‘U5~ (infinite
sum). However, basic sets for the present system are arbitrary. It is
easily proved that this system include the system given by A. Salomaa
[38]. And in this system we can define the fixed point operator and
prove the computational induction for suitable predicate without difi-
culty. In §2 we shall prove plausibility, completemess and elimination
of redundance. Elimination of redundance corresponds to Gentzen’s
cut-elimination [1]. The method given by K. Schiitte [4] will be applied.
In § 3 we shall extend the system by combining formula. The extended
system will be able to contribute to axiomatic basis for programming.
In §4 we shall some comments to the system given by C. A. R. Hoare

[2].
§1. Gentzen-style formulation

Basic symbols are following: (1) Constant symbols A, ¢, @, b, ¢, - - -
(2) variables #, ¥, #, --+(3) operrtion symbols +, -, UJ, and (4) the symbol
. Expressions and their degrees which are transfinite ordinal numbers
are defined recursively as follows, where the degree of the expression
7 is denoted by d(3). (1) A constant symbol or a variable is an expres-
sion with the degree 0. A constant or a variable is called a literal.
@ If a,- -, a, -+, a 8 and v are expressions, so are a-8, a+p
and U=, a. where d(a-B)=d(a)+d(B), dla+pR)=d(ax)+d(B)+1 and
d(Usz=0) =sup, (d(a,)+1). (3) (extreme clause) Expressions are obtained
only by (1) and (2). We apply the following abbreviations: a° for the
constant \, a” for a-a- -.- -a and aB for a-B. We denote an expres-
sion a,a; --- &, by term, where a;’s are literals. We say that an
expression « has the empty word property (ewp) when « is of the
form )\, Uy, 7", or a is of the form 7+¢ for 7 or ¢ having ewp, or
of the form 7-& for » and ¢ having ewp. Inherently, ‘an expression
« has ewp’ means that the set represented by a contains the element \.

When a«,, +++, &m, B, ***, B. are expressions then the figure of the
following form is called a sequent: ' '

29



30 T. NISHIMURA

al’ (XN amclgb LEEN 18”

Inherently, it means that a,: -+ -, c 8, +++++5,, where ‘C’ is
the set-inclusion and ‘+’ or -’ is the set sum or product.

Now we give axioms and rules of inference of our system. In
what follows, by Greek capital letters such as I', A, II ete. we denote
finite set of expressions.

Axioms are sequents of the following form:

A, o, U, CA, a, A, Or ¢CA
where « is a,- -+ -, and ¢ is a particular constant (inherently,

denote the empty set).
Rules of inference are of the following form

S, S, -+ S, ---

. S ‘
where S, S,, -+, S,, --- and S are sequents. S, S,, --- are called the
upper sequents and S the lower sequents of this rule. There are the
followings:

I. (1) We can replace an arbitrary expression « in a sequent
by Ma or ax and conversely, where ) is the particular constant
(inherently, denoting the empty word). We can also replace ¢ or agp
by ¢ and conversely, where ¢ is the particular constant (inherently,
denoting the empty set). If the left hand-side contains ¢, we can
replace the left hand-side by .

'cA

(2) 'cX
IL. Rules with respect to connectives

', anp, T'y,cA Ty, aéB, A,CA
Ly, a(p+8)B, T.CcA

for X containing every expression in A.

(1) T'cA, anB, aép, A,
F'cA, a(n+£)8, A,
(2) -TcA TIcX I', e, B, T,CA
T+IICAZ T, aB, [,CA

where T'«IT or AZ is @, «++ @B, *++ By O D&y, ==+, D&, Nby, + o+, N, if
T,II,Aor Zisay, «+-, @i By +**, Bis D ***, NYm OF &, +, &, Tespectively.

Ty, a,';CA n=0,1,2, ---
T, U a, A
7=0

3
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T'ca, CJ Ay A,
n=0

I'cA, v, A YCA
III. (1) Cut L T2
(1) T'cA, A A
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v is called the cutexpression.
(2) Elimination cA, 78%, &, n=N, N+1, - ", where N is an
T'caA, A,
arbitrary positive integer and 8 has not ewp.
The proofs of our system are defined recursively as follows:
(1) An axiom is a proof. (2) If p, », --- are proofs with the

lowermost sequents S,, S, --- respectively, and if —S‘—%— is a rule

of inference the %— is a proof.

(3) Proof is obtained only by applying the above (1) and (2).
The proof to S is that which has S as the lowermost sequent. When
we have a proof to S, we say that S is provable. In particular, we
say that S is strictly provable when S is provable by applying only
I and II.

§ 2. Plausibility, completeness and elimination of redundance
First we give an interpretation.

Definition 1. We make every expression a correspond to a
mathematical entity |a]. |a| is defined as follows:

(1) |¢|=the empty set. |n|=the set consisting only of the
empty word. . «

(2) If a is a constant or a variable, then |a|={a}.

(3) la+Bl=lalUlB] |a-Bl=]lal|-|B] and [Uswa.|=Usi= | a.l.

lau ce, A C B, Bnl is Iall ce lamlcllellu”' UIIBnI

where ‘c’ is the set inclusion.

THEOREM 1. (Plausibility) Ewery provable sequent is true under
the above interpretation.

Proof. Axioms are trivially true. It is clear that the rules of
inference I, II and III (1) (3), transforms the true sequents to a true
sequent. When g has not ewp, Ny-» 78"¢é=¢. Hence we can see that
the III (2) transforms a true sequent to a true one, q.e.d.

THEOREM 2. (Completeness and Elimination of redundance) Let
@y oy, Oy N By, <<+, B, are arbitrary expressions. If |ay, +++, a,C
Bis +++y Ba| holds for the interprelation | |, then the sequent ay, « -+, &, C
By, ***, B ts strictly provable.

We shall give some preliminaries. First we can easily see the
following:

d(a)=0 iff « is a term,

d(anp), d(aéB)<d(a(n+£)B),

dan) <d(Uz=o @z)
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We define the degree of a sequent as the sum of the degrees of
the expressions in the left hand-side.

Next we seall give the left decompositson of a sequent by the
tranfinite induction on the degree £ of the sequent.

(1) In the case where £=0, the expression in the left hand-side
of the sequent is a sequence of terms. Then, if it contains ¢, we
replace the left hand-side ¢. Then the decomposition terminates. In
the case where £>0, we carry out as follows.

(2) If the sequent is of the form T, a(n+§)B, I';CA, then we
decompose it to the two sequents T, ayB, I'CA and T, aéB, I'CA
which degrees are less than that of the original.

(3) If the sequent is of the form I, Ur- a.,, I'CA, then we
decompose it to infinitely many sequents I';, Ui, s, I'.:CA =0, 1, 2,- -+
which degrees are less than that of the original.

We can easily see that, if every decomposed sequent is strlctly
provable, then the original is strictly provable. And we can see that
the sequent with the degree 0 is of the form a,, @, -+, @, CA, Where
a, @, -+, a, are terms. And we can easily see that, if the original
sequent is of the form I'cA then |a, +--, @,CT'|. When we continue
(1) and (2), every sequent is decomposed to (infinitely or ﬁmtely) many
sequents which degrees are 0.

Next we define the right decompositions of a sequent which degree
is zero. From left to right in the right hand-side, we search an
expression which contains + or UJz,. If we have no such expression
or the sequent is an axiom, then the decomposition terminates.

(1) Let such the first expression be a(y+£)8 and the sequent
be of the form T'cA, a(p+£)B, A,. Then it is decomposed to I'CA,
anB, a&B, A,.

(2) Let such the first expression be U7, @, and the sequent be
of the form T'cA, Uz . A,. Then, if the decomposition is the
n-th, it is decomposed to T'CA,, a,, @y, ***, Ay, Ay, Ui @

(3) We can easily see that, if the decomposed one is strictly
provable, so is the original

Proof of Theorem 2.

Now we shall give the proof of Theorem 2. In order to do so,
it is sufficient to prove that, for every term ¢, if the sequent tCA is
strictly not provable, then [¢CA| is not true.

If the sequent were strictly not provable, then we should have
a branch which satisfies the following properties:

(1) Let the left hand-sides of the sequents in this branch be
a, +++, &,. Then a,- --- -a, does not occur in the right hand-sides
of them.
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(2) If an expression of the form R(n+&)r appears in the right
hand-side of some sequent of this branch, then the expressions £7v
and RB&7 appear in the right-hand-side of some sequent of this branch.

(8) If the right hand-side of the sequent in this branch contains
an expression of the form U;-, «,, then «a, for every n=0,1, 2, --- is
contained in the right hand-side of some sequent in this branch. )

Let «, -+, ., be the left hand-side of this brance. It is sufficient
to prove that t¢|d| for an arbitrary expression ¢ in the right hand-
side of this branch, where ¢ is «, --- a,. We shall prove this by the
transfinite induction on the degree d(d) of d. If d(0)=0, then it is
clear by the fact that 6 is a term. In the case where ¢ is of the form
BM+E)y, we have t¢|Bny| and t¢|BéY| by the induction-hypothesis,
because

A(B7Y), A(BEY)<d(B(M+E)Y)

and both B7y and B&y appear in the right by the property (2).
Therefore ¢¢|B(1nH+£)y|. In the case where ¢ is of the form U;., a,
we have t¢]|a,|n=0,1,2 --- by the induction-hypothesis because
de,)<dUz-oa,) n=0,1,2, --- and every a, appears in the right by
the property (8).

§ 3. Extended system obtained by combining formulas

We extend the system given in §1 by combining formulas. As
basic symbols we add the following other than given in §1; bound
variables (constants and free variables are given in §1) ; predicate
symbols; logical connectives — (negation), 3 (exist), V (for all); The
connective ‘-’ or ‘+’ is also used as the logical connective and as the
connective combining extended expressions.

- Formulas are defined as usual, where ¢-’ is used for ‘and’ and ‘+’
for ‘or’.

Then extended expressions are defined as follows: (1) An expres-
sion or a formula is an extended expression. (2) If A and B are
extended expressions, sois A-B. If A4,, A,, 4,, ---, A and B are extended
expressions other than formulas, so are A+B and U, 4.. (3) Extended
expressions are obtained only by applying (1) and (2). Rules of in-
ference I, II, III in §1 are also adopted for extended expressions,
under some modification in below. And some rules of inference are
added.

I(@) is extended as follows:

'cA
¥, T, OcA

where ® and ¥ consist only of formulas, and every expression in A
is contained in A. -
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To the group I, we add the following I (4).

I(4) If Pis a formula, then (—P)-P or P-(—P) is replrced by 4.

To the group II, we add the following II (4), II (5), II (6) and II (7).

1I(4) A formula —(P+@Q), —(PQ), —3xF or —VxF is replaced by
—P-—7Q, TP+ —Q, Va—F or 3x—F respectively, and conversely.

II(5) FcA a-P-g Tch a-Q-8
TcA a-P-QB

where P and Q are formulas.

Ii 6) T, F(a), T,cA I'cA, a-F(b)-B, a-3xF(x)-B
I, 3xF(x), T'A 'ca, a-32F(x)-B
a is eigen-variable b is an arbitrary constant or a
v free variable
() T, F(b), VaF(z), T,CA TcA, a-Fa)-8
T, VeF(x), T,cA I'ca, a-vVeF(x)-B

b is an arbitrary constant or a a is eigen-variable
free variable
III (1) is modified as follows:

FCAI; ’Yr Az Fly IY; FZCA
F’ Fl, F2CA1, AZ, A

where T, and T, consist only of formulas.

We shall give the interpretation of an extended expression a. If
« is an expression in §1, then ||a||=|a| givenin § 2. We denote the
set of all constants and free variables by V and Uz, V" by V*.

—9={A}, 7{A}=¢

[| P(a,, -+, a,) ]| €{s, {\} for predicate symbol P and a,, «+-, a,€ V*
lA+B||=[[A]JU]| B]|

1A - Bll=]lAll- || Bl

I ~All=—llAll

13F@) 1= U [ @)

IvaF@) = )1 F@]|

Then we have the following usual truth table.

el el e+l Pl - I —P
NN {\} 109 9
) ¢ {} ¢ ¢
9 {x} {\} ¢ {\}
¢ ¢ ¢ ¢
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[|32F(z) ||={\} iff we have a such that || F(a)|={\}
[|VaF(z)||={\} iff |[F(a)||={\} for all aec V*
If Fis an extended expression and P a formula, then || FP||=|| PF||=¢

or F' according that ||P||=¢ or {\}. Similarly to §2, we have the
following two theorems.

THEOREM 1 (Plausibility). If a sequent T'CA ts provable, then it
is valid.

THEOREM 2 (Completeness and elimination of redundance). If a
sequent T'C A ts valid, then it is provable by applying rules of inm-
Jerence of 1 and II.

§4 Comment to Hoare’s rules.

Hoare gave an axiomatic basis for computer programming [2].
We shall give some comments to the system. Under a translation,
his rules are included in the present system. However, we do not
treat the assignment statement, Hoare’s axiom D0, which will be
discussed in the forthcoming paper.

We translate his formal statement into the present system as
follows.

P{Q}R is translated to QPcCR
P{Q; Q}R to Q.Q.PCR
‘while B do S’ to (—B) U (SB)"
n=0
R>S to RcS
PAS to PS
Then D1 is obtained by the following.

QRPcR RcS
QPcS

ScP QcQ I
QScQP QPCR
QScP

cut

cut

D2 is obtained by the following.

QIPCRI QZCQ2 III
Q@ PCQ,R, QR CR
QQ.PCR

éut

D3 is obtained by the following.
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SBPcP SBcSB
(SB’cSBP SBPcCP
PcP  SBPcP (SByPcP ceeens

U (SBy"PcP —Bc—B
n=0

—B- (SB)"PC —B-P
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