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Let X be a Banach space and T be an operator mapping of X into

itself. In the present paper we will be concerned with the mapping
T which satisfies

17) ~ T@) | = (o~ T@) I+ lly—T) | +llz—y |}

for z, ye X.

The condition which T satisfies above has been introduced essential-
ly by Reich [2] in connection with some fixed point theorems in a metric
space. The theorems obtained in this paper have been motivated by
the work of Kannan [1] regarding fixed points in a Banach space for
operator mapping which satisfies

17@) - TW) | =5 llo—T@ | +]ly- T

First we state certain well-known definitions and results quoted in [1].

DEFINITION. A norm [|-]| in a normed linear space X is uniform-
ly convex if ”xn”:”yﬂllzl (nzl’ 2’ "')’ lim'n‘[w”xn-l_yn”'zz lmply
lim,_... [|2,—¥.||=0 for z,, y,e X

THEOREM A. Let X be a wuniformly convex mormed linear space
and let ¢, M be positive constants. Then there ewists a constant 6 with
0<d<1 such that

lzll=M, llyl|I=M, |le—yll=e
mply
[|e+y||=20 max(j|zl, ll¥]]) .

Theorem A is given in [3], page 28. The following two theorems
are also quoted in [1].

THEOREM B. Ewery uniformly convex Banach space is morm re-
fexive.

THEOREM C. A mecessary and sufficient condition that a Banach
space X be reflexive is that: Every bounded descending sequence (trans-
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16 ‘ R. N. MUKHERJEE

finite) of mon-empty closed comvexr subsets of X has a non-empty in-
tersection.

We prove now the following theorems:

THEOREM 1. Let X be reflexive Banach space and K be a non-void
closed convex bounded subset of X. If T is a mapping of K into itself
such that

(i) 1 T@)—Tw=1/3{le— T@)|[+ly— T +lz—y|} for », ye K

(i) supeqlly—T@)I=D(G)/2
where G is any non-void convex subset of K which is mapped into
itself by T and D(G) is the diameter of G, then T has a unique fixed
point in K.

If G is a non-void closed convex subset of K then for G we define
the following quantities:

—sup 2 llo— llz— Tl
0:(G)=sup =l yll+sup I zeG

o(G)=inf 0.(G)

and
G.={re G: p.(G)=p(G)}
LEMMA 1. G, is mon-void, closed and convex.

Proof of Lemma 1 is essentially analogous to the lemma proved
on page 170 in [1]. '

ProoF oF THEOREM 1. Let .# denote the family of all non-void
closed and convex subsets of K, each of which is mapped by T into
itself. Then by the result of Smulian as in [1] and Zorn’s lamma it
follows that .# possesses a minimal element, which we denote by G.

Let xe G,, by Lemma 1 G, is non-void. Also for yeG,

IIT(w)—T(y)llé—é—llx—T(x)llJr%lly—T(y)l!+—i¢llx—yll

é%sup [le—y||+sup llly— Tl
ved 3

ye@G.

=0.6)=0(3) .
Therefore T(G) is contained in a closed sphere S centered at T(x) and
radius o(G). Hence T(GNS)cGNS and therefore by minimality of G,
we obtain GcS. Hence for ye G, || T(x)—y||=p0(G).

(1) gggllT(x)*yllép(G)

Now
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orw(@)=sup 21| T@) ~y | +sup 2~ T |

therefore
(2) oria @)= 208N sup 12=TANL by (1)
Also

sup IIZ—g(z)ll :&i‘;"é’%”z_T(z)”J“sz?? ”2—31(2)”

ze@

gDE)G) +sup ”z—g'(z)”, by condition (ii)

ze@

_ sup =2l | o lz=T@]]
B R R
So
§ECI;) ”z—g,(z)” észlel(? ”z;w”_}_igg”u;{l)”+sz2£”z_—911(2)ll
=sup 2|z~ llz=T@)1
=sppleritan T
_ 0/G) _ 0@G)
s 3

Therefore from (2) we have p,,(G)=<po(G), which implies that 0,.,(G)=
0(G) i.e., T(x)e G,. Hence T maps G, into itself.

We now show that if G contains more than one element, then G,
is properly contained in G. Suppose on the contrary G,=G. Then
for z, ye G,

0(@)=0,(G)=p(G) .
hence
sup ||z —y||=sup [ly—u] for z,yeG .

This implies that sup,.;||c—u||=M, a constant, for all xe G. Hence
D(G)=sup,,ucq l|lx—u||=M, where D(G) is the diameter of G. This in
turn implies that sup,.q||T(x)—«]|=D(G). Again,

éDéG)+D(6G)+Dg’G) =2D§G) by condition (ii)

Again by arguments similar to that in obtaining (1), it can be seen
that sup,.q || T(x)—v]||<(2/8)D(G) which contradicts (3) because G con-
tains more than one element.
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Hence we conclude that if G contains more than one element; then
G. is a proper subset of G. But because of (ii) this contradicts the
minimality of G. Hence G contains one element. Since 7T maps G
itself therefore T has fixed a point in K.

The uniqueness follows from the argument given below:

Let T(x)=« and T(y)=y where z, yc K. Then.

17@) - 1) | =3 llo— T@ 1+ lly—T@) I+Elo— ]
therefore
211 7@)— T | =L o — T@) 1 +-L 1y — Tw) 1 =0
3 -3 3

from which we get T(z)=T(y)=x=y.

THEOREM 2. Let K be a mnon-void, bounded, closed and convex
subset of a uniformly convex Banach space X. Let T be a mapping
of K into itself such that

(1) 1 T@)—-TwI=lle=T@)I8+ly—T@) I/3+le—yll/8 and (ii)
SUp,.q ||2— T(2) || < D(G)/2, where G is any non-void conver subset of K
which is mapped into ttself by T. Then the sequence {x,}, where
Tpi1= (o + T(2,))/2, converges to the fixed point of T in K, where x, is
any arbitrary point of K.

Proor. We know that T has a fixed point in K (by Theorem 1).
Consider the sequence {x,— T'(z,)}. There are two cases to be con-
sidered.

Case 1. 3 an ¢>0 such that ||#,—T(z,)[|>¢ for all n>N. Let
ye K, and Ty=y. Now
@ —y)—(T(x.)—v)l|=ll2s— T(@)||=¢ for n>N .
Since X is uniformly convex and z,€ K the»refore we have

e+ T) y+Tw))|
2 2 |

<é max(||e.—yll, || T(@)— T@)|) >N, 0<6<1

l@0si—yll=

Now |
17@) ~ Ta) ISl T@) 1+ |y = T@) [+ [~ I
Therefore,
17@) T[S +lz.~y [1+-21 T@)— T@) 1+ 5.~y

from which
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(4) 1T@)— T 1=z —vll
Hence
@i —y||S0]|@.—yll, >N, 0<o<1

Therefore {||x,—¥|[}, for n> N is a monotonic decreasing sequence which
tends to zero as n— . Hence lim,_., #,=vy, which proves the theorem
in this case.

Case 2. 13 a sequence of integers {n,} such that
lim ||, — T | =0
Now
(5) [1T(ww)— T(xne)ll<~—HT(wnk) T ||+ HT(wn) T, |+ Hwn,, @, ||
Also
(6) %—Ilwnk—wnellééﬂwnk T(wn,) 1+ HT(wnk) T(wn)H+—HT(xn,,) o, ||

Combining (5) and (6) we get as n,—c and n,— o
lim || T(@,,)— T(,,)[|=0

Ry g—r00

Therefore {T'(x,,)} is a Cauchy sequence and hence it converges to u
say. So that lim,.,x, =lim,.. T(z,)=u. Also

1106 T() | 1|t |+ (|50, — T@a) |+ | T(@) — Tat) |
_s_nu—xn,,n+nxn,,—T(x"k>fl+§||T<xnk)—xnkll

1 1
+§IIT(u)—uII+—3—Hxn,,—uH
for each £>0. From which we infer that T(u)=u. Also

g == |2t L) ut 16|

%nxn—un%n T(2,)— T(w)]|

but ||(x,)— T(w)||<||#,—u]|| from the same argument as in getting (4)..
Therefore ||, —u||<||#,—u|. Now because of lim,_., x,, =u, we have
lim,_.. ,=% which proves the theorem in Case 2.

THEOREM 3. Let X be a uniformly convex Banach space and let
T be a mapping of X into itself such that
(1) 1T —-TW) =13 T()— T@)+1/3|ly— T || +1/3|lx—y|| and
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() sup,eelly—TW)=D(G)/2, where G s any non-void convew
subset of X which is mapped into itself by T. Then if T has a fixed
point w in X, the sequence defined by x,,,=1/2(x,+ T(,)), where x, is
wn X, converges to u.

PROOF. Consider the set K fre X: [lu—=z]||<d, for d=|lu—=x,|}.
If ye K, then we get

1T@) —»lI=l T()— TW) || =|ly—ul|
by argument similar to that in obtaining (4). Hence
I Tw)—ull=lly—ull=d

In other words T(y)e K. Also K is non-void, bounded, closed and
convex. Therefore by Theorem 1, T has a unique fixed point in K
and by Theorem 2, the sequence {x,} converges to the limit w, which
proves the theorem.

THEOREM 4. Let X be Bamnach space and %, an arbitrary point
of X. Let T be a mapping of X into itself such that

nT(x)—T(y)Hg%nx—T(x)n%uy—T(y)n+§ux—yn

Jor x, ye X.
Then if the sequence {x,}, where %,.,=(x,+ T(x,))/2 converges to u,
then w 1s a unique fixzed point of T in X.

Proor. We define an operator 7, as follows: Let Ti(x)=(1/2)x+ -
(1/2)T(x). Then T, maps X into itself and the sequence {,} becomes
the sequence of iterates of %, by 7. Now for z, ye X we have

170 - T =22 2 1w - T

g%:y—”Jr%Hx—T(w)lH%lly—T(y)ll

Hence
| @ass— Ti(w) | <] Ti(wn) — Tu(w) ||

2llocn3 ull [ 1 6”% Tl(x,,)||+%||u—T1(u)H

g%lm—un+%ll¢ﬂ—xﬂ+lu+%nu~xn+ln+%nxm—ﬂ(u)ﬂ
from which we get

Ll Tl =2 2 ou—ull+3 ux,,—xm||+%llu—x,.+ln
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Since lim,_.. ,=u, the above inequalities imply that «=T.(u), so that
u=(4/2)+ (1/2) T(w), which in turn implies that w=T(u), and the proof
of the theorem is complete.

THEOREM 5. Let {g9.} be sequence of elements in a Banach space
X. Let u, be the unique solution of the equation w— T(u)=g, where
T is a mapping of X into itself and T satisfies the following condition:

HT(a:)—T(y)HS”x—T(x)” +”?I—T(?/)”_|_”x—’!/” z,yeX
= 3 3 ’

3

If ||g.]]—0 as n— o, the sequence {u,} converges to the solution of
u=T(u).

ProoOF. We have
”un—umlléllun_ T(’ll/,,,)”+“ T(un)— T(um)ll+ll T(um)_um”
gngﬂn%nun—T(un)||+—;—uum— Ta) [+ 11ttt 9|

Therefore

2 Hgall | llgall
Ay =t || | g ||+ D Inll . HImll 4 g
3” I=llga.ll 3 3 gl

and hence {u,} is a Cauchy sequence in X, and therefore it converges
to some uwe X. Also

= T |l =y 1+t = T [+ 1| T() = T |
Sl |11 gu 1+ 1t — T 143 1= T 4= u]

Therefore
Zjju— T | =S llu—uall+llo. 1l

V n, taking limit as n — c we see that w=T(u) which completes the
proof of the theorem.
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