Comment. Math.
Univ. St. Pauli
XXI1—-2, 1972

General theory of Flow-Charts

by
Ken HIrROSE and Makoto OYA
(Received October 2, 1972)

§ 0. Introduction

In the present paper, we are concerned with the theory of computation.

Many results in the theory have been obtained by J. McCarthy,
7. Manna, E. Engeler and others (e.g. [5], [6], [7]).

We propose a formalization of “algorithm”. Thus, in §§1~4, we
give a formalization of “flowchart”, and “program”, and prove that the
class of “programs” is isomorphic to the class of relative partial recursive
procedures. In §§5~8, we define some concepts and prove some results.
The main result (“Normal Form Theorem”) is proved in §8. Normal
Form Theorem asserts that any program written by any language is
reducible to an equivalent program which has at most one loop. The
proof is given effectively. Furthermore, we make mention of the de-
cidability of the equivalence between “loop-free programs”.

§1. Flowcharts

In this section, we shall define “flowchart”.

1-1 Symbols are: '

variable symbols: @, 2, <+, Yy, Yo, ***

function symbols: fi, fe, <°

predicate symbols: 2, s, +**
logical connectives: V, 7

logical constants: T, F
auxiliary symbols: (,),>
object symbols

assignment: :TE:I
T

decision

entrance: C?
exit: (5

connector: = (g

55

F

56 K. HIROSE and M. Ova

To each function (or predicate) symbol, there corresponds a natural
number n (n=0). And in this case, it is called an n-ary function (or
predicate) symbol. v

0-ary function symbols are called individual constants (or simply
constants). 0-ary predicate symbols are called propositional constants.

Function symbols and predicate symbols are called operation symbols
and the set of operation symbols is denoted by Op.

1-2 We define terms as follows:

(i) A variable symbol is a term.

(ii) If f is an wm-ary function symbol and ¢, ..., ¢, are terms
(n=0), then f(¢, -+-,t,) is a term.

(iii) The only terms are those given by (i) and (ii).

1-3 Formulas are defined by following (i)-(iv).

(i) T and F are formulas.

(ii) If p is an n-ary predicate symbol and %, -.-, ¢, are terms
(n=0), then »(t, +--,t,) is a formula. '

(iif) If A and B are formulas, then so are (4)\V(B) and 7 (4).

(iv) The only formulas are those given by (i)-(iii).

Formulas given only by (i) and (ii) are called atomic formulas.

Note: These correspond to “open formulas” in the first order lan-

T T T T
&L

Fig. 6
Fig. 8 Fig. 9 F

i-4 Now, we shall define flowcharts (or procedures) inductively as
follows: :

(i) Fig. 1 is a flowchart.

(ii) If Fig. 2 is a flowchart, then so are Fig. 3, Fig. 4 and Fig. 5,
where A is a formula, x is a variable symbol and ¢ is a term.

General theory of Flow-Charts 57

(iiiy If Fig. 2 is a flowchart, then so is the figure obtained by
putting a connector (called the chief connector) on a line in Fig. 2 and
adding an arrow from an exit to the connector. E.g. Fig. 6.

(iv) The only flowcharts are those by (i)-(iii).

Flowcharts given only by (i) and (ii) are said loop-free flowcharts
and flowcharts given only by Fig. 1 and Fig. 4 are said simple flowcharts.

The figures Fig. 7, 8,9, 10 and 11 in the flowchart are called atoms.
If two atoms have the same figure but are located in different places,
we consider they are distinct. The set of all atoms of S is denoted by
Atom(S). And the set of all exists (< Atom(S)) is denoted by Ex(S).

In the following line, to save labor, we shall use some abbreviations
(For example; parenthesis, arrows, T, F, etc.).

§ 2. Interpretations

2-1 An interpretation I for OP consists of the following things:

(i) A nonempty set |I].

(ii) For each m-ary function symbol f, an =-ary total function
felI|"—|I].

(iii) For each n-ary predicate symbol, an n-ary total predicate
P |I|"—{T, F}.

A 0O-ary function means a fixed element of |I|, and a 0-ary predicate
means value T or F.
2-2 Let S be a flowchart and I an interpretation. The pair (S, I) is
called a program (or an algorithm).
2-3 If I is an interpretation for Op, the pair (Op,I) is called an
ability.

§ 3. Semantics of programs

3-1 Let u be a term, a formula or a flowchart. By Var(w), we mean
the set of all variable symbols which occur in u. If Var(u) C{x, «--, .},
we use I, --+, %, as variables through |I| corresponding to z, +--, x,
respectively.

Note: =z, -+, %, are used as syntactical variable which vary through
variable symbols.
3-2 Let t be a term, and assume Var(t) C{x, -+, ®,}. We define an
n-ary total function I() on |I| as follows:

(i) If t is =x;, then I®)(x,, +--, Z,)=2;.

(ii) If ¢t is f(t, ++-,t,), then

I(t)(if:l, °t En) =fI(I(t1)(§1, % ﬁn)’) I(tm)(ﬁh) :f,”)) .

3-3 Let A be a formula, and assume Var(4) C {x,, «+-, z,}. We define
an n-ary total predicate I(A) on |I| as follows:
(i) If Ais T, then I(A)Z, +--,Z,)=T. If A is F, then I(A4)

58 K. HIROSE and M. Ova

(®yy o+, Z,)="F.
(ii) If A is p(t, «--,t,), then
I(A)@,, « - -, B) =PI @y + o0, Ba)y » o0, IEn) @y <o+, 7))
@iii) If A is BVC, then
K@, +++, 5)=H(B)G, -+, &), [C)@, -+, T))
(where H (T, T)=H (T, F)=H,(F, T)=T and H,(F, F)=F). Similarly
for 7 B.

3-4 Let (S,I) be a program. Let ,, .-+, 2, be an arbitrary set of
variable symbols such that Var(S) c {z, +--, 2,}. We shall define func-
tions ®: |I|*—|I|* and &: |I|*— Ex(S) which explain the move of (S, I).

In the first, we define : Atom(S) x| I|*— Atom(S) x|I|* as follows:
for (%, +++,%,) € I" and a e Atom(S);

(i) If a is as in Fig. 7 or Fig. 8, v(a, Ty, +++, T,)=(a’, &y, * -, &,)
(where a’ is the next atom along the arrow from a).

(ii) If @ is as in Fig. 9, ¥(a, &, +++, T,)=(a, T, +++, T,).

(iii) If o is as in Fig. 10,
(aTy ‘l‘-c.l) %y %n) if I(A)(iia M) ﬁn) ’
V@, @y e, 2= (ap, Ty, +++, ¥,) otherwise ,

where a, is the next atom along the arrow from 7T of a and a, is that
along the arrow from F of a.

(iv) If a is as in Fig. 11 and z in Fig. 11 is z;,
"l’\(a’: @l’ 0y :—v_n)z (CL’, ﬁlr c ﬁi—l; I(t)(ﬁl’ ey in% £i+17 ct 9—3”)
where o' is the next atom along the arrow from a.
Next we define p: Nx|I|*— Atom(S) x|I|* as follows:
{¢(0’ HAER) *y E.,,,)I(GO, ﬁu cty xn)
¢(k’} il’ ** " f'n):"l,\(q)(k, 51) b ', ﬁn)) b

where a, is an entrance in Atom(S), k¥’ is the successor of k (i.e. ¥’ =k+1)
and N is the set of all natural numbers. _
And we set h(Z,, «--, &,) = pkl(Pk, T, «++, &,)), € Ex(S)]; where
the least & such that P(k), if 3kP(k)
HEP(R) = {undeﬁned, otherwise ;

and (V),=v, for V=(v, v, +++, v,).
Now we define @ and ¢ by

")h\(h’(fly °t i’n)) Xy, o y En)):(s(zh) 9_3n), (D(Ely) ﬁn)) .

Sometimes we write ®,; instead of ®. From this definition, we
have the next lemma.

General theory of Flow-Charts 59

LemMA 1. If |I|=N, then € and ® is partial recursive in R(I);
where R(I) is the set of the functions and predicates which correspond
to operation symbols by I.

Note: In the case |I|+#N, we also have Lemma 1 if there is a
suitable Godel numbering.

§4. Computable functions

4-1 Let (S,I) be a program. Assume that eec Ex(S) and Var(S)C
{2, ++-, 2,}. Let @ be a k-ary partial function on |I| (k=n).

We say (S, I) computes ® at e with x; as the principal variable sym-
bol and =, ---, 2, as input variable symbols if for all (&, ---,Z,)€e|I|",

(i) 8(517 e, T)=e= (T, o0, x,) € Domain(cp) and

(i) e@, .-, Z,)=e= (O, ---, En))i~1=¢(§1, oo, Ty
4-2 Let @ be a k-ary partial function on D and R be a finite set of
total functions or total predicates on D. We say @ is computable in
R, if there exist a program (S, I) and a set {x,, -+, «,} such that D=|1I|,
R=R(I) and Var(S) c {z, --+, 2,}, and for some eec Ex(S) and some &,
(S, I) computes @ at e with x; as the principal variable symbol and
%, + -+, &, as input variable symbols.

By Lemma 1 and the definition, we have the next theorem.

THEOREM 1. In the case |I|=N, if @ is computable in R, then @
1s partial recursive in R.

And conversely:

THEOREM 2. If @ is partial recursive in R, them @ is computable
wn R U { "(successor), 0, =}.

Proof. Each schema used to define ¢ recursively from R can be
easily translated into programs.

§ 5. Termination, correctness and equivalence

5-1 (a) We say a program (S, I) terminates at e (ec Ex(S)) for
(B, oo+, Tp)y if &(Fyy ooe, T,)=e.

o) (S, I) terminates for (%, «++, %,), if (S, I) terminates at some
e € Ex(S).

(e) (S, I) terminates, if (S, I) terminates for every (z, --, x,).

(d) S terminaters, if (S, I) terminates for all interpretation I.
(@)~ (d) are denoted by Ter(S,I,e, %, +++,%,), Ter(S,I, %, +++,%,), Ter(S,I)
and Ter(S) respectively.

Generally, (a)~(d) are not decidable. That can be easily shown.
E.g., we assume |I| contains the set of all flowcharts and elements
0,1, and define

60 K. HIROSE énd M. Ova

0 if Ter(S, I, %) ,

P 8)= 1 otherwise .

(Here, we are using Ter(S, I,) instead of Ter(S, I, %, --+, %) with n
Z’s as an abbreviation, where 7 is the number of Var(S).) Then we
have

THEOREM 3. @ is not computable in R(I).

Proof. Assume @ is computable in R(I). We set +(x)=9(%, %).
Clearly, «+ is computable in R(I). Then there exists a program (F, I)
which computes +» with 2z as the principal variable symbol (Fig. 12).
We make a flowchart U as Fig. 13.

T =
F F
U
s o
F
D J
Fig 12 Fig. 13

Then, for any S,
Ter(S, I, S) = @(S, S)=0 =4 (S)=0=2=0= 7 Ter(U, I, S) .
Now, put S=U,
Ter(U, I, U) = 7 Ter(U, I, U) .

We get a contradiction.

5-2 Let (S, I) be a program. Assume that Var(S)c{x, ---, «,} and
ec Ex(S). A predicate P(Z, -+, %.; ¥, **+, ¥s) 18 said to be correct
w.r.t. (S, I) and e, if

P(Ely Ty X, ?71’ M} gn)‘z’a(wn R xn)Ze & (I)(Eu 0y @n):(?—ju M) g‘n) .

If S has only one exit, we do not mention about e.
5-3 Let (S, I) and (S, I) be programs. Assume

Va/r(Sl) c {wly soty Ly Yy o0y y’n} ’ VCW'(SZ) c {wl, tety Lpy By vty zm}

and {y, «++, ¥} N {2y, *++, 2.}=0 (empty)

(a) We say (S, I) and (S,, I) are equivalent (denoted by (S,, I)~
(S,, I)) if there exists one to one correspondence M between Ex(S,) and
Ex(S,), and for every Z,, <+, Ty, Fi*) Yu, 21, **) Zm

_ _ _. M _
8(271, oo Tpy Yy o0, ?/,,)*——’8((1?1, coe Ty By, v o0, zm)

General theory of Flow-Charts 61

and
((I)(Slyl)(zlr ceey Ty Yoy o0, yn))i: (q)(SpI)(a_’l’ cee, Ty, Eu 0t 2‘m))i
(for all 0e<k) .
(b) If (S, I)~(S., I) for every interpretation I, we say S, and S,
are equivalent (denoted by S,~S,).
Note: Equivalence does not depend on a choice of

{xly ey Ly Yiy 0, yn} or {xly sty Wy By 000y, zm} .

5-4 If P} is correct w.r.t. (S, I) and e¢;, and if P} is correct w.r.t.
(S, I) and M(e;), then (S;, I)~(S,, I) if and only if P} < P} for all 1.

§ 6. Loop-free programs

6-1 Let w be a term, a formula or a flowchart. Assume Var(w)C
{#), +--, 2,}. We use u,.., (¢, «++,%,) to designate the expression ob-
tained from w by replacing each occurrence of x; by t; for 1=1, .-, n.
And we use t to designate an n-tuple of terms (¢, -, ¢,).

6-2 Let L be a loop-free flowchart. Assume Var(L)C{x, «--, z,}. To
each ec Ex(L), we shall define inductively the representing set of
e, {(4,t), *++, (An, tn)} (where A, ---, A, are formulas and ¢, +--, ¢,
are n-tuples of terms);

(i) For Fig. 14, {T, (x, -+,)}

(i) For Fig. 15, if the representing set of e is {(A4,,), «++, (An, tm)}
and that of f is {(B, s, *++, (B, sy}, then;

(a) For Fig. 16, the representing set of ¢ is {(A4, t]), <+, (An, th)}
where ¢ is the n-tuple of terms obtained from ¢; by replacing (¢,);_, by
(P (A H

1 (b) For Fig. 17, the representing set of e, is

{(ANCopa, (), 8, ooy (AnACays (En), Tw)}
and the representing set of e, is
{(AAN T Copog (8), 80), = oy (AR A7 Copoa (Bn),)} 5
(¢) For Fig. 18, the representing set of ¢ is
(A t), +++, (An, ta)y (B), -+, (Biy 8} -
6-3 Let (L, I) be a loop-free program. Assume Var(L)C {w, ---, 2.}
and e¢c Ex(L).
If the representing set of ¢ is {(4,, t), +++, (4., tn)}, We set
(i) I(AV «++ VA,)(E) and
(ii) I(A)(E) = n=1I(t:)()

(for all i=1, -+, m) ;

PinEn) =

where S:(@l, tt ﬁn)? 772(?711 'v"?-j'n)-

62 K. HIROSE and M. Ova

T T
LT (4] [4
I EL

Fig. 15 ws:

Fig. 14

Fig. 16 Fig. 17 Fig. 18

Note: (A, t), ++-, (A,, t,) correspond to paths from the entrance
to e. Let p, .-, p, be these paths respectively. Then, (i) means
€()=e and (ii) means that the output from e is 7 for input & if the
control passes p;.

THEOREM 4. P, is correct w.r.t. (L, I) and e.

Proof. By the similarity of the definetion of ¢ and ®, and that
of the representing set.
6-4 From 6-3, every loop-free flowchart with exits e, ---, e, is equiva-

lent to a flowchart in the following form (Fig. 19). Where [_| is a
simple flowchart. |

©{ E}i;} | L

Fig. 19

Note: (a) corresponds to A,V -+ VA, in 6-3, (b) to 4, ---, A,,
and (c) t, +«-, tpe

Note: The order of e, «--, e, is inmaterial.
6-5 A loop-free program seems very simple. However note that the
class of loop-free programs is determined by given ability.

General theory of Flow-Charts 63

For example, consider a number theoretic function @(x, y)=2-y. If
given ability has function -, there exists a loop-free program which
computes ®. But, if given ability has only function + and predicate
=, there is no loop-free program which computes ®.

§ 7. The class FC

7-1 Let S be a flowchart. Assume ac Atom(S). The sub-flowchart
beginning at a is the sub-flowchart of S consist of atoms which we can
reach from a passing arrows one after another (independently of the
contents of atoms), and of arrows between them. (In the strict sense,
it is the flowchart obtained by adding an entrance to that figure and

s S:
SOCOO O OO
e res

-

Fig. 23

64 K. HIROSE and M. OvaA

taking away some useless connectors.)

| is the sub-flowchart beginning at a.

For example, in Fig. 20,
7-2 We shall define inductively the class of flowcharts FC as follows:

(i) Every loop-free flowchart belongs to FC.

(ii) If Fig. 21 and Fig. 22 belong to FC, then Fig. 23 belongs to
FC.

(iii) The only flowcharts in FC are those given by (i) and (ii).

THEOREM 5 (Enumeration Theorem). For every flowchart S, there
exists a flowchart S* such that:

1) S*eFC and

(2) S~8S*.

Proof. To examine the definition of flowcharts in 1-4, it is easily
shown that every flowchart can be generated by applying (i) and (ii)
at first, and by applying (iii) afterwards. So, the proof completes if
we show that the rule (iii) in 1-4 is modified into the rule (iii) in the
above definition of FC.

First, regard S, just as S in 1-4 (Fig. 2).

In Fig. 6, let ¢ be the chief connector and let ¢ be the next atom
toc. We assume a is not ¢, since the case a=c is trivial one (Consider
S. is empty or Fig. 1.). Then « is in S. Now, in Fig. 2, take the
sub-flowchart beginning at a (Strictly, the flowchart of the same figure
as it; i.e. its copy.). Regard this as S,. Then Fig. 238 with a suitable
connection is equivalent to. Fig. 6.

S* (e FC) may be definable in various ways of applications of (i)
and (ii). The least number of times of applications of (ii) enough to
define S* is said the rank of S* (denoted by rank(S*)).

§ 8. Normal form

8-1 First, we prepare Lemma 2. We often use this lemma without
mentioning in the proof of Theorem 6.

LEMMA 2. Let S be a flowchart and a be an arbitrary decision in
Atom(S). Then S is equivalent to S’ which is in the form obtained
from the form of S by exchanging T and F of a.

Proof. Assume that a is Fig. 24. Then we get S’ from S by

T @ F
F T

Fig. 24 Fig. 25

General theory of Flow-Charts 65

replacing o by Fig. 25.
8-2 Let L, L, L,, --- be loop-free flowcharts.
We say S is in normal form if S is in the form Fig. 26.

Fig. 26

THEOREM 6 (Normal Form Theorem). For every flowchart S, there
exists a flowchart in normal form which is equivalent to S.

Proof. By Theorem 5 it is sufficient to consider S € F'C. We prove
by induction on the rank of S. In the case rank(S)=0, then S is a
loop-free flowchart and the theorem is trivial. So we assume that
rank(S)=r>0 and the theorem is true for each flowchart whose rank<r.

Fig. 27 Il g,

Fig. 29

66 K. HIROSE and M. Ova

T
4 L, L,
F
T
B L,
T
<A L }- F
/ F
L5
L5
Fig.‘ 30 Fig. 31
LS

By Theorem 5, S is equivalent to Fig. 27 where rank(S,) <r and
rank(S,) <r.

In the first, we change Fig. 28 into normal form. By the as-
sumption of our induction, Fig. 28 is equivalent to Fig. 29. By 6-4,
we can consider that L, is in the form Fig. 30. So Fig. 29 is equivalent
to Fig. 31. And we have Fig. 32 using the disjunction of A and B.
Fig. 32 is in normal form.

Next, by the assumption of our induction, from Fig. 27, Fig. 32 and

General theory of Flow-Charts 67

Lg
> 1 e
L4
Wy, oo Y)i=@y, o0,y
L2
F
Qv L,
T
T
AI
F
(:!:1, ~~-,:cn):=
Wy e ¥y

6-4, S is equivalent to Fig. 33, where A, B, C, L,, -++, L; are used as
new names. Let Var(4)={x, ---,x,} and y,, +--, 9, be variable symbols
not occurring in Fig. 33. And let A’ be A4,,...., (¥, *+++, ¥.)- Then Fig. 33
is equivalent to Fig. 34 and Fig. 34 can be written in the form Fig. 35,

68 K. HIROSE and M. Ova

where A, B, L,, ---, L; are used as new names. '

Let Var(4) U Var(L,) U Var(L)={, +++, x,}. Let y,, +--, y, be vari-
able symbols not occurring in Fig. 35, and let A’,L’, L. be Asova, Uiy * 3 Ya),
Lo Wy o2+, Ua)y Lo, .., (4, +++, ¥.) respectively. Then Fig. 35 is e-
quivalent to Fig. 36. Fig. 36 is in normal form.

§9. Application of Normal Form Theorem

9-1 Let (F,I) be a program. By Theorem 5, F is equivalent to a
flowchart S in the form Fig. 26.

Assume Var(S)c{z, ---,%,} and ec Ex(S). We define Py as
follows:

Prn(En) = @0, 7, «--, 77k)[P(Ll,I)(E; 7) &
V)il A1) & Pion (i 7i1)} & 7I(A)) & Prryr(is)] (cf. 6-3) .
THEOREM 7. P, is correct w.r.t. (F,I) and e.

Proof. By Theorems 4, 6 and the definition of correctness.

Note: The above gives another proof of Theorem 1.

Note: Similarly we can easily get a predicate correct w.r.t. a
program by Theorem 5.

Note: By the definition of P, and Theorem 2, we obtain the
following proposition: For every recursively enumerable predicate
ER(a,, -+, a,), there exists a diophantine predicate D(k, a,, - -, ., %)
such that

R(al., °t a’n) = (gy)(Vk)k<yD(k, Qpy o0y Oy, y) .
This is well known result by M. Davis [1].

§10. On the equivalence of loop-free programs

10-1 Let A be a formula and I be an interpretation. Assume
Var(A) c {x, -+, x,}. We define:

A is valid in I if I(4)(Z,, +--, Z,) for all T, -+, %, e|I|.

A is valid if A is valid in every interpretation.

An interpretation by which a predicate symbol = corresponds to
“=" on |I| is said a structure. ’

A is s-valid if A is valid in every structure. Flowcharts S, and
S, are s-equivalent (denoted by S,~ S, if (S, I)~(S., I) for every
structure I.
10-2 If L is a loop-free flowchart and I is a structure, we can rewrite
P, as follows:

() Pun(1) = AV - VAIA A (Ai=Y=t)]E 7).,
where Y=(y,, ---¥,) (cf. 6-3).

General theorem of flow-charts 69

So we have,

THEOREM 8. If I 4s a structure, for loop-free programs (L, I)
and (L, I), it can be constructed a formula A satisfying

(Lyy I)~(Ly, I) = [A s valid in I].
Proof. By 5-4 and (x), we can easily construct such A.

COROLLARY 8-1. For loop-free flowcharts L, and L, it can be
constructed a formula A satisfying

L~ Ly=[A is s-valid] .

COROLLARY 8-2. For loop-free flowcharts L, and Ls,,
(1) L,~ L, ts decidable.
(2) L,~L, ts decidable.

Proof. (1) “A is s-valid” is decidable (see [2]).

(2) Immediately from (1).

10-3 We introduce concept of “axiom” to extend these results.

Let T be a set of formulas called axioms. A structure I is said
I'-model if every axiom of I' is valid in I. A formula B is I'-valid if
B is valid in every I'-model.

Flowcharts S, and S; are TI-equivalent (denoted by S, S, if
(S, I)~(S,, I) for every I'-model I.

Now, we have

COROLLARY 8-3. For loop-free flowcharts L, and L,,
L, ~ L,~=[A is TI'-valid] = [A is provable in I'] .

Proof. From Theorem 7 and Godel’s completeness theorem [2].
Hence, we can get some results from model theory or proof theory,
for example, from Herbrand’s theorem [2].
10-4 Conversely to Theorem 8,

THEOREM 9. For a formula A, there exist loop-free flowcharts L,
and L, satisfying

€

Fig, 37

70 K. HIROSE and M. Ova

(A is valid in I) < (L, I)~(L, I) .

Proof. Set L, and L, as follows:
10-5 From Theorems 8 and 9, we can say the validity of open formulas
is equivalent to the equivalence between loop-free programs.

Following applications of this result are about undecidability.

THEOREM 10. For some T, it is undecidable whether L, ~ L, or not
for given loop-free flowcharts L, and L,.

Proof. By Theorem 9, for any formula A, there exist loop-free
flowcharts L, and L, satisfying

[A is provable in I'| = L, ~ L, .
However, the left half is undecidable [2].

THEOREM 11. Assume an ability (Op,I) as follows: Op={0,1,+,+,=},
|I|=Z (the set of all integers), and interpretation I gives natural mean-
ing to each element of Op. Then, there is no algorithm that determines
whether (L,, I)~(L,, I) or not for given loop-free programs (L, I) and
(Ls, I).

Proof. By negative solution of Hilbert’s 10th problem [4], there
is a Diophantine equation D=0 having no algorithm that determines
whether any solution D=0 exists or not for given coefficients of D.
Consider D=0 as A in Theorem 9. Then,

(D=0 is identically true) < (L,, I)~(L,, I)

(where L, and L, are loop-free flowcharts determined by coefficients of
D). Hence,

(D=0 has some solution) < not [(L,, I)~ (L, I)] .

So, if whether (L, I)~(L,, I) or not is decidable, then whether

D=0 has any solution or not is decidable. That contradicts to the
assumption of D.
10-6 The operation . (product) in Theorem 11 is very important. If
given ability has only 0, + and =, then equivalence between loop-free
programs is decidable. In fact, it is well known that it is decidable
whether given formula that has only + and = as operation symbols
is valid or not.

Acknowledgement. The authors should like to express their cordial
thanks to Professor T. Simauti for his useful advices and discussions.

References

[1] Davis, M.; Computability and Unsolvability. McGraw-Hill.
[2] SHOENFIELD, J.; Mathematical Logic. Addison-Wesley Publ. Co.
[8] KLEENE, S. C.; Introduction to Metamathematics. Van Nostrand.

[4]
[5]

[6]
[71
[81]

General theorem of flow-charts 71

MATIJASEVIC, Ju. V.; Enumerable sets are Diophantine. Soviet Math. Dokl., 11 (1970).

MCCARTHY, J.; Towards a mathematical science of computation. Proc. of IFIP 62
(1963).

MANNA, Z.; Properties of Programs and the First-Order Predicate Calculus. J. of A.
C. M., 1969.

ENGELER, E.; Structure and Meaning of Elementary Programs. Symposium on Se-
mantics of Algorithmic Languages, Springer-Verlag, 1970.

HirosE, K. and OYA, M.; Some Results in General Theory of Flow-Charts. Proceedings
of 1st USA-Japan Computer Conference, 1972.

