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Introduction. In this paper, we investigate two self-mappings S, T
on a complete metric space (X, d) such that the following condition
holds:

(A) d(Sz, Ty)<k(d(z, y)) max {d(z, ¥), d(z, Sz), d(y, Ty)}
where k is upper semicontinuous from the right on P—{0}, k(t)<1 for
all ¢ in P—{0}, and P={d(z, ¥); =, ¥ in X}.

In [1], D. W. Boyd and J.S. W. Wong proved that if X be a com-

plete metric space and let T: X—X satisfies '

(B) (T, Ty)<k(d(x, v)) ,

where %: P—[0) is upper semicontinuous from the right on P and
satisfies k(t)<t for all ¢ in P—{0}. Then, T has a unique fixed point y
and T"(x)—y for each z € X. We shall show that one need only assume
the condition (A).

A number of examples are given to show that the results do in
fact improve the results of Boyd and Wong [1].

THEOREM 1: Let S, T be two self-mappings on a complete metric
space (X, d), S or T be continuous on X and S, T satisfy (A). Then,
S or T has a fixed point.

Proof: For each z,€ X, we define a sequence {x,} recursively as
follows:

€, =%, , £,=S&) , B:=T(@s), *++, T2n=8@2n—1) » Tanrs=T(®ea)y +++ -
Let ¢o=0(@m) Tpi1)

Case I: There exists a positive integer m such that ¢,=0. Hence
S or T has a fixed point.

Case II: Suppose that ¢,>0 for all m>1. Hence we have
Con= (@0 Lzn11) =A(S(@20—1), T(:20))
<k(Csu_y) MAX {Con_1y Con_sy Can}
Hence | Con<Can_y +
Con—1=(S(@3n—1); T(X3n—2))
<k(Cyn_z) MAX {Con_sy Con_iy Cons}
Hence Con—1Can—z +
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Therefore {c,} is a decreasing sequence, and hence has a limit c.
But, if ¢>0, we have

c'n,+1 < k(cn)cn
so that
c< ling sup k(t)<k(c)<e
t—c
which is a contradiction. Hence ¢=0.
Now, we show that {x,} is a Cauchy sequence. Suppose that {x,}
is not a Cauchy sequence. Then, there is an s>0, and sequences of

integers {m(3)}, {n(¢)}, with m(?)>n(i)>1, m(i) is an odd integer, n(3)
is an even integer and such that

(a) A=A Xy Tui)>s for i=1,2, --- .
We may assume that
(b) @iy -1y Tniy) <8

by choosing m(¢) to be the smallest number exceeding (i) for which
(a) holds. Since

i <A@ misrs Tmiiy-1) F B iy -1 Tui) <Cminy—y +8< 0,45
Hence d,—s™, as i—
But now,

(¢) di=d@mnwy Tui)) <AL omis), Tiir +1) T A Eomiiy+1s Tt 41) + AL ne) 410 Znis)

<26, 4+ 5 A@ miirs Tatir)) MAXAD@mtirs Tatir)s W@ miiys Tmtar11)s FELcays Loy +1)}
Thus, as i—co in (¢), we obtain s<k(s)s<s, which is a contradiction
for s>0. Hence {x,} is a Cauchy sequence. We may suppose {z,} con-
verges to y. By hypothesis, let S be continuous on X and hence

{S(xsn_.)}={x.,} converges to S(y). Consequently S(y)=y. This com-
pletes the proof.

COROLLARY 1.1: Let S be a continuous self~mapping on a complete
metric space (X, d) and S satisfies (C)

(C) d(Sz, Sy)<k(d(z, y)) max {d(x, ), d(x, Sx), d(y, Sy)}

for all x#y in X, where k: P—{0}—[0 1) is upper semicontinuous from
the right on P—{0}. Then, S has a unique fized point y and S™(x)
converges to y for each x in X.

The continuity condition on S or T cannot be omitted entirely from
Theorem 1 as the following example shows:

ExamMPLE 1: Let X=[0 1] and let
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Lo if ze(0 1]
S(x)={3
1 if x=0
S% if ze(0 1]
T(x)=
2 if x=0
3

and
k(d):l-—-l‘% for all d in [0 1]
Then S and T satisfy (A) but S and T have no a fixed point. (note
that k(0)=1).
ExAmMPLE 2: Let X=[0 1] and let

Lo if xe(0 1]
S(x)=1{3
1 if x=0

T(x)

% for all ze[0 1]

and
k(ol):l—lﬁl6 for all d in [0 1]
then S and T satisfy (A), k(0)=1, T(0)=0.
ExAMPLE 3: Let X={1, 2, 3} and let
TW)=2, T@)=2, T@B)=1

and

kd)<1 for all d in (1,2} and k(d)>%

then T satisfies (C) and T"(x) converges to 2 for all 2=1,2 or 8 but
T does not satisfy (B).

Examples 2 and 3 show that Theorem 1 and Corollary 1.1 do gen-
eralize the results of Boyd and Wong [1].

If we omit the continuity on S and T and strengthen the function
k(d), we can obtain the following theorems.

THEOREM 2: Let S, T be two self-mappings on a complete metric
space (X, d) and S, T (S, T are mot necessary continuous on X.)
satisfy (D)
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(D) d(Sx, Ty)<k(d(x’ ¥)) max {d({l}, y)’ d(x’ Sx), a(y, Ty)}

for all x+y in X, where k: P—[0 1) is upper semicontinuous from
the right on P. Then, S or T has a fized point in X.

Proof: We define a sequence {x,} which is the same as in Theorem
1. Let ¢,=d(®m Tmsr)-

Case I: There exist a positive integer m such that ¢,=0. Hence
S or T has a fixed point.

Case II: Suppose that ¢,>0 for all m>1 and hence {x,} is a
Cauchy sequence. We may assume that {x,} converges to y.

Case 1: There exists a positive integer N such that z,,=y for all
n>N. Since ¢,>0 for all n>1 and hence d(x,,.,, ¥)>0 for all n>N.
If n>N, then
d(y, Ty):d(xzm Ty)zd(s(xm—l), T@/)
SE(A(@20-1y ¥)) MAX A(@on—sy Y), A(@onsy T20)y Ay, TY)} .
Let n—oo, we have d(y, Ty)<k(0)d(y, Ty). Therefore d(y, Ty)=0 and
Ty=y. ,
Case 2: There exists a subsequence {x.a,} of {x.,} such that Lon; 7Y
for all j=1,2, ...
Then,
d(y’ Sy)<d(y9 xan+1)+d(x2nj9 Sy)
‘ <d(y’ xznj+1)+d(Sy’ T(xZ'nj))
SAUY; Tanj41) +E(A(@2njp ¥)) max {d(Y, .4,)
d(y, Sy)r d(xznjy x2n5+1)} .
Let j—co, we have d(y, Sy)<k(0)d(y, Sy). Therefore d(y, Sy)=0 and
Sy=y. Combining Cases I and II, this completes the proof.

COROLLARY 2.1: Let T bev a self-mapping on a complete metric
space (X, d) and T satisfies (E)
(E) d(Tz, Ty)<k(d(z, y)) max {d(z, y), d(z, T), d(y, Ty)}

Sfor all x+y in X, where k: P—[0 1) is upper semicontinuous from
the right on P. Then, T has a unique fixed point y and T™(x) con-
verges to y for each x in X.

ExampLE 4: Let X={1, 2} and let
S1)=1 S@2)=2,
T1)=2 T2)=1,
and
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k(d):% for all d in [0 1]

then S and T satisfy (D) but S and T have no common fixed point
and S and T are continuous on X.

Example 1 shows that the property #k(0)<l cannot be omitted
entirely form Theorem 2.

THEOREM 3: Let S, T be two self-mappings on a complete metric
space (X, d) and S, T (S and T are not mecessarily continuous on X.)
satisfy (F')

(F) d(Sx, Ty)<k(d(x, y)) max {d(z, ¥), d(z, Sx), d(y, Ty)}

for all x, y in X. Then, S and T have a unique and common fixed
point y and the sequence {x,} converges to y, where the sequence {x,}
18 the same as in Theorem 1.

Proof: Case I: Suppose that there exists a positive integer m
such that ¢,=0, by (F), then ¢,=0 for all n>m. Hence S and T have
a unique and common fixed point y=u, and {x,} converges to y.

Case II: Suppose that ¢,>0 for all m>1, then ¢, has a limit 0
and {z,} is a Cauchy sequence, we may assume that the sequence con-
verges to y.

Therefore

d(Sy, ) <d(Sy, T(.4))+ A(@sn+1y )
<A Lzn11r Y) +H(A(F20, ¥)) MAX {A(Y, 220)
d(y’ Sy)9 d(wzm x2n+1)} .

Let y—oo, we have d(Sy, v)<k(0)d(y, S(y)). Hence d(Sy, y)=0 and
Sy=y. Similarly, we have Ty=y.

To prove the uniqueness of y. Suppose there is an z in X such
that S(z)=z with z#y then,

d(Sz, Ty)<k(d(z, y)) max {d(z, ), d(z, Sz), d(y, Ty)}

that is, d(z, ¥)<k(d(z, ¥))d(2, ¥) and d(z, y)=0. This is a contradiction.
Hence y=z and S has a unique fixed point y and the sequence {x,}
converges to ¥.

COROLLARY 8.1: Let S, T be two self-mapping on a complete
metric space (X, d). Suppose that there exist two positive integers p
and q such that S* and T satisfy (F'). Then, S and T have a unique
and common fixed point.

Proof: By Theorem 3, S? and T? have a unique and common fixed
point y (to say).
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Since
S7(Sy)=S8""(y)=S(5"(¥))=S(¥)
T(Ty)=T""(y)=T(T*(¥))=T(y)
Consequently S(y)=T(y)=vy. The uniqueness is clear.
COROLLARY 3.2: Let T be a self-mapping on a complete metric
space (X, d) and T satisfy (G)
(G) A(T(x), T(y)<k(d(z, y)) max {d(z, ), d(z, Tx), d(y, Ty)}

for all z, y in X, where k: P—[0 1) is upper semicontinuous from the
right on P, then, T has a unique fived point y and {T"x} converges to
Yy for each xec X.

ExamMPLE 5: Let X=[0 1] and let
S(a:)zﬁ6 for all « in [0 1]

T(x):s—”f) for all z in [0 1]

and

k(d):{’(T for all de[0 1]

Then S and T satisfy (F) and S and T have a common fixed point 0.
Examples 4 and 5 show that, in general, Theorems 2 and 3 are

different.

COROLLARY 3.3: Let S, T be two self-mappings on a complete
metric space (X, d) and S, T satisfy (H)
(H) d(Sx, Ty)<r max {d(z, y), d(z, Sz), d(y, Ty)}
for all x, y in X. Where 0<r<1l. Then, S and T have a unique and
common fixed point. '

CorOLLARY 3.4: (C.L. Yen [5] Theorem 1): Let S, T be two self-
mappings on a complete metric space (X, d) and S, T satisfy (I)
(1) d(Sz, Ty)<ad(z, y)+bd(x, Sx)+cd(y, Ty)
for all x, y in X. Then S and T have a unique and common fixed point,
'l:f a+b+0<17 a>0y b>0, 0>0-

COROLLARY 3.5: [R. Kannan [3] Theorem 1]: Let T be a mapping
of a complete metric space (X, d) into itself. Suppose that there exists
a number r in [0 1/2) such that

(J) d(Tx, Ty)<r(d(x, Tz)+d(y, Ty))
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for all x, y in X. Then T has a unique fixed point.

COROLLARY 3.6: [P. Srivastava and V.K. Gupta [4] Theorem 1]
Let S, T be mappings of a complete metric space (X, d) imto itself.
Suppose that there exists mommegative real numbers a, b such that
a+b<1l and

(K) d(Sz, Ty)<ad(x, Sx)+bd(y, Ty)

for all x, y in X. Then, S, T have a unique and common fied
point. '

C.L. Yen [5], Srivastava and Gupta [4] stated the corollary 3.4
and 8.6 in a more general form with S, T replaced by S?, T? for some
positive integers p, q.

When S=T, Theorems 2 and 3 are coincide.

ExaMPLE 6: Let X=[0 1] and let

x .
Bl f xe[0 1
Olw[)

S(a)=1{4
0 if =1
% if xe[0 1)
T(z)=
1 i e=1
3

and
k(d):% for all d in [0 1]
Then S and T satisfy (F), S# T and S and T are not continuous on X.
We consider conditions (L) and (M).

(L) d(Sz, Ty)< max {d(x, ¥), d(z, Sv), d(y, Ty)} if v=+y.
(M)  d(Sx, Ty)< max {d(x, ¥), d(z, Sx), d(y, Ty)} for all , ¥ in X.
ExaMpPLE 7: Let X=[0 1] and let

2 if xe(0 1]

S(z)=1{ 2
1 if =0
and
_g- if ze(0 1]
T(y)= 9
= if =0
3

Then S and 7 satisfy (L) and (M) but S and T have no fixed point.
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Even X is a compact metric space. However, if S and T satisfy the
condition (N).

(N) d(Sx, Ty)<d(w, y) if z+y.
Then we have the following theorem.

THEOREM 4: Let S, T be two self-mappings on a compact metric
space (X, d) and S, T satisfy (N). Then, S or T has a fived point.
More generally, we have the following theorem. '

THEOREM 5: Let (X, d) be a nmonempty compact metric space, Let
S, T be functions of X into itself, Suppose further that there exist
nonnegative real-valued functions b,=b,(, y), b,=by(w, ¥), bs=by(x, ¥),
b,=b(x, ¥), by=by(x, y) on Xx X—A, where A={(x, z): x € X} such that

(a) b,+b,+b,+b,+b,<1

(b) b,4+b,<1 and b,+b,<1

( c) bs=b,

(d) for any distinct x, y in X,

(0) d(Sx, Ty)<bd(w, Sx)+bd(y, Ty)+bd(x, Ty)+bd(y, Sx)+bsd(x, y) .

Then S or T has a fized point, If both S and T have fixed points,
then each of S and T has a unique fized point and these two fixed
points coincid.

We compare Theorem 5 with Theorem 4[9] as follows.

(1) In Theorem 4[9], one of S and T be continuous on X, yet in
Theorem 5, S and T are not necessarily continuous on X.

(2) In Theorem 4[9], all @, are decreasing functions, yet in Theorem
5, all b, are not decreasing functions.

(3) In Theorem 4[9], all a; are defined on (0 ), yet in Theorem
5 all b, are defined on XX X—A. (It is possible that b,(z, ¥)#=b,(y, x)
may be true but a,(d(%, y))=a,(d(z, ¥)).)

(4) In Theorem 4[9], @,=a,, yet in Theorem 5, b, does not neces-
sarily equal b,.

(5) In Theorem 4[9], a,+a,<1/2, a,+a,<1/2, yet in Theorem 5,
b,+b,<1 and b,+b,<1.

A number of examples are given to show that the results do in
fact improve Theorem 4[9].

The proof of theorem 5 is in K.J. Chung [8].

ExAMPLE 8: Let X=[0 1] and let

L it a—o0

S(x)=

% if ze(0 1)
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0 if y=1
T(y)= |
@) L ityepy.

Then it is clear that S and T satisfy the condition (0), S and T are
not continuous, 7'(0)=0 and S has no fixed point in X.

Example 8 does improve the result of C.S. Wong|[9].

In C.S. Wongl9], let a;=a,=0 then Theorems 1, 2, 3 and 4 in [9]
are four special cases by our Theorems 1, 2, 8 and 5 respectively.

‘THEOREM 6: Let X be a compact metric space and let S, T be two
self-mappings. S or T is continuous on X. S and T satisfy (P)
(P) d(Sz, Ty)<max {d(x, y), d(x, Sz), d(y, Ty)}
for all x=y in X. Then S or T has a fixed point in X.

Proof: By hypothesis, we may suppose that S is continuous on X.
Let

s=inf {d(», Sx); € X},
t=inf {d(x, Tx); x€ X} .
There exists « in X such that s=d(x, Sx).
Case I: If s=0, hence Sx=2, this theorem has proved.

Case II: If s>0, by compactness of X, there exists a sequence
{z,}< X such that

(Q) limd (x,, Tx,)=t.

If ¢>0, we may suppose that d(x,, Tx,)>0 for all n>1.
Therefore
(R) d(STx,, Tx,)<max {d(Tx,, *,), A(Tx,, STx,), d(x,, Tx,)}

=d(Tx,, x,) -
Let n—o, we have s<t. Also

d(Sx, TSx)<max {d(x, Sz), d(x, Sx), d(Sz, T'Sx)}
=d(x, Sx)=s .

Hence we have t<s, this is a contradiction. Therefore ¢=0. If T has
no a fixed point, from (R), we have s=0. This is a contradiction.
Consequently T has a fixed point.

Example 7 shows that the continuity on S or T cannot omit en-
tirely from Theorem 6.

COROLLARY 6.1: Let X be a compact metric space and S be a
continuous self-mapping such that (U) holds.

(U) d(Szx, Sy)<max {d(x, y), d(x, Sx), d(y, Sy)}
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for all x=+y in X. Then S has a unique fixred point in X.

Corollary 6.1 was showed by V.M. Sehgal[10]. But it is a special

case of our Theorem 6.
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