Common fixed points theorems of two mappings

By

Kun-Jen Chung

(Received August 15, 1975)

Introduction. In this paper, we investigate two self-mappings S, T on a complete metric space (X, d) such that the following condition holds:

(A) $d(Sx, Ty) \leq k(d(x, y)) \max \{d(x, y), d(x, Sx), d(y, Ty)\}$

where k is upper semicontinuous from the right on $\bar{P}-\{0\}$, k(t)<1 for all t in $\bar{P}-\{0\}$, and $P=\{d(x, y); x, y \text{ in } X\}$.

In [1], D. W. Boyd and J. S. W. Wong proved that if X be a complete metric space and let $T: X \rightarrow X$ satisfies

(B)
$$d(Tx, Ty) \leqslant \bar{k}(d(x, y)),$$

where $\bar{k}: \bar{P} \rightarrow [0\infty)$ is upper semicontinuous from the right on \bar{P} and satisfies $\bar{k}(t) < t$ for all t in $\bar{P} - \{0\}$. Then, T has a unique fixed point y and $T^n(x) \rightarrow y$ for each $x \in X$. We shall show that one need only assume the condition (A).

A number of examples are given to show that the results do in fact improve the results of Boyd and Wong [1].

THEOREM 1: Let S, T be two self-mappings on a complete metric space (X, d), S or T be continuous on X and S, T satisfy (A). Then, S or T has a fixed point.

Proof: For each $x_0 \in X$, we define a sequence $\{x_n\}$ recursively as follows:

$$x_1\!=\!x_0$$
 , $x_2\!=\!S(x_1)$, $x_3\!=\!T(x_2)$, \cdots , $x_{2n}\!=\!S(x_{2n-1})$, $x_{2n+1}\!=\!T(x_{2n})$, \cdots . Let $c_n\!=\!d(x_n,x_{n+1})$

Case I: There exists a positive integer m such that $c_m = 0$. Hence S or T has a fixed point.

Case II: Suppose that $c_m>0$ for all $m\geqslant 1$. Hence we have

$$egin{aligned} c_{2n}\!=\!d(x_{2n},\,x_{2n+1})\!=\!d(S\!(x_{2n-1}),\,T(x_{2n})) \ &\leqslant k(c_{2n-1})\max\left\{c_{2n-1},\,c_{2n-1},\,c_{2n}
ight\} \ &c_{2n}\!\leqslant\!c_{2n-1}\ . \ &c_{2n-1}\!=\!d(S\!(x_{2n-1}),\,T(x_{2n-2})) \ &\leqslant k(c_{2n-2})\max\left\{c_{2n-2},\,c_{2n-1},\,c_{2n-2}
ight\} \ &c_{2n-1}\!\leqslant\!c_{2n-2}\ . \end{aligned}$$

Hence

Hence

Therefore $\{c_n\}$ is a decreasing sequence, and hence has a limit c. But, if c>0, we have

$$c_{n+1} < k(c_n)c_n$$

so that

$$c \leqslant \lim_{t \to c^+} \sup k(t) \leqslant k(c) < c$$

which is a contradiction. Hence c=0.

Now, we show that $\{x_n\}$ is a Cauchy sequence. Suppose that $\{x_n\}$ is not a Cauchy sequence. Then, there is an s>0, and sequences of integers $\{m(i)\}$, $\{n(i)\}$, with $m(i)>n(i)\geqslant i$, m(i) is an odd integer, n(i) is an even integer and such that

(a)
$$d_i = d(x_{m(i)}, x_{n(i)}) \geqslant s$$
 for $i = 1, 2, \cdots$.

We may assume that

(b)
$$d(x_{m(i)-1}, x_{n(i)}) < s$$

by choosing m(i) to be the smallest number exceeding n(i) for which (a) holds. Since

$$d_i \leq d(x_{m(i)}, x_{m(i)-1}) + d(x_{m(i)-1}, x_{n(i)}) \leq c_{m(i)-1} + s \leq c_i + s$$
.

Hence $d_i \rightarrow s^+$, as $i \rightarrow \infty$

But now.

$$\begin{array}{l} (\ \mathbf{c}\) \ \ d_i\!=\!d(x_{m(i)},\,x_{n(i)})\!\leqslant\! d(x_{m(i)},\,x_{m(i)+1})\!+\!d(x_{m(i)+1},\,x_{n(i)+1})\!+\!d(x_{n(i)+1},\,x_{n(i)})\\ \leqslant\! 2c_i\!+\!k(d(x_{m(i)},\,x_{n(i)}))\max\left\{d(x_{m(i)},\,x_{n(i)}),\,d(x_{m(i)},\,x_{m(i)+1}),\,d(x_{n(i)},\,x_{n(i)+1})\right\} \end{array}$$

Thus, as $i\to\infty$ in (c), we obtain $s\leqslant k(s)s\leqslant s$, which is a contradiction for s>0. Hence $\{x_n\}$ is a Cauchy sequence. We may suppose $\{x_n\}$ converges to y. By hypothesis, let S be continuous on X and hence $\{S(x_{2n-1})\}=\{x_{2n}\}$ converges to S(y). Consequently S(y)=y. This completes the proof.

COROLLARY 1.1: Let S be a continuous self-mapping on a complete metric space (X, d) and S satisfies (C)

(C)
$$d(Sx, Sy) \le k(d(x, y)) \max \{d(x, y), d(x, Sx), d(y, Sy)\}$$

for all $x \neq y$ in X, where $k: \overline{P} - \{0\} \rightarrow [0 \ 1)$ is upper semicontinuous from the right on $\overline{P} - \{0\}$. Then, S has a unique fixed point y and $S^n(x)$ converges to y for each x in X.

The continuity condition on S or T cannot be omitted entirely from Theorem 1 as the following example shows:

EXAMPLE 1: Let
$$X=[0\ 1]$$
 and let

$$S(x) = \begin{cases} \frac{x}{3} & \text{if } x \in (0 \ 1] \\ 1 & \text{if } x = 0 \end{cases}$$

$$T(x) = \begin{cases} \frac{x}{3} & \text{if } x \in (0 \ 1] \\ \frac{2}{3} & \text{if } x = 0 \end{cases}$$

and

$$k(d) = 1 - \frac{d}{10}$$
 for all d in [0 1]

Then S and T satisfy (A) but S and T have no a fixed point. (note that k(0)=1).

EXAMPLE 2: Let $X=[0\ 1]$ and let

$$S(x) = \begin{cases} \frac{x}{3} & \text{if } x \in (0 \ 1] \\ 1 & \text{if } x = 0 \end{cases}$$

$$T(x) = \frac{x}{4} \quad \text{for all } x \in [0 \ 1]$$

and

$$k(d) = 1 - \frac{d}{10}$$
 for all d in [0 1]

then S and T satisfy (A), k(0)=1, T(0)=0.

EXAMPLE 3: Let $X=\{1, 2, 3\}$ and let

$$T(1)=2$$
 , $T(2)=2$, $T(3)=1$

and

$$k(d) < 1$$
 for all d in $\{1, 2\}$ and $k(d) > \frac{1}{2}$

then T satisfies (C) and $T^n(x)$ converges to 2 for all x=1, 2 or 3 but T does not satisfy (B).

Examples 2 and 3 show that Theorem 1 and Corollary 1.1 do generalize the results of Boyd and Wong [1].

If we omit the continuity on S and T and strengthen the function k(d), we can obtain the following theorems.

THEOREM 2: Let S, T be two self-mappings on a complete metric space (X, d) and S, T (S, T are not necessary continuous on X.) satisfy (D)

(D)
$$d(Sx, Ty) \leq k(d(x, y)) \max \{d(x, y), d(x, Sx), d(y, Ty)\}$$

for all $x \neq y$ in X, where $k: \overline{P} \rightarrow [0 \ 1)$ is upper semicontinuous from the right on \overline{P} . Then, S or T has a fixed point in X.

Proof: We define a sequence $\{x_n\}$ which is the same as in Theorem 1. Let $c_m = d(x_m, x_{m+1})$.

Case I: There exist a positive integer m such that $c_m=0$. Hence S or T has a fixed point.

Case II: Suppose that $c_m>0$ for all $m\geqslant 1$ and hence $\{x_n\}$ is a Cauchy sequence. We may assume that $\{x_n\}$ converges to y.

Case 1: There exists a positive integer N such that $x_{2n}=y$ for all $n \ge N$. Since $c_n > 0$ for all $n \ge 1$ and hence $d(x_{2n+1}, y) > 0$ for all $n \ge N$. If $n \ge N$, then

$$d(y, Ty) = d(x_{2n}, Ty) = d(S(x_{2n-1}), Ty)$$

$$\leq k(d(x_{2n-1}, y)) \max \{d(x_{2n-1}, y), d(x_{2n-1}, x_{2n}), d(y, Ty)\}.$$

Let $n \rightarrow \infty$, we have $d(y, Ty) \leq k(0)d(y, Ty)$. Therefore d(y, Ty) = 0 and Ty = y.

Case 2: There exists a subsequence $\{x_{2n_j}\}$ of $\{x_{2n}\}$ such that $x_{2n_j} \neq y$ for all $j=1, 2, \cdots$.

Then,

$$\begin{split} d(y,\,Sy) \leqslant &d(y,\,x_{2n_j+1}) + d(x_{2n_j},\,Sy) \\ \leqslant &d(y,\,x_{2n_j+1}) + d(Sy,\,T(x_{2n_j})) \\ \leqslant &d(y,\,x_{2n_j+1}) + k(d(x_{2n_j},\,y)) \,\max\left\{d(y,\,x_{2n_j})\,,\,d(y,\,Sy),\,d(x_{2n_j},\,x_{2n_j+1})\right\}\,. \end{split}$$

Let $j \to \infty$, we have $d(y, Sy) \le k(0)d(y, Sy)$. Therefore d(y, Sy) = 0 and Sy = y. Combining Cases I and II, this completes the proof.

COROLLARY 2.1: Let T be a self-mapping on a complete metric space (X, d) and T satisfies (E)

(E)
$$d(Tx, Ty) \leq k(d(x, y)) \max \{d(x, y), d(x, Tx), d(y, Ty)\}$$

for all $x \neq y$ in X, where $k: \overline{P} \rightarrow [0 \ 1)$ is upper semicontinuous from the right on \overline{P} . Then, T has a unique fixed point y and $T^*(x)$ converges to y for each x in X.

Example 4: Let $X=\{1, 2\}$ and let

$$S(1)=1$$
 $S(2)=2$,

$$T(1)=2$$
 $T(2)=1$,

and

$$k(d)=\frac{1}{2}$$
 for all d in [0 1]

then S and T satisfy (D) but S and T have no common fixed point and S and T are continuous on X.

Example 1 shows that the property k(0)<1 cannot be omitted entirely form Theorem 2.

THEOREM 3: Let S, T be two self-mappings on a complete metric space (X, d) and S, T (S and T are not necessarily continuous on X.) satisfy (F)

(F)
$$d(Sx, Ty) \le k(d(x, y)) \max \{d(x, y), d(x, Sx), d(y, Ty)\}$$

for all x, y in X. Then, S and T have a unique and common fixed point y and the sequence $\{x_n\}$ converges to y, where the sequence $\{x_n\}$ is the same as in Theorem 1.

Proof: Case I: Suppose that there exists a positive integer m such that $c_m=0$, by (F), then $c_n=0$ for all $n \ge m$. Hence S and T have a unique and common fixed point $y=x_m$ and $\{x_n\}$ converges to y.

Case II: Suppose that $c_m > 0$ for all $m \ge 1$, then c_m has a limit 0 and $\{x_n\}$ is a Cauchy sequence, we may assume that the sequence converges to y.

Therefore

$$d(Sy, y) \leq d(Sy, T(x_{2n})) + d(x_{2n+1}, y)$$

 $\leq d(x_{2n+1}, y) + k(d(x_{2n}, y)) \max \{d(y, x_{2n}), d(y, Sy), d(x_{2n}, x_{2n+1})\}.$

Let $y \to \infty$, we have $d(Sy, y) \le k(0)d(y, S(y))$. Hence d(Sy, y) = 0 and Sy = y. Similarly, we have Ty = y.

To prove the uniqueness of y. Suppose there is an z in X such that S(z)=z with $z\neq y$ then,

$$d(Sz, Ty) \le k(d(z, y)) \max \{d(z, y), d(z, Sz), d(y, Ty)\}$$

= $k(d(z, y))d(z, y)$

that is, $d(z, y) \leq k(d(z, y))d(z, y)$ and d(z, y) = 0. This is a contradiction. Hence y = z and S has a unique fixed point y and the sequence $\{x_n\}$ converges to y.

COROLLARY 3.1: Let S, T be two self-mapping on a complete metric space (X, d). Suppose that there exist two positive integers p and q such that S^p and T^q satisfy (F). Then, S and T have a unique and common fixed point.

Proof: By Theorem 3, S^p and T^q have a unique and common fixed point y (to say).

Since

$$S^{p}(Sy) = S^{p+1}(y) = S(S^{p}(y)) = S(y)$$

 $T^{q}(Ty) = T^{q+1}(y) = T(T^{q}(y)) = T(y)$

Consequently S(y) = T(y) = y. The uniqueness is clear.

COROLLARY 3.2: Let T be a self-mapping on a complete metric space (X, d) and T satisfy (G)

(G)
$$d(T(x), T(y)) \leq k(d(x, y)) \max \{d(x, y), d(x, Tx), d(y, Ty)\}$$

for all x, y in X, where $k: \overline{P} \rightarrow [0 \ 1)$ is upper semicontinuous from the right on \overline{P} , then, T has a unique fixed point y and $\{T^*x\}$ converges to y for each $x \in X$.

EXAMPLE 5: Let $X=[0\ 1]$ and let

$$S(x) = \frac{x}{100}$$
 for all x in [0 1]

$$T(x) = \frac{x}{50}$$
 for all x in [0 1]

and

$$k(d) = \frac{9}{10}$$
 for all $d \in [0 \ 1]$

Then S and T satisfy (F) and S and T have a common fixed point 0. Examples 4 and 5 show that, in general, Theorems 2 and 3 are different.

COROLLARY 3.3: Let S, T be two self-mappings on a complete metric space (X,d) and S, T satisfy (H)

(H)
$$d(Sx, Ty) \le r \max \{d(x, y), d(x, Sx), d(y, Ty)\}$$

for all x, y in X. Where $0 \le r < 1$. Then, S and T have a unique and common fixed point.

COROLLARY 3.4: (C. L. Yen [5] Theorem 1): Let S, T be two self-mappings on a complete metric space (X, d) and S, T satisfy (I)

$$(1) d(Sx, Ty) \leqslant ad(x, y) + bd(x, Sx) + cd(y, Ty)$$

for all x, y in X. Then S and T have a unique and common fixed point, if a+b+c<1, $a\ge 0$, $b\ge 0$, $c\ge 0$.

COROLLARY 3.5: [R. Kannan [3] Theorem 1]: Let T be a mapping of a complete metric space (X, d) into itself. Suppose that there exists a number r in $[0\ 1/2)$ such that

$$d(Tx, Ty) \leqslant r(d(x, Tx) + d(y, Ty))$$

for all x, y in X. Then T has a unique fixed point.

COROLLARY 3.6: [P. Srivastava and V. K. Gupta [4] Theorem 1] Let S, T be mappings of a complete metric space (X, d) into itself. Suppose that there exists nonnegative real numbers a, b such that a+b<1 and

$$d(Sx, Ty) \leqslant ad(x, Sx) + bd(y, Ty)$$

for all x, y in X. Then, S, T have a unique and common fixed point.

C. L. Yen [5], Srivastava and Gupta [4] stated the corollary 3.4 and 3.6 in a more general form with S, T replaced by S^p , T^q for some positive integers p, q.

When S=T, Theorems 2 and 3 are coincide.

EXAMPLE 6: Let $X=[0\ 1]$ and let

$$S(x) = egin{cases} rac{x}{40} & ext{if } x \in [0 \ 1) \\ 0 & ext{if } x = 1 \end{cases}$$
 $T(x) = egin{cases} rac{x}{20} & ext{if } x \in [0 \ 1) \\ rac{1}{3} & ext{if } x = 1 \end{cases}$

and

$$k(d) = \frac{9}{10}$$
 for all d in [0 1]

Then S and T satisfy (F), $S \neq T$ and S and T are not continuous on X. We consider conditions (L) and (M).

- (L) $d(Sx, Ty) < \max \{d(x, y), d(x, Sx), d(y, Ty)\}$ if $x \neq y$.
- (M) $d(Sx, Ty) \leqslant \max \{d(x, y), d(x, Sx), d(y, Ty)\}$ for all x, y in X.

EXAMPLE 7: Let $X=[0\ 1]$ and let

$$S(x) = \begin{cases} \frac{x}{2} & \text{if } x \in (0 \ 1] \\ 1 & \text{if } x = 0 \end{cases}$$

and

$$T(y) = egin{cases} rac{x}{2} & ext{if } x \in (0 \ 1] \ rac{2}{3} & ext{if } x = 0 \end{cases}$$

Then S and T satisfy (L) and (M) but S and T have no fixed point.

Even X is a compact metric space. However, if S and T satisfy the condition (N).

(N)
$$d(Sx, Ty) < d(x, y) \text{ if } x \neq y$$
.

Then we have the following theorem.

THEOREM 4: Let S, T be two self-mappings on a compact metric space (X, d) and S, T satisfy (N). Then, S or T has a fixed point. More generally, we have the following theorem.

THEOREM 5: Let (X, d) be a nonempty compact metric space, Let S, T be functions of X into itself, Suppose further that there exist nonnegative real-valued functions $b_1=b_1(x, y)$, $b_2=b_2(x, y)$, $b_3=b_3(x, y)$, $b_4=b_4(x, y)$, $b_5=b_5(x, y)$ on $X\times X-\Delta$, where $\Delta=\{(x, x): x\in X\}$ such that

- (a) $b_1+b_2+b_3+b_4+b_5 \leqslant 1$
- (b) $b_1+b_4<1$ and $b_2+b_3<1$
- $(c) b_3 = b_4$
- (d) for any distinct x, y in X,

(O)
$$d(Sx, Ty) < b_1 d(x, Sx) + b_2 d(y, Ty) + b_3 d(x, Ty) + b_4 d(y, Sx) + b_5 d(x, y)$$
.

Then S or T has a fixed point, If both S and T have fixed points, then each of S and T has a unique fixed point and these two fixed points coincid.

We compare Theorem 5 with Theorem 4[9] as follows.

- (1) In Theorem 4[9], one of S and T be continuous on X, yet in Theorem 5, S and T are not necessarily continuous on X.
- (2) In Theorem 4[9], all α_i are decreasing functions, yet in Theorem 5, all b_i are not decreasing functions.
- (3) In Theorem 4[9], all α_i are defined on (0∞) , yet in Theorem 5 all b_i are defined on $X \times X \Delta$. (It is possible that $b_i(x, y) \neq b_i(y, x)$ may be true but $\alpha_i(d(x, y)) = \alpha_i(d(x, y))$.)
- (4) In Theorem 4[9], $\alpha_1 = \alpha_2$, yet in Theorem 5, b_i does not necessarily equal b_2 .
- (5) In Theorem 4[9], $\alpha_1+\alpha_4\leqslant 1/2$, $\alpha_2+\alpha_3\leqslant 1/2$, yet in Theorem 5, $b_1+b_4<1$ and $b_2+b_3<1$.

A number of examples are given to show that the results do in fact improve Theorem 4[9].

The proof of theorem 5 is in K.J. Chung [8].

Example 8: Let $X=[0\ 1]$ and let

$$S(x) = \begin{cases} \frac{1}{2} & \text{if } x = 0\\ \frac{x}{100} & \text{if } x \in (0 \ 1) \end{cases}$$

$$T(y) = \begin{cases} 0 & \text{if } y = 1 \\ \frac{y}{50} & \text{if } y \in [0 \ 1) . \end{cases}$$

Then it is clear that S and T satisfy the condition (0), S and T are not continuous, T(0)=0 and S has no fixed point in X.

Example 8 does improve the result of C. S. Wong[9].

In C. S. Wong[9], let $a_3 = a_4 = 0$ then Theorems 1, 2, 3 and 4 in [9] are four special cases by our Theorems 1, 2, 3 and 5 respectively.

THEOREM 6: Let X be a compact metric space and let S, T be two self-mappings. S or T is continuous on X. S and T satisfy (P)

(P)
$$d(Sx, Ty) < \max \{d(x, y), d(x, Sx), d(y, Ty)\}$$

for all $x \neq y$ in X. Then S or T has a fixed point in X.

Proof: By hypothesis, we may suppose that S is continuous on X. Let

$$s = \inf \{d(x, Sx); x \in X\}$$
,
 $t = \inf \{d(x, Tx); x \in X\}$.

There exists x in X such that s=d(x, Sx).

Case I: If s=0, hence Sx=x, this theorem has proved.

Case II: If s>0, by compactness of X, there exists a sequence $\{x_n\}\subset X$ such that

(Q)
$$\lim_{n\to\infty} d(x_n, Tx_n) = t.$$

If t>0, we may suppose that $d(x_n, Tx_n)>0$ for all $n\geqslant 1$. Therefore

(R)
$$d(STx_n, Tx_n) < \max \{d(Tx_n, x_n), d(Tx_n, STx_n), d(x_n, Tx_n)\}\$$

= $d(Tx_n, x_n)$.

Let $n \rightarrow \infty$, we have $s \leqslant t$. Also

$$d(Sx, TSx) < \max \{d(x, Sx), d(x, Sx), d(Sx, TSx)\}$$

$$= d(x, Sx) = s.$$

Hence we have t < s, this is a contradiction. Therefore t = 0. If T has no a fixed point, from (R), we have s = 0. This is a contradiction. Consequently T has a fixed point.

Example 7 shows that the continuity on S or T cannot omit entirely from Theorem 6.

COROLLARY 6.1: Let X be a compact metric space and S be a continuous self-mapping such that (U) holds.

(U)
$$d(Sx, Sy) < \max \{d(x, y), d(x, Sx), d(y, Sy)\}$$

for all $x \neq y$ in X. Then S has a unique fixed point in X.

Corollary 6.1 was showed by V. M. Sehgal[10]. But it is a special case of our Theorem 6.

References

- [1] BOYD, D. W. and WONG. J. S. W.; On nonlinear contraction. Proc. Amer. Math. Soc. 20 (1969) 458-464 MR 39#916.
- [2] RAKATCH, E.; A note on contractive mapping. Proc. Amer. Math. Soc. 13 (1962) 459-465.
- [3] KANNAN, R.; Some results on fixed points-II Amer. Math. Monthly 76 (1969) 405-408.
- [4] SRIVASTAVA, P. and GUPTA V. K.; A note on common fixed points. Yokohama Math. J. XIX (1971) 91-95.
- [5] YEN, C.L.; Remark on common fixed points. Tamkang J. of Math. Vol. 3, No. 2, 95-96.
- [6] YEN, C. L.; On the common fixed point theorem II. Tamkang J. of Math. Vol. 4, No. 1, (1973) 57-60.
- [7] EDELSTEIN, M.; On fixed and periodic points under contractive mappings. J. London Math. Soc. 37 (1962) 74-79.
- [8] CHUNG; Kun-Jen A generalization of a fixed point theorem of C. S. Wong. (Chung Yuan Journal Vol. IV, Octover 1975, 8-11.
- [9] Wong; Chi Song Common fixed points of two mappings, Pacific J. of Math. Vol. 48, No. 1, 299-312.
- [10] SEHGAL, V. M.; On fixed and periodic points for a class of mappings. J. London Math. Soc. (2), 5 (1972), 571-576.

Department of Mathematics Chung Yuan Christian College of Science and Engineering Chung Li, Taiwan, Republic of China