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Let S be a set with a primitive recursive ordering <. We say
that fundamental sequences are defined for S, or fundamental sequences
of elements of S exist, if there is a uniform method according to
which we can construct for any limit element of S, says, a <-increas-
ing sequence of elements of S, say {s,}., such that {s,}, is primitive
recursive in m and converges to s (from below) with respect to <.

We are going to show that, given a system of ordinal diagrams,
O(1, A), fundamental sequences can be defined for O(I, A) with respect
to each ordering <,, where ¢ is an element of I.

The ultimate objective of the study of fundamental sequences for
ordinal diagrams is its use in a constructive (in some sense) proof of
the well-foundedness of ordinal diagrams. (We do not specify here
the concept of “constructive”.) An accessibility proof for ordinal dia-
grams, in which the theory of fundamental sequences is essentially
used, is our task of the future.

A detailed bibliography concerning the theory of ordinal diagrams
and its applications is seen in [3], hence we have avoided repetition;
only [4] has been added.

§ 0. Preliminary—a summary of the theory of approximations.

In developing the theory of fundamental sequences, the theory of
approximations plays an essential role. Although this theory is ex-
plained in detail in [5], we shall here present a summary of the theory
for the reader’s convenience.

Consider the system of ordinal diagrams based on the primitive
recursive sets I and 4 which have primitive recursive well-orderings.
We assume that fundamental sequences are defined for I and A;
namely there is a uniform method such that for any limit element of
I (A), we can construct according to the method a sequence of elements
of I (A) converging to it from below.

DEFINITION 0.1. The definition of the system of ordinal diagrams
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based on I and A, O(I, A), and some related notions. “Ordinal diagram”
will be abbreviated to “o0.d.”. We shall omit the reference to I and
A most of the time. Let 0 be a special symbol.

(1) The o.d.’s of O(Z, A).

1) 0 is a connected o.d. (of O(Z, A4)).

2) Let ¢ be an element of I, @ be an element of A and a be an
o.d. already defined. Then (4, @, @) is a connected o.d. (of O(, 4)).

3) Let n>2 and let a,, @, -+, &, be connected o.d.’s. Then a.%
af --- #a, is a nonconnected o.d. (of O(I, A)). Each of «, a, - -,
is called a component of the o.d. thus defined. '

(2) A sub-o.d. of a is a part of @ which is itself an o.d.

(3) Let (4, @, ¥) be a sub-o.d. of o and let X be an expression
which is a part of ¥. Then we say .that the ¢ and the a explicitly
written are connected to X (in ). We also say that (¢, @) is connected
to X (in «).

(4) Let X be a part of @ and j be an element of I. If everyl
an element of I which is connected to X (in «) is >j, then X is said
to be j-active (in ). A connected, j-active sub-o.d. of «a is called a
j-subsection of a.

(5) Let (4, @, ) be a j-subsection of « for some j>i. Then 7 is
called an 4-section of a. If there is an 4-section of «, then we say
that 7 is a index of a.

(6) If gis a sub-o.d. of @, we say that a contains S.

Note that the various notions we have defined above concern oc-
currences of expressions, not just expressions themselves. We shall
not, however, employ a particular notation for an occurrence of an
expression in order to distinguish it from the expression itself. we
believe that the distinction can be made from the context. Let us
also note that a sub-o.d. of @ may be « itself. When it is not «, we
may say it is a proper sub-o.d. of @ and « contains it properly. A
rigorous treatment of the entire matter is seen in [5].

(7) a@=p when a and B are identical up to the order of com-
ponents at each stage of the definitions of & and g.

(8) (4, @) is called a value when ¢ is an element of I and a is an
element of A. The values are ordered lexicographically.

(9) Let a be (¢, a, 7). (%, @) is called the outermost value of a.

(10) An element of I is called an indicator.

DEFINITION 0.2. Let o be a new symbol and let I be IU{co}.
For each ¢ in I we define an ordering <; of o.d.’s of O(I, 4). a<.,8
will be an abbreviation of “a<;8 or a=p".

(1) 0<,x for any ¢ and any a which is not 0.

(2) Let I+m>2, let a, a, ++-, @, be all the components of «
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and let B, B,, ---, B be all the components of 8, where &, , >, ;> +++ ;>
a, and B, ;>By;=> =B, Then a<,B if one of the following con-
ditions holds.

(2'1) l>m and a1:181’ a2::827 MR am—:lgm'
(2.2) There is an n, 1<n<m, [, such that «,=8, ---, a,_,=8,_, and
an<i18n' R

(8) «a and B are connected, neither is 0 and ¢ is an element of
I. a<,;pB if one of the following holds.

(8.1) There is an i-section of B, say 9§, such that a<,d.

(3.2) Let j, be the least element j of I satisfying that i<j and j is
an index of a or B, if there is such j; let j, be - when there is
no such j. For this j, <, 8 and, for any ¢ an t-section of «,
g<,;B.

(4) Let a be (4, ¢, ') and B be (k, b, 8). a<.B if one of the
following holds.

4.1) i<k.
4.2) j=k and a<b.
(4.3) J, a)=(k,b) and a'<;pB .

THEOREM. For each i in I, <, is a linear ordering of O, A).

LEMMA. Let a be a connected ordinal diagram and let 5 be an
i-active sub-0.d. of a which is distinct from «. Then B<;a for every
J<i.

We shall now develop the theory of approximations and valuations
for a connected o.d. @ which is not 0 and an element j of I.

DEFINITION 0.3. The maximum among the j-active values of « is
called the 0™ j-valuation of « and is denoted by wv,j, ). Note that
any o.d. has the 0™ j-valuation (since a is not 0).

PROPOSITION 0.1. Let a and B be connected (non zero) o.d.’s and
J be an element of I. If v(j, B)<wv(J, @), then L<;a.

DEFINITION 0.4. (1) Let v(j, ®)=(%, @) and «, be the greatest,
with respect to <,, among the j-subsections of a whose outermost
values are (¢, @). Then «, is called the 0™ j-approximation of a and
is denoted by apr (0, 7, ).

More precisely apr (0, 7, @) denotes any occurrence of a sub-o.d. of
a which.satisfies the condition stated above. So the single notation
a, (or apr (0, 7, «)) represents both an o.d. and its j-active occurrences
in a.
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(2) If a j-subsection of &, say 7, does not contain any (occurrence
of) «, and is not contained by «,, then we say that % j-omits a, (in «@).

ProposiTION 0.2. (1) If a j-subsection of «, say 71, j-omits «,
then N<,a, for all 1>7.

(2) Let a and B be connected o.d.’s where vy(j, &)=v,J, B)=(, a)
and apr (0, 7, B)<,apr (0, 7, @). Then L<;a.

DEFINITION 0.5. Let w7, a)=(%, @) and apr (0, j, ®)=a, Suppose
a, is a proper sub-o.d. of @. Let p be an (j-active) occurrence of «,
in a. Consider the maximal (i.e., the complexity as an o.d. is the
greatest) connected sub-o.d. of & which contains o, say a(p), such that
every element of I in it connected to o is 7. Consider a(o) for every
o (i.e., every occurrence of «;) and let a, be the greatest, with respect
to <;, among the a(o)’s. Then «, is called the first j-approximation
of a and is denoted by apr (1, 7, @).

Here again, «, denotes an o.d. as well as some of its occurrences
in a.

Note that a,=«, is possible.

ProrosiTION 0.3. (1) If a, properly contains «, then j<i.

(2) If b is an element of A in a, which s connected to a,, then
b<a. '

DEFINITION 0.6. If a j-subsection of «, say 7, neither contains

nor is contained by «,, and is not properly contained by «,, then 7
is said to j-omit «a,.

PROPOSITION 0.4. (1) Let 1 be a j-subsection of a which satisfies
‘that 1 s not contained in «, and, for each occurrence of &, in 1), say
0, there is an element of I connected to 0 which vs <i. Let 0, -+, On
be all the occurrences of a, in 7 and q, be the least such element of I
connected to o, k=1, ---,m. Let q=max(q, *++,qx). If 1 j-omits
«,, then let q=7.) Then N<,a, for any l such that q<<l<i.

(2) If a j-subsection of «, say 7, j-omits a,, then N<,a, for any
1 such that j<1<4q. ’

(3) Suppose \Ivo(jr a) = vy(J, B) = (7'9 a’) and  @,=apr (0’ J, )=
apr (0, , 8)=B.. If avr (1,7, B)<,apr(l,j, @), then B<;a. (This in-
cludes the case where B,=apr (1, 7, B) while apr (1, §, &) properly con-
tains a,.)

DEFINITION 0.7. Let « be an o.d., j be an element of I, a,=
apr (0, J, &), and a,=apr(,j, ) (=(,0b,a’)). We name the ¢ in
v(j, @)=(%, @) as %, and the ¢ in @, as 1,

Suppose we have defined the pairs of sub-o0.d.’s of & and indicators
occurring in «, say (&, %), (a, 1), *--, (&, %,), in a manner that they
satisfy the following conditions in (*).
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(*) (i) For every I, 1<i<n, j<i,,,<1.

(ii) Let I>1 and (%, b, 7) be a j-subsection of « such that there
is an occurrence of «; as a component of ¥. Consider all such j-sub-
sections. Then %,,, is the maximum among those k’s.

(iii) Consider an %,,,-active occurrence of «;, say o. Let 7(0) be
the maximal (in regards to the complexity as an o.d.), connected sub-
o.d. of @ which contains 0 such that every element of I in 7(0) con-
nected to o is >4;,,. Consider all such p’s. Then «,,, is the greatest,
with respect to 4,,,, among those 7(0)’s.

Now we define («,,,, %,4,), provided that « is not «,.

T+ 1S defined from «, as 4, is determined from «; in (ii). «,.,,
is defined from «, and 4,,, as «a;,, is determined from «, and 7, in
>iii). 7<%,.,.<1%, is obvious from the definition.

Define »,(j, @)=1, for every n>1. ¢, is called the n*® j-valuation
of a. «a, is called the ™ j-approximation of « and is denoted by
apr (n, j, @). «, represents an o.d. together with some of its occur-
rences in a. ‘

If a,=a, then (a,,,, 1,.,) needs not be defined. We may, however,
use the expression v,(j, 8)<v.(j, @) to mean that v,(j, B) is empty,
while v,(j, @) is not (even if the value is 0).

DEFINITION 0.8. Suppose «, is defined for @ and j. Let 7 be a
j-subsection of «, say 7. We say that » j-omits a, if 7 is not con-
tained by «,, 7 does not contain «, and % is not contained in any of
Qpy Ay + 00y Eyyye

PROPOSITION 0.5. Suppose n>1. The following three statements
are proved simultaneously by induction on n.

(1) Let n be a j-subsection of a which satisfies that 7 is mnot
contained in «,, and for each occurrence of «, in N, say O, these is
an element of I connected to o which is <t,,,. Let 0, ---, 0, be all
the occurrences of «, in 1 and q, be the least such element of I con-
nected to 0, k=1, ---, m. Let q=max(q, **+, q.). If 1 j-omits «,,
then let gq=3.) Then n<,a,, for every | such that ¢q<1<1,.

(2) If n j-omits a,,,, then N<,a,,,, for every | such that j<I<
Tn+1e

(3) Suppose a,=apr (n, j, @)=apr (n, j, B)=L, (hence a,=p,, a,=
Bi=, +--, an-—1=Bn—-1)’

(3.1) If v, A<V, @), then B<;a .
(3'2) If vn+1(j’ 18):/015+1(j’ a)’:?;n-l-l and Bn+1=a’pr (n+1) j’ B)
<y @Pr (n+1, J, @)=a,,,, then B<;a.

DEFINITION 0.9. Here we restrict our attention to j-subsections
of a,,, which contain «, and define refinements of «,., @u.. k=
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0,1, .

0) @ is any t,.,-active occurrence of a, in a,.,.

(k+1) Suppose &, has been defined and a,,, is not &y 4. Qurio
is any occurrence of‘ the greatest, with respect to <, ., ., of the
(t.4:-active) sub-o.d.’s of «,,, which contain occurrences of .

From the definition of 4,,, and a,,,, it is obvious that every a,,,
is 4,.,active in «,., and contains an %,,,-active occurrence of «,. As
before, @, . represents an o.d. together with some of its occurrences
in a,,.. Qu, o is called the (n, k)™ j-approximation of o and is denoted
by apr ((n, k), J, @).

PROPOSITION 0.6. The above definition of (n, k)™ j-approximation
of a is equivalent to the following.
Qo 18 defined as in Definition 0.9.

Suppose the (n, k)™ j-approximation in the second sense, @, ), has
been defined. Consider a (¢,..,-active) sub-o.d. of «,,, of the form
(%nss, €, 0), Where a component of 0, say 7, contains an occurrence of
Qe Cimpsn 1S defined to be the greatest, with respect to <.+
of those 7’s and «,.,.

DEFINITION 0.10. An ¢,,,-subsection of a,,,, say 7, j-omits Q.
if it does not contain any «,,, is not contained by «, and is not
contained by any of a,, if (m, l)<(n, k).

Note that the notion of «, and that of «,, are not the same.
There may be an occurrence of «, which is not «,,. So it is possible
that » j-omits «,, but not «,.

PrOPOSITION 0.7. (1) Let u be an t,,-subsection of «,., which
J-omits . Then 7 <., Cui)-

(2) Suppose apr ((n, k—1),7, B)=apr ((n, k—1), J, @) and v,..(j, B)=
Vori(d, Q)=1,.1, where n>1 1is assumed. If apr((n, k), 7, B)<ipiy+t
apr ((n, k), §, @), then Bu1.1<i,,, Xn+n hence B<;a.

ProrosITION 0.8. If n=0, then the following definition of @, 18
equivalent to the the given ome: Let a,,=a, and ay=0a. Suppose we
have defined Gy, G, ***y Gory GNA A gy Koy, ***5 Aoy V0 & Manner that
Qoo > Qo> =+ + >0y, and have not exhausted «,. Then define Gy, as the
greatest among the elements of A in a, which are connected to some
occurrences of &y,. Consider all the i-subsections of «, which contain
A, Droperly and are of the form (i, Gy, 7). Let @y iy be the great-
est, with respect to <,, among these.

In the subsequent sections, we will be using some of the defini-
tions and propositions here quite frequently, but without quoting them
every time.
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We also employ the following abbreviated notations. Let ¢ be an
element of I and {i,},. be a sequence of elements of I. 4,17 means
that {4,}. converges to ¢ from below (with the order of I). The same
notation applies to the elements of A. If the order type of I is a
limit ordinal (in which case we say that I is limit), then 4, { I means
the order type of ¢, converges to that of I. The same with A.

§1. Reduction sequences.

Given a system of o.d.’s, O(I, A), we shall first define the notion
of reduction sequences (for o.d.’s of O(I, A) with respect to each in-
dicator, an element of I), proving subsequently that those reduction
sequences serve as the fundamental sequences for O(I, A).

The definition of the reduction sequences consists of three parts,
which we shall present successively in the following subsections §1.1,
§1.2 and §1.3. §1.1 concerns the scanned pairs, scanned o.d.’s marked
places and reduction places. Given & a connected o.d. and j, an indi-
cator, we define in §1.1 scanned pairs (sp), which are pairs of indi-
cators and sub-o.d.’s of &, and scanned o.d.s (sod), which are the
sub-o0.d.’s occurring in the sp’s, determining marked places, which are
sub-o0.d.’s of @&, at each stage, marking the marked places with under-
lines and locating intermediate reduction pairs when they arise. The
meaning of all this will become clear later. These notions are defined
relative to (j,, &). The construction of sp’s stops and the last sp of
this process is called the last reduction pair (of (j,, &)). The sod in
the last sp will be called the last reduction place.

The reduction of the last reduction place (of (j,, &)) is prescribed
in §1.2. Let v be the last reduction place. Then a sequence of o0.d.’s,
say {Vnlm, is defined corresponding to v according to the prescription;
such a sequence will be called the reduction sequence for v (relative
to (4o, A)).

Let (4, v) be a sp of (j,, @). A <,-increasing sequence of o.d.’s,
SaY {Yum}m, is defined corresponding to 7; such a sequence is called the
reduction sequence for 7 (relative to (j,, &@)). This is done in §1.3, by
induction on the number of stages (sp’s) between (j,7) and the last
reduction pair; the case where (4, v) is an intermediate reduction pair
needs a special care. As a special case we obtain the reduction se-
quence for @ with respect to j,, say {@.}.. It turns out that {&,}. is
primitive recursive, is <;-increasing and converges to & (from below)
with respect to j, (i.e. <j,). This shows that fundamental sequences
can be defined for O(I, A) (with respect to every ordering).

We wish to note a notational convention here: a+1 will express
an o.d. which has 0 as a component, and it will be called a successor
o.d. If an o.d. has no 0 as a component, then it is called a limit o.d.
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Let us outline the idea of the reduction before we begin formal
definitions.

Given @ an o.d. and j, an indicator, we would like to define a
fundamental sequence of & with respect to j,; it is a sequence of o.d.’s,
say {@,},, which converges to & from below with respect to j,. More
precisely {&,}, satisfies that

(*) {@n}n is <, -increasing and vm(&,<,Q) for every 1<j,,
and
(**) VB <;,a3m(B < ;, ) .

Let us note here that in establishing the property (**) for {&,}., it
suffices to consider only large B’s; viz. those S’s which are smaller
than & (with respect to j,) but very close to &.

Our purpose is to establish a primitive recursive method to con-
struct such sequences uniformly in & and j,. The key point for this
objective is how to locate the last reduction place and how to trans-
form it to obtain &, for each m.

In an attempt to locate the last reduction place, we define sp’s.
We let (j, @) be the first sp. Suppose we have defined a sp. (4, 7).
We wish to construct a sequence {7,}, satisfying (*) and (**) for
G, 7), {Yu}m will be called the reduction sequence for 7. There are
several cases. 1°, (j, 7) satisfiles that v=(¢, @, 6+1) (for some 1, @
and 0). Then stop. (4, 7) is the last reduction pair.

Suppose 1° is not the case. In order to simplify our discussion,
let us consider the case Y=apr ((», k+1), 5, ¥) where n>0. Consider
a connected @ for which B< ;7 holds. As was remarked above, it
suffices to consider large g’s, viz. those which are close to ¥ with respect
to 5. Mathematically we may assume that

(***) apr ((n’ k)’ j’ B):apr ((1@, k); j; 7) and 'U»,,,+1(j, B):”nﬂ(j, ’Y) (:?:n+1) .

Therefore we are forced to preserve apr((n, k), 7,7) in {V,}lm;
apr (n, k), 3, 7,)=apr ((n, k), 7, ¥). Therefore if there is a unique oc-
currence of apr((n, k), 7,7) in 7, then we must not break it, hence
wish to mark it so it will be preserved in the reduction process. This
is a marked place.

Under the assumption (***) B<;7 is equivalent to

Bin,e+n =20 (0, k+1), 3, B)
iyt BPT (n, b+1), 3, V)= i+ ="7 .
2°. Consider the case where Y =(%,,.,@,7’). Then B, iy <imsn+t Yimrrn =7
implies that B,y is of the form (i, a, B’), hence B 111y <if 4+ 7 i8

reduced to 8'<,,,,7". It suffices to consider the case where <, . holds
due to a least component of 7v': If ¥'=v4# ... %7, where 7, .>7,.>
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«e.,>7,and ¢=1,,, then 8'="% --- $7,_#0,% - - -, where the components
are written in the <,-decreasing order and d,<,7,. Let 7 denote 7,.
Since 1° is not the case, =0.

From the way 7 was chosen, it is expected that if we can con-
struct a sequence {7,},. converging to 7 from below with respect to %,.,
(within a set of o.d.’s satisfying a certain condition), then by replacing
7 bY {(Yu}. We obtain {7,}, from 7 satisfying the desired property.
Here a “certain condition” is, roughly speaking, that the j-approxima-
tions do not exceed (with respect to the appropriate orderings) those
of v which are contained in 7. This condition is necessary in order
to secure 7, <;7.

We now realize that next we should examine (%,.,, ); namely this
is the next sp. Note that 7 is a proper sub-o.d. of 7.
8° Consider the case where v=(¢, @, 7') and ©>%,,,. Let h=1%4,.,+1.
In order to see Why Bu.in<:7Y, examine the h-approximations of 7.
If 38° is not the case for (k, 7), then proceed to an appropriate step.
If 3° is the case for (h, 7), repeat the same speculation, thus obtaining
an increasing sequence of indicators, say %,..=hy, hs, hs -+, occurring
in Y. It must eventually reach %, hence 3° can repeat only finitely
many times. When out of 3° one can proceed to a different step.
4°, There are several other conditions than 1° which make a sp (7, 7)
the last one. The detail is omitted for now.

If a condition in 1° or 4° applies to (5, 7), then (4, 7) is the last
reduction pair.
5° If none of 1°~4° applies to (4, 7), then we define the next sp with
a similar speculation as in 2°. Consider, for example, the case where
y=apr (0, j, ¥V)=(t, @, 6) where a0 and ¢ is a marked place. Let (3, 9)
be the next sp. (j, 7) is called an intermediate reduction pair and a
special care is taken in defining the reduction sequence for 7 so that
6, a marked place, will be preserved.

It is obvious from the definition that the construction of sp’s stops,
for a sod is a proper sub-o.d. of a preceding one. The last sp satisfies
either 1° or 4° and there the reduction is taken place.

We have assumed that & is connected; it is obvious that funda-
mental sequences for non-connected o.d.’s are naturally induced from
the ones for connected o.d.’s.

§1.1. Scanned pairs, marked places and reduction pairs.

DEFINITION 1.1. Given @ a connected o.d. and 7, an indicator (an
element of I), we shall define scanned pairs (sp), scanned o.d.’s (sod),
marked places, intermediate reduction pairs, intermediate reduction
places, the last reduction pair and the last reduction place of & with
respect to j, (or of (j,, @)). A pair in any of the above terms is a
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pair of an indicator and a connected sub-o.d. of @, say (j, ¥), and the
place corresponding to (4, 7) is ¥ as a sub-o.d. of & Therefore it
suffices to define only the respective pairs (except the marked places).
What is important here is that a scanned o.d. (sod) is a specified oc-
currence of a (connected) sub-o.d. of &.

The first scanned pair (sp) of & with respect to j, is (j,, &). For
the inductive stages, we first list all the case conditions. Suppose a
sp (of (j, @), say (j, 7), has been defined, where 5 is an indicator and
7 is a connected sub-o.d. of @&. The following exhaust all of the cases
which can apply to (7, 7). :

(1) 7 is of the form (¢, a, 0).

(2) v is of the from (¢, @, «+1) and it is not the case that a=0,
j<t, Y=apr ((n, k+1), , v) where >0 and v,,,(J, ¥)<i. (For the ex-
cluded case, see (5, 3) below. We shall name the excluded case as (2).)

If y=apr ((n, k+1), 4, ¥) for some n and k, and if there is a unique
occurrence of the (n, k)™ j-approximation of 7, then mark (underline)
it as a marked place.

(2.1) a=0, 5<%, i=14,+1 (namely ¢ is a successor indicator) and
there is at least one component of @ whose outermost value is greater
than (%, 0).

(2.2) (2.1) is not the case.

For (2.1) we define the notion of (4, 0)-dominants; a component of
« whose outermost value is greater than (4, 0) (if such exists) is called
an (%, 0)-dominant (of v, or of ).

In the subsequent cases, we assume that 7 is of the form (i, a, @),
where « is a limit o.d., viz. no component of « is 0, except for 2)
(cf. (5.3) below).

(8) 7 is the 0™ j-approximation of itself, or v=apr (0, j, 7).

(3.1) All the components of a are marked and a=0.

(3.2) All the components of & are marked and ¢=0.

(3.3) Not all the components of a are marked.

(4) v is the (0, £+1)™ j-approximation of itself, or ¥=apr ((0, b+
1), 4, 7), for some k. ‘

If there is a unique occurrence of the (0, k)** j-approximation of
7, then mark (underline) it as a marked place.

(4.1) All the components of « are marked, a=0, j<7 and 7 is a
successor element.

(4.2) All the components of @ are marked and (4.1) is not the
case.

(4.3) Not all the components of @ are marked.

(5) v is the (n, k+1)*" j-approximation of itself, or Y=apr ((n, b+
1), 4, 7), for some (n, k) where n>0.

Note. If 7 is the (n, 0) j-approximation of itself, then we may
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regard ¥ as the ((n—1), )" j-approximation of itself for some (>0,
hence the sufficiency of considering k-+1.

If there is a unique occurrence of the (n, k)*® j-approximation of
v, then mark it as a marked place. Let 7,.,=v,..(J, 7).

(5.1) 4i=1,,, and all the components of & are marked.

(5.2) i=1,., and not all the components of a are marked.

(5.3) and (2') 4%,:,<? under the conditions of (5) stated immediately
above and of (2'), namely, 7=(3, a, ®+1), a=0, j<i, Y=apr((n, k+
1), 4, 7) for some n>0 and v,.,(j, V)="1,+.<1.

Note. 1) (8.3), (4.8) and (5.2) include the case where no com-
ponents of « are marked.

2) We later learn that in (3.1), (3.2), (4.1), (4.2) and (5.1), the
clause “all the components of @ are marked” can be replaced by “a
is connected and marked.”

3) For (2'), we need not mark a new marked place.

The transition form (7, ¥) to the next sp is determined according
to the cases listed above and an additional condition which is stated
below. Namely (3.3), (4.3) and (5.2) will be classified into two sub-
cases, [1°] and [2°].

[1°] Y=(¢t, b, M#VY) where v is a least, with respect to <,, (a t-least)
componet of M#y and is of the form (¢, 0, @) and (3.2) applies to the
pairs (¢, v) (i.e. y=apr (0, ¢, v) and all the components of @ are marked).

[2°] [L1°] is not the case.

Note. 1) Obviously there is a notational confusion here. In any
of (8.3), (4.8) and (5.2), 7 is supposed to be of the form (3, a, @),
whereas in [1°] (¢, b, Y#v) is used for 7, and ¢ and @ are preserved
for v. This is due to the fact that the condition in [1°] concerns (, v),
to which (8.2) applies. We shall stick to this notation throughout
whenever [1°] comes under consideration. In [2°], we return to the
original notation; 7 is of the form (i, a, @).

2) In [1°] we are not mentioning anything .about x. X may or
may not be empty.

3) In [1°] and any subsequent discussion, “a least component of
a” means that we choose one of the least components of a (with re-
spect to an appropriate indicator). We may assume that the compo-
nents of @ are ordered in the non-increasing order with respect to an
appropriate indicator and that we choose the last one as a “least com-
ponent”. This specification of a “least component” is important, espe-
cially for (2.1), and we shall observe it throughout.

Now we are comming to the induction steps (of defining sp’s). In
order to make the situation clear, we shall repeat the case conditions.
Let (4, 7) be the sp (of (j,, @)) which has just been defined.

Now we are coming to the induction steps (of defining sp’s). In
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order to make the situation clear, we shall repeat the case conditions.
Let (5, 7) be the sp (of (j,, &)) which has just been defined.

(1) v=(, a,0). Stop. (4,7) is the last reduction pair.

(2) v=(i,a,a+1) and (2') is not the case. If ¥=apr ((n, k+1),7,7)
and there is a unique occurrence of apr ((n, k), 7, ¥), then mark (under-
line) it as a marked place.

(2.1) a=0, j<i, 9=14,+1 and there is an (i, 0)-dominant of 7.
(7,7) is an intermediate reduction pair. Let 7' be an i-least (4, 0)-
dominant of 7. (7, 7') is the next sp.

Let us point out that here by an “i-least” (7,, 0)-dominant we mean
the last occurrence of an i-least such in the i-decreasing arrangement
of the components of «.

(2.2) (2.1) is not the case. Stop. (4, 7) is the last recduction pair.

Now assume that in Y=(3, @, @) « is a limit o.d. except for (2).

(3) v=apr (0, 7, 7).

(3.1) All the components of @ are marked, and ¢+0. (4, 7) is an
intermediate reduction pair. Let ¥ be an i-least component of «.
(¢, 7") is the next sp.

(3.2) All the components of @ are marked and a=0. Let 7 be
an i-least component of a. (4, 7’) is the next sp.

(3.3) [1°] Here we assume that v=(¢, b, A§v). Not all the com-
ponents of Ay are marked and the condition [1°] stated above applies.
(4, 7) is an intermediate reduction pair and (¢, v) is the next sp.

[2°] Here we are back to the common notation: vY=(%, a, @). Not
all the components of & are marked and [1°] is not the case. Let v’
be an i-least component of @. (%,7') is the next sp.

(4) v=apr((0, k+1),7,7). If there is a unique occurrence of
apr ((0, k), 7, 7), then mark (underline) it as a marked place.

(4.1) All the components of & are marked, a=0, 7<%, and ¢ is a
successor element. (J,7) is an intermediate reduction pair. Let 7' be
an i-least component of a. (¢, 7’) is the next sp.

(4.2) All the components of a are marked and (4.1) is not the
case. Stop. (4, 7) is the last reduction pair.

(4.3) [1°] 7=(t, b, M#V), not all the components of N#Y are mark-
ed and the condition in [1°] is satisfied. (J, 7) is an intermediate reduc-
tion pair and (¢, v) is the next sp.

[2°] 7=(, a, @), not all the components of a are marked and [1°]
is not the case. Let 7' be an i-least component of a. (%,7') is the
next sp.

(5) v=apr((n, k+1),7,7) for an n>0. If there is a unique oc-
currence of apr((n, k), j,7), then mark it as a marked place. Let
Tnt1=Vuya(d, 7)-

(5.1) 4=1,,, and all the components of @ are marked.
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(5.1.1) a=0, j<7 and ¢ is a successor element. (7, 7) is an inter-
mediate reduction pair. Let 7' be an ¢-least component of «a. (4, 7")
is the next sp.

(5.1.2) (5.1.1) is not the case. Stop. (J,7) is the last reduction
pair.

(5.2) i=1,., and not all the components of & are marked.

[1°] Y=(¢, b, N§Y), %,.,=t, not all the components of Afy are
marked and [1°] applies to (4, 7). (4,7) is an intermediate reduction
pair and (¢, v) is the next sp.

[2°] v=(3, a, @), ©,.,=1%, not all the components of & are marked
and [1°] is not the case. Let 7' be an i-least component of a. (¢, ')
is the next sp.

(5.8) and (2') %,.,<% We shall define a sequence of indicators
I, 1, *++, by +++ such that 4,.,=1,<l,< --- <% and, for each m, [, oc-
curs in 7. Evidently the sequence is finite. Let I, be the last indi-
cator in the sequence. Then the next sp is defined to be (I,+1, 7).

Put I,=1,,, and j,=1,+1.

(*) Consider the j-approximations of v. Suppose Y=apr ((7,8),J,7)
for some (7, s). If there is a unique occurrence of apr ((», s—1), 7, 7),
then mark it as a marked place. If (4, 7) satisfies the condition in
one of the preceding cases, viz. (1)~(5.2), then stop. [, is the last
indicator of the desired desired sequence. Otherwise (5.3) must be the
case again; r>0, s>0 and v,.,(j, ¥)<i¢. Then let l,=w»,,,(J,, 7) and let
J=l+1.

Consider the j,-approximations of ¥ and go over the speculation
described in (*) above, replacing j, by j,. If one of the preceding
cases applies to (J, 7), then stop; I, is the last entry of the sequence.
Otherwise define I, and j, and repeat (*).

From the definition of I,, 1,,=v,..(Jn_,, ¥) for some » and. [, _,,+1=
T <lw<1, hence I,,_,<l,<%. This completes Definition 1.1.

Remark. When the process (2') stops, only (2) can apply, since ¥
remains unchanged.

DEFINITION 1.2. 1) Let j(=0,+1), j(=0L+1), ---, j(=l,+1) be
the indicators defined for (2') and (5.3) in Definition 1.1. Then each of
Gy ), (Fs )y ==+, (Ju, V) is called a transitory scanned pair (tsp) (for
(4, 7). A tsp is normally distinguished from sp’s, although many pro-
positions are stated for both sp’s and tsp’s. Note that (7,, 7), the last
tsp, is a sp which succeeds (7, 7).

2) Let (J,7) be a sp and (¢, 7') be the next sp. Then (g, 7) is call-
ed the immediate predecessor of (i, 7') and (%, 7') is called the immediate
successor of (4,7). The notion that one sp is the predecessor or a
successor of another, not necessarily an immediate one, is defined
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‘naturally.

The same terms will be used for tsp’s.

3) A sp, say (4, 7), is called static if (2') or (5.3) applies to (7, 7);
otherwise it is called non-static.

It is obvious that the case conditions in Definition 1.1 exhaust all
the possibilities. The soundness of Definition 1.1 will then be establish-
ed by Proposition 1.1 below.

The following are some consequences of the definitions. Let us
remember that all the notions have been defined relative to (j,, &),
where j, is an indicator and & is a connected o.d.

ProposiTiON 1.1. 1) For (j,7) a sp its immediate predecessor
and its immediate successor (if existent) are unique.

2) All the sod's and transitory sod’s are connected.

3) Let (4,7) be a mon-static sp and let (k, 6) be its tmmediate
successor, where v=(i, a, ®). Then k=1 and 0 is an i-least component
of. a except for (2.1). For (2.1) v=(@, a, a+1) and 6 s an i-least
(i, 0)-dominant of ¥ (of ).

Let (k, 0) be a sp whose immediate predecessor is mon-static and
where 0 is a component of & in Y=, @, &). Then (7, 7) s the imme-
diate predecessor of (k, 0) for some j, hence k=1.

4) In the sequence of sp’s, there cam mever be two consecutive
static pairs.

5) Let (k, 0) be a successor of (4,7). If (4,7) is static and (k, 0)
is its 1mmediate successor, then j<k and 6=7. Otherwise 0 is a
proper sub-o.d. of 7.

PROPOSITION 1.2. The sequence of sp’s is finite; hence the exist-
ence of the last reduction pair for any given (j, &@). The last reduc-
tion patr s uniquely determined for (j, &).

Proof. From 2), 4) and 5) of Proposition 1.1.

PRrROPOSITION 1.3. If (4, 7) 4s the immediate successor of a static
pair, then the case (1) in Definition 1.1 does not apply to (7, 7).

ProposITION 1.4. 1) Let (4,7) be a sp and let n=(,b, &) be a
sub-o.d. of ¥ such that a component of & say \, contains a sod 0.
(So (k, 6) is a successor of (j,7) for some k.) Then (I, \) is a sp
which is a successor of (3, 7) and is a predecessor of (k, 6). (The cases
where (I, N)=(k, 0) is included.)

We say in such a case that (I, N) is between (7, 7) and (k, 0).

2) Let 7 be a sod (of (4, ®)) and (p, 0) be a successor of ¥ where
0 s a proper sub-o.d. of 7. Then there is a sub-o.d. of 7, say (g, b, B),
such that q<p and 0 is a component of .
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Proof. 1) By induction on the number of sp’s between (7, ¥) and
(k, 0). If (k,0) is the immediate successor of (j,7), or (j,7) is static
and (k, 0) is the second successor of (j,7) (cf. 4) of Proposition 1.1),
then »=7 and the proposition is obvious from 3), 4) and 5) of Proposi-
tion 1.1. If the above is not the case, let (p, £) be the first sp after
(4, 7) such that £ is a proper sub-o.d. of 7. (The existence of such
pair is guaranteed by 3), 4) and 5) of Proposition 1.1.) For every %
which satisfies the condition of the proposition and which is contained
in £, the induction hypothesis applies to (p, k), » and 6. If 7 is &,
then the basis of induction applies.

2) If the immediate predecessor of (p, d) is non-static, then p=gq
by 3) of Proposition 1.1. If it is static, then it is (k, 6) where k<gq
by 5) of Proposition 1.1. Since no two consecutive sp’s are static (4)
of Proposition 1.1), the immediate predecessor of (k, d) is not static.
Applying the first part of this proof to («, d), we obtain a (g, b, B)
where ¢<Fk, hence g<p.

ProprosITION 1.5. Let (¢, a, @) be any sub-o.d. of & Then there
18 at most one marked component of &. Furthermore a marked com-
ponent of & (if there is one) is the i-greatest (the greatest with respect
to <;) component of .

This leads us to the following important conclusion:

COROLLARY. The clause in Definition 1.1 “all the components of
a are marked” (cf. (3.1), (3.2), (4.1), (4.2) and (5.1)) can be equivalently
stated as “a is commected and is marked”.

Proof of Proposition 1.5. Suppose that a component of & is mark-
ed at the stage of (j, 7) (hence 7 contains (¢, @, @); by the definition of
marked places). Let 7 be a component of @. Due to the uniqueness
condition for a marked place, there is a unique occurrence of 7 among
the components of @. Let 6 be another component of a. Since 7=
apr ((»n, k+1), j,v) and n=apr ((n, k), j, ) for some (n, k), j<i and
1=v,.,(4, 7). So in particular 0 is j-active in 7. If we suppose & con-
tains apr ((n, k), j, 7) (as a subsection), then the 7 in @ would not have
been marked. So ¢ j-omits apr ((n, k), 7, 7), hence 6<,;7. So a marked
component of a (if any) must be greater than all other components of
a (with respect to <,).

ProrosITION 1.6. In (3.3), (4.3) and (5.2) in Definition 1.1, 7' s
not marked. (In [1°] 7' is denoted by v.) Namely if (4,7) is a sp,
7Y=(1, a, @) and the next sp is (4,7'), where ¥ is an i-least component
of «, then ' is mot marked.

Proof. This is a corollary of Proposition 1.5 and the condition
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that not all the components of o are marked.

PropPOSITION 1.7. 1) In the cases (3.1) and (3.2) of Definition 1.1,
the immediate predecessor of (J, ) is mon-static and j>1.

2) If (8.2) applies to a sp (¢, V), then it cannot be the initial
pair. Therefore the following situation must arise; there is a sp of
& say (4, 7) such that Y=(t, b, NEv) and [1°] applies to (4, 7).

3) If [1°] applies to (j, Y) where Y=(t, b, \#v), then t>0.

Proof. 1) In these cases « is connected and marked (cf. Corollary
of Proposition 1.5), hence there is a sp, say (I, 0), which precedes (7, 7)
such that d=apr ((n, k+1), I, ), a=apr ((n, k), I, ) for some (n, k) and
this occurrence of « is the only l-active one in 4. This implies that
’1:2’1),,+1(l, 5)'

Suppose that the immediate predecessor of (j,7), say (&, 7), is
static. Then k<j<7 (cf. (5.8) of Definition 1.1 and 5) of Proposition
1.1). The immediate predecessor of (k, 7) is non-static (cf. 4) of Pro-
position 1.1). So by 8) of Proposition 1.1 %k occurs in ¢ and is connect-
ed to v (hence to ). But then i=wv,,,(l, /) implies k>, contradicting
k<4, which was claimed above. Thus, the immediate predecessor of
(7, 7) is non-static.

By 38) of Proposition 1.1 applied to (g, ¥), j occurs in ¢ and is con-
nected to 7, hence to a; so v,..(l, 0)=17 implies j>¢. Suppose j=1.
Then « is j-active in 7, so the equations Y=(%, a, @) and Y=apr (0, 7, 7)
imply a<;,,7. Furthermore j=1 and Y=apr (0, 7, v) imply that the
outermost indicator of @<i. So a=apr ((», k), 0, §), hence i=wv,,.(I, 3),
implies that #=0. But then v<,.,«, yielding a contradiction. There-
fore j>1.

2) The first statement is obvious, since otherwise @ could not be
marked in v=(¢, 0, @), v being the 0™ ¢-approximation of itself. By 1)
here, (t, v) is not the immediate successor of a static sp. Therefore v
occurs in a sod v:v=(t, b, Mv). (cf. 3) of Proposition 1.1.)

3) Immediate from the condition of [1°] and 1) of this proposition.

ProrosiTION 1.8. If (4,7) is the last reduction pair, then it is
either of the form (4, a, 0) or (3, @, B+1), or of the form (3, a, &) where
a s (connected and) marked. If (j,7) is an intermediate reduction
pair, then either 7Y=(i, a, ®) where & is marked, ¥ is of the form
(¢, a, B+1) or [L°] applies to (7, 7).

PROPOSITION 1.9. Let (7, 7).be a sp of & with respect to j,. Con-
sider the situation where we also construct the sequence of sp’s of 7
with respect to j. Suppose also that the last reduction place of & s
of the form (1,0, 0) or (I, b, B+1) (i.e. either (1) or (2) of Definition
1.1). Then a sp of (j, &) which is a successor of (j, ) is also a sp
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of (4, ), hence the reduction place of (4, 7) is the same as that of (4, &).

Proof. We prove the proposition together with the following
statement: .

(*) Any connected sub-o.d. of v which is marked for (7, 7) is
marked for (j, &) also.

The statements are true for (j, 7). Let (k, d) be a sp of (4, @)
which is a successor of (7, 7¥) and suppose the statements hold for it.
Mark an appropriate sub-o.d. of & with respect to k& (if there is any).
This process is the same for & and for v. By our hypothesis, unless
0=(,b,0) or 0=(I, b, B+1), there is a further sp for a. If (k, 0) is
the last reduction pair of (7, 7), then ¢ is of the form (¢, a, @) where
« is connected and marked and certain other conditions are satisfied
(cf. Proposition 1.8). But for (*) o is marked also for &, and “other
conditions” hold for & as well. (Examine the conditions in (4.2) and
(5.1.2) of Definition 1.1.) Therefore 6 must be the last reduction place
of &, contradicting the assumption. Therefore (k, /) has a further sp
of (4,7) also. Then the construction of its immediate successor is the
same for (j, &) (cf. the conditions in (8)~(5) of Definition 1.1 except
(4.2) and (5.1.2)). If 6 is the last reduction place of (j,, &) (hence is
of the form (I, b, 0) or (I, b, B+1)), then the same is true for (7, 7).

The following two propositions are important and useful.

ProrosiTION 1.10. In (4.1) and (4.2), namely vY=apr ((0, k+1),
7, N=(@, a, @) and a is (connected and) marked (cf. Corollary of Propo-
sition 1.5), a=apr ((0, k), 7, 7).

Proof. v=apr ((0, k+1), 7, V)=(1, a, @) implies that j<4. Since «
is marked, there is a sp of &, say (I, §), such that a=apr ((r, s), I, 9)
and d=apr((r, s+1),1,0) for some (r,s). So i=wv,.(, ). Suppose
r+#0. If we let »=apr (0,1, d), » is a connected sub-o.d. of ¥ such
that the outermost indicator of 7 is greater than ¢ (since i=wv,.(I, 0)
and »>0) and all the indices connected to 7 are >4; but this would
mean that 7 is j-active in v, and hence the outermost indicator of %
is j-active in 7 and is greater than v,(j, v) (=%), which is impossible.
So r=0. Therefore a=apr ((0, s), /, 8) and v,(I, 6)=1.

Since i=wv,(l, 6) and a=apr ((0, s), I, 6), the outermost indicator of
a is >4. Therefore a@=(i, b, £) for some b and £, which means a<b
(Proposition 0.8). Suppose a=#apr((0, k), 7, vY). Then « contains
apr ((0, k), 7, 7), so a>b (Proposition 0.8), yielding a contradiction. So
a=apr ((0’ k)’ J ’Y)'

ProrosiTiON 1.11. In (5.1) of Definition 1.1 where Y=(i, a, &)=
apr ((n, k+1), 7, 7), >0 and a is marked, a=apr ((», k), 7, 7).

Proof. Since « is marked, a=apr ((r, s), [, 0) and d=apr ((r, s+1),
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l, 0) for some [, 4, » and s. This implies ¢=v,.,(, 6); hence i=1,,,=
v,.,(, 0). Suppose « is not apr ((n, k), 7, 7). Then apr ((n, k), 7, 7) is
contained in a properly. So a<,.,7 (since v is the (n, k+1)™ j-
approximation of itself). On the other hand v<,,,&@ since a=
apr ((r, s), I, ) and 0 contains . But this contradicts the result ob-
tained above. Therefore a=apr ((n, k), 7, 7).

ProPOSITION 1.12. If a sp (4, 7Y) satisfies the condition [1°], then
only ome of the cases (3.3), (4.3) and (5.2) applies to it; hence the suf-
Sficiency of comsidering two cases [1°] and [2°] only for (3.3), (4.3) and
(5.2) in Definition 1.1,

Proof. By virtue of 1) of Proposition 1.7 (applied to (¢, v)), it is
obvious that [1°] does not apply to (2) or (5.3). We shall assume that
one of the other excluded cases applies to (4, ) and derive a contra-
diction.

Let v=(t, b, A§v). The corollary of Proposition 1.5 and the con-
ditions (8.1), (3.2), (4.1), (4.2) and (5.1) imply that X\ is empty and v
is marked. So v=(¢, b, v), v=(¢, 0, @) and t>1% by 1) of Proposition 1.7.

Suppose (3.1) or (3.2) applies to (4,7). Then v=apr ((+, s), k, &)
~ for some & h, r and s, and t=wv,,,(h, £). So t<1i, contradicting ¢>71,
which was claimed above. So neither (3.1) nor (3.2) applies.

Suppose (4.1) or (4.2) applies to (4, 7). Then by Proposition 1.10
v=apr ((0, k), 7, 7). So t=t=v,J, ¥), which contradicts t>1.

Suppose (5.1) applies to (4,7). Then by Proposition 1.11 v=
apr ((n, k), 7, 7), 80 1>v,..(4, Y)=t, which contradicts ¢>1.

§1.2. Reduction; non-critical case

DEFINITION 1.3. Reduction of the last reduction place. Let (¢, v)
be the last reduction pair of (4, @&); hence v is the last reduction place.
We shall define a sequence of 0.d.’s, say {Yn}m, corresponding to (¢, v).
Recall that [1°] yields an intermediate reduction pair (cf. Definition
1.1), hence [1°] is not involved here. We refer to the case numbers
and the notation in §1.1.

(1) v is of the form (3, @, 0).

a) a=0.

a.l) a is a limit element. Let {a,}. be an increasing sequence of
elements of A which converges to a; viz. a, | . Define v,=(1, a,, 0).

a.2) a=b+1 and t<+¢. Define {v,},. as follows. v,=(¢, b, 0); Y., =
(2, b, V).

a.3) a=b+1 and t>%. Let h be the least indicator among those
which occur in the sp’s of &.

a.3.1) h>1.

1°. I is limit. Let ¢, 1. Define v,=(%, b, (¢, 0, 0)).
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2°. I has the maximal indicator v and A4 is limit. Let a, | 4.
Define v,,=(3, b, (¢, a,, 0)).

3°. I has the maximal indicator ¢ and A nas the maximal element
e. Define {v,},. as follows. £,=(, ¢, 0); £,,,=(, ¢, £,) and v,,=(4, b, £,,).

a.3.2) h<<. This case is called a “critical” case and requires a
special care in the subsequent discussion. We shall deal with this case
in §4; for the time being we leave the reduction sequence undefined.
This does not affect other cases, -as there is only one last reduction
pair for any (7, &).

b) a=0.

b.1) < is limit, ¢, 4. Let v,=(%,., 0, 0).

b.2) i=1,+1.

b.2.1) A is limit; @, ] A. Let v,,=(%, @, 0).

b.2.2) A has the maximal element, say e.

b.2.2;1) t>¢ and h>i. (See a.3) for h.)

1°. 4,11 Define v, by v,=(, €, (4, 0, 0)). :

2°. I has the maximal element ¢. v,=(i, ¢, (¢, ¢, -+, (¢, ¢, 0)---)).

b.2.2;2) t>% and k<% (or h<4,). This is another critical case and
will be dealt with in §4.

b.2.2;3) t<7, or t<i,. Y,=(ty €, -+, (%, €, 0) +++).

b.8) i=0. Let v, be 0£0% --- £0 where 0 repeats m-+1 times.

(2.2) v is of the form (¢, @, ®+1) and neither (2.1) nor (2') is the
case. We name this case as c).

c.l) i<t. Let v,=(, a, ¥)¥ --- £(1, @, @), where (3, a, @) repeats
m—+1 times.

e.2) t<i.

c.2.1) a is a limit element; a, | a. v,=(, a.,©1, a, @)).

c.2.2) a=b+1. y,=(4,b, (1, a, @); Yur.=(%, b, v,,).

c.2.3) a=0 and t=¢. v,=(, a, )% --- (4, a, @)80,,, where (4, a, @)
repeats m—+1 times and p, is defined as follows.

1°. ¢=0 or ¢ is limit. p, is empty.

2°. i=1%+1 and a, 1 4. 0,=(%, a., (i, a, @)).

3°. i1=1,+1 and ¢ is the maximum element of A.
pm:(im e -, (iy ¢ (1, a, a)# te #(i’ a, @))---), where (iO, e) and (i’ a, le)
repeat m-+1 times.

c.2.4) =0, t<t¢ and 4, 4. We may assume that ¢,>¢. Define
”m=(im, 0’ (?" a, le)).

c.2.5) a=0, t<¢ and i1=1,+1.

1°. a,1A. v,=(%, a., (1, a, @)).

2°. ¢ is the maximum element of A.
”m=(720’ 6 ('iOy e, (7:’ a, C()# s #(i: a, a)) o ') where ('50, 6) and (i’ a, 0[)
repeat m-+1 times.

We often denote the (¢, @, @) in those definitions by g.
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In the following v is of the form (7, @, @), where « is a limit o.d.

(4.2) v=apr((0, k+1), ¢, v), a is connected and marked (cf. the
corollary of Proposition 1.5), and a and ¢ satisfy one of the following
conditions; a0, a=0 and t=%=0, or =0, t<% and ¢ is a limit ele-
ment. (Note that ¢<7 must hold in this case.) We name this case as d).

d.1l) a,.la. v,.=(,a,, a). v

d.2) e=b+1. v,=(4,b, ---, (4, b, af .- fa) ---) where (7, b) and
repeat m+1 times.

d.3) =0, t<i and %, | ¢, where 7,>t. v,=(i,, 0, @).

d.4) a=0 and t=1.

d.4.1) 4,14 v,=af-.-- gagp,, where o repeats m+1 times and
On=(1p, 0, @).

d.4.2) i=0. y,=af--- fa.

(5.1.2) v=apr ((n, k+1), t, v), where n>0. a+#0, =0 and ¢t=:t=0
or =0, t<% and ¢ is limit. « is connected and marked. a=apr ((n, k),
t, v) by Proposition 1.11; so t<i=v,.,(t, V)=1%,,. We name this case
as e).

el) a,la. v,=(,a, a).

e2) a=b+1. v,=(,0b, ---, (1, b af - fa)---).

e.3) a=0 and ¢t<i. Let 4,17, where t<7, is assumed for every
m. Define v,=(1,, 0, @).

e.d) a=0 and t=1.

edl) 1,114 vy,=at---tago, where p,=(i,, 0, @).

ed.2) 1=0. y,=af--- ta.

Note. In c.2.4), d.3) and e.3), the condition that ¢,,>¢ is not neces-
sary; it helps when making some statements uniform in m.

§1.3. Reduction sequences: non-critical case.

For each (7, 7) a sp (of (4, @)), we define a sequence of o.d.’s, say
{Yn}m, Which is called the reduction sequence for (j, 7) (or 7). In most
cases 7, is obtained from 7 by replacing the last reduction place, v,

by the corresponding v,,, viz. “/,,,='Y(vm)='>'(;j ) Precisely the reduction

is defined by induction on the number of sp’s between (j, v) and the
last reduction pair. Here we assume that the last reduction pair is
not a critical case (cf. a.3.2) of Definition 1.3).

DEFINITION 1.4. Let (¢, v) be the last reduction pair. Then the
reduction sequence for (¢, v) is the {v,}. defined in Definition 1.3.

Let (4,7) be a sp and (I, ) be its immediate successor. If the
transition from (7, v) to (I, ) is not by [1°] and not by (2.1), (3.1),
(4.1), (56.1.1) of (5.3), then 7m=’7(g ), namely 7, is obtained from 7 by

replacing 6 by §,., which is assumed to have been defined.
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For [1°] ((3.8), (4.3) or (5.2)), we define the reduction sequence for
v as follows. Let v=(¢, b, \§v). Recall that v=(4, 0, &) where ¢>¢
(cf. Proposition 1.7). By the induction hypothesis, {v,.}. has been de-
fined for v. Put g,=(t, b, \dv,,).

[1°.1] b, 10. Yu=(, bn, NEV)ELL,.

[1°.2] b=c+1. k,=(t, ¢, \Y); £nii=(, €, £1); Yn=EnHlln.

[1°.3] =0 and ¢t,1t. We may assume that ¢,>¢ for all m.
Vo= (tnb, NEVYELL,.

J1°.4] =0, t=q+1 and a, | 4. 7,=(q, a., MV)EL,.

[1°.5] b=0, t=q¢+1 and A has the maximal element e. k,=
(@, & MpY); Emei=(a, €, £n); Vn=En$lin. , ‘

Recall that ¢t=0 is not possible for this case.

For (2.1), we define the reduction sequence for v as follows. Put
¢r=(, 0, @). Let a, be obtained from a by replacing ¢ (the next sod)
by é..

(2.1;1) j<i. Define 7,=(1, 0, @, %(%, 0, t2)).

2.1;2) j=1. Y.=pf--- gpuic, 0, @, 8(i, 0, £)) where p repeats
m—+1 times.

For (3.1), we define the reduction sequence for 7 as follows.

Suppose Y=(%, @, ). Then the next sp is (¢, @) (cf. the condition
in (38.1) and the Corollary of Proposition 1.5). By the induction hypoth-
esis, {®,}. has been defined for a. Recall that a=0.

B.51) a,ta. T.=@,a, @), o, &).

3.1;2) a=b+1. 7,=@,q, a,)4¢, 0, -+, (3, b, @) ---).

For (4.1), we define the reduction sequence for 7 as follows. Recall
that v=(4, 0, @) where a=apr ((0, k), 7, ¥)=apr ((0, k), ¢, 7) (cf. Proposi-
tion 1.10) and that the next sp is (¢, @) (cf. Corollary of Proposition
1.5). Here i=1%,+1. By the induction hypothesis the reduction se-
quence for (i, @), say {&,},, is defined.

4.1;1) j<i. 7.=(, 0, @40, 0, @)).

4.1;2) j=1. Y,=af ... faf(s, 0, a,¥(%, 0, @)).

The reduction sequence for the case (5.1.1) is defined as follows.
Recall that v=(¢, 0, &), where i1=1,,,=v,.(J, 7), a=apr ((n, k), 7, V)=
apr ((n, k), ¢, 7) (cf. Proposition 1.11), 4=%,+1 and the next sp is (¢, «).
By the induction hypothesis the reduction sequence for (¢, @), say {®,}.
is defined.

5.1.1;1) j<i. 7.=(0, 0, a,i(%, 0, @)).

(5.1.1;2) j=1i. V.=af--- tai(i, 0, @,%(i, 0, @)).

Note that the definition is completely parallel to that for (4.1).

If the transition is by (5.3) or (2'), then put 7,=0,.

As was remarked after Definition 1.1, 7, for (2') assumes one of
the forms defined for c.2.8), ¢.2.4) and (2.1).

This completes the reduction of & with respect to 7,. The reduec-
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tion sequence for & will be denoted by {@,},. Note that (3.2) is not
an exceptional case; if (¢, v) satisfies the condition in (8.2) and v=(3, 0, @),
then v,=(1, 0, a,,). ,

It turns out that the reduction sequences serve as the funda-
mental sequence of ordinal diagrams.

ProrosiTION 1.13. Let 7 be a sod of (4, @), and let {7,}. be the
reduction sequence for Y. If ¥ is of the form (i, a, @), ¥ is not the
last reduction place and mone of (2.1), (4.1) and (5.1.1) is the case,
then 7, contains a component of the form (i, a, ,,), where &,, is obtained
from a by replacing its least component by an o.d. of the corresponding
sequence.

Proof. If the transition from 7 to the next stage is not by one
of [1°], (2.1), (3.1), (4.1) and (5.1.1), then 7, =(i, @, @,) has the form
descirbed above. If it is by [1°] or (8.1), then (¢, @, @,) is one com-
ponent of v, (cf. Definition 1.4).

For the title of the next section, we define one expression which
is not very rigorous but is rather convenient.

DEFINITION 1.5. An o.d. a dominates another o.d. 8 (with respect
to j an indicator) (when j is given and fixed) if 8<;a. «a is said to
dominate a sequence {a,}, (with respect to j) if a,<;a for every m.

§2. An o.d. dominates its reduction sequence; non-critical case

In this section we shall show that &,<;&@,+, and &, <; & for every
m (cf. §1.8 for the notation) except for the case where the last reduc-
tion place is critical (i.e. a.3.2)). For the purpose of this section, we
prove the following proposition.

ProprosiTION 2.1. Let (4, 7) be a sp of (4, @) and let {V,}. be the
reduction sequence for Y. Let h* be an indicator which 1is either j
or which occurs in a sp which precedes (j, 7). Let h be the least of
such h*’s. If (3, ) happens to be (j,, &) the initial sp, then h=7,=j.
When we wish to emphasize that h depends on v, we write h(Y) for h.

Now the following hold for every m and every ! an indicator
satisfying A <I1<j.

1. 7.<n.

2. The maximum, h-active value of 7,< the corresponding value
of 7.

3. Let ¢ be an [-section of v,. Then <.

4 VW< Vmrre

5. Let o be an l-section of 7,. Then ¢<;7V,:.

As a special case of the proposition, we obtain our first result.

THEOREM 1. Let & be a connected o.d. and j, be an indicater.
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Then there is a jrincreasing sequence of o.d.’s which is dominated
by & (with respect to j,). Furthermore there is a uniform method to
construct such a sequence for every & and j,.

Uniformity of the construction is obvious from Definition 1.3 and
1.4.

We prove Proposition 2.1 in two parts: for the last reduction
pairs (§ 2.1) and for the induction stages (§2.2).

In the course of the proof, the following definition will become
necessary.

DEFINITION. Let 7 be a non-connected o.d. Then we define
apr ((n, k), 7, Y) to be the (n, k)" j-approximation of the j-greatest
components of 7.

§ 2.1. Proposition 2.1; Basis.

The basis of the proof is carried out according to the cases in
Definition 1.3. We quote the numbering there. Since many cases are
trivial, we shall pick up a few points which need some explanation.

(1) v=(,a,0).

a) a=0.

a.l) v,=(0, g, 0)<,(%, @, 0) and (¢, @n, 0)<(%, @nyyy 0) are obvious
for all I. The only section of v, is 0. The value (4, a,)<(%, @).

a.2) y,=(%, b, 0)<(t, b+1, 0)=v for every Il. Suppose v,<;v for
all I. Then v,,,=(®, b, v,)<,v is obvious if [>4. The i-section of v,,;
is v,, and v,<,v by the hypothesis, hence v, ,,<;v. There is no other
section. Therefore v,.,<,v follow for all [. wy(h, v,)=(, b)<(z, b+1)=
vk, V). Yu<iVYpy, for all I and v,_,, the i-section of v,, <, V..

a.3) v=(i, b+1, 0) and ¢<1.

a.3.1) h>t. v,=(1,0b, V') for some V' (depending on m) for any
of the three cases. So v,<,v if [>4. Since h>t¢ this is sufficient.
There is no section of v, for such I. v,<;V... is also easily proved.
Since h>% the large values which occur in v’ do not matter when con-
sidering h-active values.

b.2.2;1) h>%. So y,<,v is I>14, Since h>1>1,, this is sufficient.

2.2) v=(, a, a+1).

c.2) t<s.

c.2.1l) v,=(1, an, (¢, a, ))<(t, a, x+1)=y is obvious if I[>4.
(¢, @, @)<,;v. Suppose l<i. Any l-section of v, is an l-section of «,
hence is an [-section of yv. Thus follows vy, <,y for all . The values
do not increase.

d.4.1) v=apr((0, k+1), ¢, v)=(%, @, ®), where o is connected and
marked, =0, t=tand 7, ] 4. yv,=af---fafp,. a<(i0 a)if I<i=
t. 0.<.1, 0, @) is also obvious.
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Note that a.3.1) and b.2.2;2) are the only cases where the lower
bound % is necessary for ! and d.4) and e.4) are the only cases where
the upper bound is necessary.

§ 2.2. Proposition 2.1: Induction step.

Assume that the proposition has been established for the succes-
sors of a sp (4, 7). Then we prove the proposition for (7, 7). Let
7=, @, ®)=(3, a, @' §7'), where (¢, ¥’) is the next sp. a’ may be empty.

[1°] of (3.3), (4.3) or (5.2). Here we adhere to the notation of
[1°]: 7=(¢, b, N #v) and v is a t-least component of A #v. We write 0
for M.

[1°.1] (2, ba, 0)<i(t, b, 0) and (¢, b,, 0)<;(t, buyiy, P) are obvious. For
any !, an l-section of (t, b,, p) is an l-section of ¥ and of V,,,. Let o,
be M #v,. Then by the induction hypothesis for any I, M =h(,)<I<LtL,

Pa<i0 and 0,<;0p; .

So if I>t¢, then

/"mz(t’ b» :Om)<l(t’ b’ 40)
and

(t7 b’ lom)<l(t, b! lom+1) .

Suppose h=h(7)<I<t. h'<h. Any o an l-section of (¢ b, p,) is an
l-section of p,, hence by the induction hypothesis <, 0 and 6<; 0, ..
Therefore

(ty b9 pm)<l(t’ b’ 10) and <l(tr b, pm-H)

for all {>h. This includes the case !=j. h-active values do not in-
crease.

[1°.2] For k,, see a.2). For p,, see [1°.1].

(2.1;1) 7=, 0, a+1) where j<¢ and t=1,+1. Let (¢, ) be the
immediate successor. The proposition holds for it by the induction
hypothesis. In particular 4,,<,0 for every I, h<I<i. [ includes j.

Case 1. Y=apr (0, j,7). Then it can be easily shown that p=
(%, 0, ®)=apr (0, 7, #£). We need a lemma for this case.

LEmMmA 1. apr (0’ jr ’Ym):ﬂ, vz(j; lym):'io and Tm=2apr ((1’ 1)) j: ’Ym)'

Proof. By the induction hypothesis w7, 8,.)<v,(4, 5)<(4, 0) and
0n<:0<; . If w(g, 0,)=(3, 0), then v(j, 6)=(3, 0). Let o=apr (0, 7, J,,).
Then o<, apr (0, , 6)<, # (since fz=apr (0, 7, &)). Also, 6,<,0<, a<,p,
hence a, <, . (4, 0, #)<,0<,a, since i>1%, and d is an (¢, 0)-dominant
of a. Therefore a,# (4, 0, £)<,®, and so 7,=(, 0, a, # (i, 0, 1)) <,
(%, 0, ®)=p. Thus pg=apr (0, j, Vu).

From this follows the latter equation immediately.
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Now the proof of the proposition for Case 1 of (2.1;1). 7,.<;7Y
since apr (0, 7, 7,)=#¢<,7. Suppose h<I<j and o is an l-section of 7,,.
Then j<+t assumes that o is either an I-section of §,, in which case
0<,0 and 0<,0,,, by the induction hypothesis, ¢ is an I-section of «
or o is . In any case 0<,;7 and 0<;7,., are obvious.

Case 2. 7=apr ((0, k+1), 7, 7). Then it can be easily shown that
r=(i, 0, @)=apr (0, k+1), 1, ) and apr ((0, k), 5, #)=apr ((0, &), 7, 7).

LeMMA 2. apr ((0, k+1), J, Yu)={, v:(J, Yu) =1, and
Tm=2apr ((19 1)7 77»)'

Proof. 0,<;0<;p. So if we let p be a component of a,,,:a(? ),
p<;p. Therefore, either v,(j, 0)<w,(J, ), or =holds and there is amp,
1<p<k, such that

apr ((0, p), 4, p)=apr ((0, p), 7, ) ,

and apr ((0, p+1), 4, 0)<.p,apr (0, p+1), 7, ). A $(, 0, )<, s
established as in Lemma 1, so ¥,,<,;, . Therefore g=apr ((0,%-+1), 5,7,).
From this follow other equations.

The proof of the proposition for Case 2 is carried out in a manner
similar to Case 1. Use the fact that apr ((0, &), 4, V.)=apr ((0, k), 7, 7)
and apr ((0, k+1), j, V,)=p<.,Y=apr (0, k+1), 5, 7).

Case 3. Y=apr ((n, k+1), j,7) for some #>0 and v,,,(j, 7)=1.
We can show that p=apr((n, k+1), 7, #) and apr((n, k), j, p)=
apr ((n, k), J, 7).

LEMMA 3. apr (n, k+1), §, V)=t Vaea(d, Yu)=1s and Yn=apr (n+
1’ 1)7 ji 7m)'

Proof. As in Lemma 2, for any o a component of «,, p<;p.
Tn<itift is also established in a similar manner. So the desired equa-
tions follow.

The proof of the proposition for Case 3 follow from Lemma 3.

(2.1;2) 7=, 0, a+1) where j=4 and i=4,+1. Let (3, 0) be the
next sp and let {f,.}., be its reduction sequence. am=a(g . pu< for

every l. a,#(i,0, #)<,a since 0 is an (%, O)-dominafx’lt of a. So
On=(1, 0, @, % (3, 0, #))<,7. Let h<l<% and let ¢ be an I-section of
On- Then either ¢ is an Il-section of @, ¢ is an l-section of §,, or c=p.
In any case 0<;7. So p,<,7Y for every such 7. Other relations are
easily established.

38.1) v=apr(0, 7, V)=(, a, @), a« is marked and a=0. The im-
mediate successor of (7, 7) is (i, @), so the proposition holds for a.
In particular a,<;a and a,<,«,.,. Therefore

(i9 a’y am)<l(i: a, CY) a'nd (7’7 a, am)<l(i1 a” am+1)
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if 1>4. Suppose h=h(7)<l<% and ¢ is an l-section of (¢, a, @,). Then
" h>h(a) and o is an l-section of «,. So by the induction hypothesis
o<,a and 0<,0y,,. SO

(1:9 a, am)<l(7:y a, am+1) and (1:, a, thm)<l(7:, a, C()

for all I>h. h-active values of (%, @, @,) (except (7, @)) are h(x)-active,
hence the induction hypothesis applies. For the second term of 7, in
both cases of (3.1), the desired conditions can be proved easily.

(4.1;1) In order to deal with (4.1;1), we first prove the following
lemma.

LeMMA 4. apr((0, k), 7, Vw)=a, v(J,Yn)=1% and ¥,=apr (1, 1), 5, V...

Proof. By the induction hypothesis, «, <;& since A <j<t, where
h=nh(x). Also, a=apr ((0, k), j, @) (cf. Proposition 1.10). So a,<;«
implies that either vy(j, @,)<v,(J, @) and the indicator of the latter is
1, or there is a p, 1<p<k, such that

apr (0, p—1), j, a,)=apr (0, p—1), j, @)
and
apr (0, »), 4, a,)<:apr ((0, p), J, ) .

On the other hand apr ((0, k), 7, (4, 0, @))=c. Therefore apr ((0, k),
7, Vw)=a and «, j-omits «. The last two equations follow from this.

Now the proof of the proposition for (4.1;1). 7,.<;7 since they
share the same (0, k)™ approximation (cf. Lemma 4 above) and 7,
has no (0, k+1)"™ approximation, while v does have the (0, k+1)™
approximation.

Suppose ~h<I<j and ¢ is an l-section of 7,. Then, since 7<%, ¢
is either an J-section of «,, in which case o<;a and o<,a,., by the
induction hypothesis, or o=a, hence [=1%,=7, in which case ¢<,7 and
0<;Yms; are obvious, or ¢ is an l-section of «, in which case o<, <Y
and 0<,&<;Vni;. This also implies 7,<;,Y for every ! such that
rR<1<].

. (4.1;2) a<,v for every [ such that [<i. a=apr ((0, k), 4, 7), so
the outermost indicator of « is %, and hence «, # (¢, 0, @)<,a@. There-
fore 0,=(@, a, @, % (i, 0, @®))<,7. Other relations can be easily proved.

Note that for this case the upper bound for ! is necessary.

(3.2) and [2°] of (3.3), (4.8) and (5.2). 7=(%, @, @)=, a, &’ £Y').
The immediate successor is (4, 7'). By the induction hypothesis, 7, <.’
and 7, <;Vmi. SO

(7:7 a, C\f’ # 7m')<l(7:, a@, a’ # ’7’)
and
(7:9 @, a, # 7ml)<l(i’ a, le' # ’Ym+1')
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if 1>4%. Suppose h<I<? and o is and l-section of (¢, @, ' £7,)). If ¢
is an [-section of 7,’, then ¢<;7,4+, and ¢<;7' by the induction hypoth-
esis, so 0<;Y and 6<;Vpw. If o is an l-section of &', then o<,7 and
0<;Vns, are obvious. Thus 7,<;7 and 7, <;Vmi:

For (5.1.1;1), we first prove the following lemma.

LEMMA 5. apr((n, k), J, T.)=0a; if k=0, then v,.(j, T.)=1, and
Yn=apr ((n, 1), 4, Yn); tf k>0, then v,.(j, V.)=1% and Y,=apr((n+
1’ 1)’ j? 7’"&)‘

Proof. By the induction hypothesis, «,<;a since h<j<% where
h=h(c). Also a=apr ((n, k), j, &) since a=apr ((n, k), 7, ¥) (cf. Propo-
sition 1.11). So «,<;a implies that there is a (p, [)<(n, k) such that
apr ((g, ), 4, a.)=apr ((g, s), J, @) for any (g, s)<(p,?) and apr((p, I),
3y ) <ifpiy+1 20T (0, 1), J, @). There is a unique occurrence of a in 7,,
and indicator occurring in 7, immediately outside of a is %,<¢. If
k=0, then a=apr(n, j, V. (<), hence <,=v,.(5,7,) and 7,=
apr ((n, 1), 7, V), while if k>0, then a=apr(n+1, j,7,), hence %,=
Vure(dy Tw) and v,=apr ((n+1, 1), J, V).

Now the proof of the proposition for (5.1.1;1). 7, <;7 since they

share the same (n, k)" j-approximation (cf. Lemma 5 above) and 7,
has no (n, k+1)™ j-approximation, while ¥ does have one.
Suppose h<l<j and o is an I-section of 7v,. Since j7<i, o is
either an l-section of «,, in which case 6<;a and ¢<,a,,, by the in-
duction hypothesis, or c=a, hence |=1,=j or ¢ is an [-section of & in
which cases 0<;7 and 0<; 7,4+, are obvious. This also implies 7, <, 7
for any [ such that A<1<j.

(5.1.1;2) a=apr ((n, k), 7, 7) and 1=v,,,(4, 7), so the outermost in-
dicator of a is 4. The proof of this case can be carried out in a man-
ner similar to the proof for (4.1;2). Note that here too 1<% is neces-
sary.

(2’) and (5.3) (4, 7) is static. We prove the following statement:
let (», 7) be either (4, 7) or a tsp for (4, 7). Then the proposition holds
for (p, v) with h determined by (7, 7). :

Suppose the proposition has been shown for the immediate succes-
sor of (p, 7), say (q, 7). That is, 1~5 hold for every ! satisfying A<
l<q. But p<gq, so we can restate this for every [ satisfying h<I<p.

This completes the proof of Proposition 2.1.

§ 2.3. Invariance of some approximations; non-critical case.

We can now show that our. intuitive idea of reduction is realized
in the formal definition: if, in (g, 7), v is the (n, k+1)** j-approxima-
tion of itself, then the (n, k)™ j-approximation is preserved under
reduction. The critical case is still being excluded.
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PrOPOSITION 2.2. Recall that when an o.d. ¥ is not connected, we
define apr((n, k), 3,7) to be the (m, k)™ j-approximation of the j-
greatest component of Y. Now let (4,7) be a sp or a tsp (of (Jo, @))
and suppose that v=apr((n, k+1),7,7) for some (n, k). Then
apr ((n, k), 7, Yn)=2apr ((n, k), J, V) where {V,}. 18 the reduction sequence
for .

Before getting into the proof, we prove some general lemmas.

LemmA 2.1. Let j be an indicator; Y=(i, a, &) and 0 be an o.d. of
one of the following forms with (1, 0)<(¢, a) and j=<1I: (1, b, ), (1, b, ®+1),
@bo -, Q0,4 a R) ) when a=B+1, and (1,b,(, b, -++, (1, b, @)-++)).
If v=apr ((n, k+1), 4, 7), then apr ((n, k), j, 0)=apr ((n, k), 7, 7).

Proof. First note that
(1) apr ((n, k), j, 7) is contained in « .

This includes the case where apr ((n, k), 7, V)=a. Put p=v,..(J, 7).
Then j<p<i. The condition (I, b)< (%, @) and the forms of ¢ imply that
v(7, 0)=2,J, 7), hence (1) implies

(2) apr (0, 4, 6)=apr (0, 7, 7) .

If (n, k)=(0, 0), then this will do. If (n, k)=(0, 0), then apr ((0, 1), 7, 7)
is contained in &, so

(3) apr ((0, 1), 4, 9)=apr ((0, 1), 4, 7).

Suppose #=0. Continue the same reasoning as for (3). We obtain
(4) apr ((0, m)’ j, 'Y):apr ((0’ m)? j’ 3) for every m=1’ 2’ Tty k

by induction on m. So as a special case of (4), we have apr ((n, k), 7, 6)=
apr ((n, k), 7, 7) when n=0. ,

Suppose #>0. Then with a reasoning similar to that for (4), we
can establish

(5) apr((g, m), 5, V)=apr ((g, m), j, 0) for every (g, m)<(n, 0)

by induction on (g, m). If k=0, then this will do.
Suppose k£>0. Let yp=apr((n, 1), 7,7). Then

(6) 7 is contained in @, hence 7 is a j-subsection of & .
(Recall that j<I.) By the definition of 7,
(7) YT<p41 7 -

Let ¢ be any j-subsection of 6 which contains 7 (cf. (6)). Then it
follows that

( 8 ) ‘ 0<p+1 77 .
(5) with (g, m)=(n, 0), (6), (7) and (8) establish
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(9) n=apr ((n, 1), 4, 0) .
If k=1, this will do. Otherwise we can show
(10) apr (¢, m), 5, V)=apr (g, m), j, 6) for all (g, m)

such that (n, 1)<(q, m)<(n, k),
With a reasoning similar to that for (9).
As a special case of (10) we obtain apr ((n, k), 7, Y)=apr ((n, k), 7, 6).

LEMMA 2.2, Let (J,7) be a sp or a tsp which is not the last re-
duction pair and let 1) be a proper j-subsection of Y which is (at some
stage) marked. (Here 7) denotes a particular occurrence of 7 im )
(This condition implies that 7 is commected and is mot 0.) Let {V,}.
be the reduction sequence for (j, ). Then there is a j-active occur-
rence of N in V.

Note that marking of 7 is not necessarily taken place at the stage
(7, 7); it may be marked at an earlier or a later stage.

Proof. We prove the folloing statement.

(*) Let (p, 0) be a sp which is a successor of (4, 7) or a tsp of a
successor of (7, ?7) (including the case where (p, §)=(4, 7)) satisfying
that 0 contains the 7 (a j-active, marked sub-o.d. of 7) and that [1°]
does not apply to any sp between (j,7) and (p, d) except perhaps to
(p, 0) itself. Let {0,}, be the reduction sequence for (p, §). Then 0,
contains a j-active occurrence of 7.

The lemma is just a special case of (*): let Y=40, hence 7, =4d,.

The conditions in (*) imply that such (p, 0)’s form a sequence of
consecutive sp’s starting with (7, 7), that v is j-active in 6 and that
once one hits a (p, d) which [1°] applies to he no longer considers the
next sp. By virtue of 2) of Proposition 1.7, this also implies that (3.2)
never applies between (7, ¥) and (p, 9).

The proof of (*) is carried out by induction on the number of sp’s
and tsp’s between (7, ¥) and the last pair determined by (*). Let 6=
(%, @, 0'). There is a j-active occurrence of 7 in &, hence

1) J<i.

We first consider the induction step.

1. Neither (2') nor (5.3) applies to (p, ). ((p, §) may or may not
be a tsp.) Let 0'=\# £ where (3, £) is the next sp. Then (¢, ) satisfies
the same condition as (p, ).

If none of (2.1), (4.1) or (5.1.1) is the case, then by Proposition
1.13 0,, contains a component of the form &,=(¢, a, \ % £,,), where {£,.},.
is the reduction sequence for £. By the induction hypothesis there is

a j-active occurrence of 7 in «,, hence in &, (cf. 1) above), hence in
0o
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Suppose (2.1;1) is the case: §=(i, 0, a+1) and 0,,=(¢, 0, @, & (¢, 0, £))
where p¢=(t, 0, @) and amza(g ,). 0, contains a j-active occurrence
of 7. So by 1) the same occurrence of 7 is j-active in d,,.

Consider (2.1;2). 0,=p%--- 0%, 0,a, (%, 0, ). j<¢ by 1)
and both ¢ and «, contain j-active occurrences of 7. This will do.

Suppose (4.1;1) is the case. 0,=(t, a, 0, # (¢, 0, 9")) where {0,,}, is
the reduction sequence for é’. 4, contains a j-active occurrence of 7, .
so by 1) the same occurrence of 7 is j-active in d,. For (4.1;2), both
o’ and 0, contain j-active occurrences of 7. (5.1.1) is treated in the
same manner.

2. (2) or (5.8) applies to (p, 6). The conclusion of (*) is an im-
mediate consequence of the induction hypothesis.

Now let us consider the basis for (*). There are three cases.

3. 0 is the last reduction place, '=7 or o'=7+1.

4, [1°] applies to (p, 9)..

5. 8’=n%k where £ is the next sod and 7 occurs in .

3. Here either 6 is the last reduction place or one of (2.1), (3.1),
(4.1) and (5.1.1) applies.

@2.1;1) 6,=@,0, a, % (%, 0, #)). Here a=7, hence p=(3, 0, 7). If
we can show that

2) 3 <

then 7 is j-active in 4,. For the proof of 2), first let 6=7. Then
j<p<4% (due to the condition of (2.1;1)), so j<%,. If ¢ is a proper
sub-0.d. of v, then by 2) of Proposition 1.4 there is an indicator in ¥
connected to ¢ and satisfying ¢<p, hence ¢<i. In order that 7 (a
sub-o.d. of &) be j-active in 7, j<q. So 7<%,

(2.1;2) j< and g contains 7 i-active.

(8.1) 4, contains a component of the form (3, a, 7) or (3,0,
@, b, -+ (4,0, 7)) (cf. Definition 1.4). So 7 is j-active in 4,, (cf. 1)
above). '

(4.1;1) and (5.1.1;1) can be treated in a manner similar to (2.1;1).

(4.1;2) 6,=0"#---%0"£(¢,0,0, #(3, 0,0"). 0" is 1, hence 7 is j-
active in 9,,.

(5.1.1;2) is treated in the same manner.

2.2) 6=(4, a,0'+1). For c.l)~c.2.3) the proposition is obvious
since j<i. For c.2.4) we can show that j<p (<) in a manner similar
to 2) above. For c.2.5) j<%,. In any case there is a j-active 7=0" in
Ome

(4.2) In d.3), 8,,=(%m, 0,9"). 7 is contained in 0¢'. p<i by the
assumption. As was proved for (2.1;1) above, j<t. Therefore j<i,,
hence 7 is j-active in d,. For d.4), 7 is j-active in a(=0").
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(5.1.2) e.3) and e.4) can be treated in a manner similar to d.3)
and d.4) respectively. Other cases of the last reduction place are
easily treated.

4. Let us restate the situation. The sp under consideration is
(p, ) where 0=(t, b, N #v), v=(i, 0, @), t>% and (3.2) applies to (¢, v).
Only (3.3), (4.3) or (5.2) can apply to (p, 6) (cf. Definition 1.1). So by
Proposition 1.6 v is not marked. This implies, in particular, that v is
itself not 7. d,=r,% (¢, b, N %v,) where v is i-active in £,.. If 7 occurs
in N, then 7 is j-active in (¢, b, M #v,). Suppose 7 occurs in v (hence in
@). Then j<i<t (cf. 1)). So in any of the cases of [1°] (cf. Defini-
tion 1.4) 7 is j-active in k,,.

5. In this case one of the following applies to (p, d): (2.1), [2°]
of (3.8), (4.3) and (5.2). In and of these cases, \ is j-active in &,
hence so is 7 (cf. Definitions 1.3 and 1.4; also 3 above for (2.1)).

LEMMA 2.3. Let (j,7) be @ sp or a tsp and let 7 be a connected
o.d. such that there are at least two j-active occurremces of 7 im 7.
(We shall denote such occurrences of 1) by 7.) Let {7}, be the reduc-
tion sequence for 7¥. Then there is a j-active occurrence of N AN Ve

Proof. As in Lemma 2.2, we prove the following statement:

(*) Let (p, 6) be a sp which is a successor of (j, 7) (including the
case where (p, 0)=(4, 7)) and which contains at least two occurrences
of 7 which are j-active in 7 (hence in & also). Let {,}, be the reduc-
tion sequence for . Then 4, contains a j-active 7.

For (2.2), (4.2) and (5.1.2) see the proof of (*) in Lemma 2.2. If
0 is not the last reduction place and nonme of (2.1), (4.1) and (5.1.1)
applies to d, then J, contains a component of the form &,=(i, @, ) £ £,,)
where 6=(%, @, ). If A\ contains an 7, then it is j-active in &,,
hence in 4,. If not, there are at least two occurrences of 7 in k,
hence by the induction hypothesis there is a j-active occurrence of n
in k,. This occurrence of 7 is j-active in &,, hence in §,. As for
(2.1), (4.1) and (5.1.1), we can show j<¢, in the same way as for 2)
in Lemma 2.2. From this the required property follows.

LEMMA 2.4. Suppose Y=apr ((n, k+1), 5,7), 6 is connected and
0<; 7 and there is a j-active occurrence of apr((n, k), j,7) in 8. Then
apr ((n, k), j, 0)=apr ((n, k), 7, 7).

Proof. Since 0<; 7, v(J, 0)<w,4, 7). But there is a j-active oc-
currence of v(j,7) in 0 (in apr ((n, k), 4, 7)), so=holds. 6<;7 then
implies that apr (0, j, 0)<; apr (0, 7, 7) where ¢ is the indicator of v,(, 7).
But apr (0, 7, 7) occurs j-active in 6 (in apr((n, k), 5, 7)); so=holds.
Suppose we have shown that v,,(j,0)=v..4,7) (=p) and
apr ((, m), 4, 0)=apr (({, m), j,7), where (I, m)<(n, k). Suppose the
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(!, m+1)* j-approximation exists. Then 0<;7 implies apr ((, m+1),
J, )<,y aprapr ((, m+1), 7, 7). But the latter occurs j-active in ¢
(in apr ((n, k), 7, 7)). So=holds. If (I, m+1)™ approximation does not
exist, then v,,,(7, 0)<v,.,(J,7) and the latter occurs j-active in d, hence =.
Thus we reach apr ((n, k), j, d)=apr ((n, k), 7, 7).

Now the proof of Proposition 2.2. It is carried out case by case ac-
cording to Definitions 1.3 and 1.4. First consider the last reduction pairs.

@) and c.l) (of (2.2)) are irrelevant.

c.2) 7=(1,a, a+1).

c.2.1) (%, @,)<(7, @). So by Lemma 2.1 (with (I, b, (3, a, B))).

c.2.2) (t,b)<(,a). So by Lemma 2.1 (with (b, ---,(( 0,
(3, a,B) ).

¢.2.83) By Lemma 2.4 since (¢, a, ®)<,v=(3, a, «+1) and the outer-
most indicator of p, is smaller then ¢=t¢ for each case.

c.2,4) and c¢.2,5) by Lemma 2.1.

d.1)-d.3) and e.1)-e.8) : all by Lemma 2.1; for instance in d.3) use
the fact that t<4, is assumed.

d.4) and e.4) : If v=apr ((»n, k+1), t, v) then apr((n, k), ¢, v)=a=
apr ((n, k), t, v,,) (cf. Propositions 1.10 and 1.11 for the first equation;
the latter equation is obvious from the definition of v,).

Induction step.

If apr ((n, k), 7,7) is marked (at some stage), then it occurs in v,
as j-active (Lemma 2.2). This and 7,<;7 satisfy the condition of
Lemma 2.4; so the proposition. If apr ((n, k), 7, 7) is not marked, then
there are at least two j-active occurrences of it,for, a unique, j-active
occurrence of apr ((n, k), 7, ¥) in ¥ would be marked at the stage (J, 7)
due to the condition that Y=apr (%, k+1), 7, 7). So by Lemma 2.3
there is a j-active occurrence of it in 7,. This, 7,<;7 and Lemma
2.4 prove the proposition.

PROPOSITION 2.3. Let (4, 7) be a sp such that Y=apr ((0, k+1), 7, 7)
and Y is not the last reduction place. Let {V,}. be the reduction se-
quence for (4,7). Then one of the following holds: (2.1;1) or (4.1;1)
applies to (4,7) and Y,=apr ((1, 1), 4, 7.); (2.1;2) applies, V,=p4%--- %
1t 0, and p=apr((0, k+1), j, V.); (4.1;2) applies, V,=af---gafp,
and a=apr (0, k), 7, ¥.); [1°] of (4.3) applies and 7,=, % £, Where
tn=apr (0, r+1), 4, tt,,) for some r>k and £, <, t, for every 1, j<I<i;
[2°] of (4.3) applies and 7, =apr (0, r+1), 5, V,) for some r=k.

Proof. For (2.1;1) and (4.1;1), 7,=apr ((1, 1), 7, 7,,) has been proved
in §2.2 (cf. Lemmas 2 and 4 there).

Consider (2.1;2). p=apr ((0, k+1), j, #) is easily proved. We wish
to show that Pn<;f. Pw=(i,0, &, % (i 0, f£)) Where amza@ ) ‘But

m.
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A ¥ (i, 0, 1)<, @, 80 0,< (7,0, ®)=p is obvious.

Consider (4.1;2). a=apr ((0, k), 7, @) by the assumption. «a is of
the form (%, b, &’) where b>0. Therefore p,,<,., @. Also @,%(%, 0, @) <, @
was established before. So p,<;a.

Now we are coming down to the case where (4.3) applies to (7, 7).
For this case we first prove some lemmas.

LEMMA 2.5. Let 6 be a connected o.d. such that apr ((0, k), 7, d)=p
exists and 0+p. If there is an occurrence of o, say P, such that
every indicator commected to 0 is the indicator of v (7, d), then 0=
apr ((0, r+1), 7, 6) for some r>k.

Let 0 be a connected o.d., let o be a connected sub-o.d. of 6 and
let ¢ be an indicater. If every indicator in & connected to 0 is 1, then
we say that 0 satisfies (the condition) C (with P and i), or 0 satisfies
C for o (with 7).

In particular, if (4, 7) is as in Proposition 2.8 where (4.3) applies
to (7, 7), o=apr((0, k), 7, ¥), 0 is a sub-o.d. of ¥ and ¢ is the indicator
of wv,(J,7), then the situation as above is described as “J satisfies C”
or “p satisfies 0” without mentioning 7.

LEMMA 2.6. 1) Let po=apr ((0, q), 7, 0) for some o, q¢ and 7, and
let the indicator of v,(j, 0) be i©. Suppose ¢ satisfies C with o and 1.
If §<1i, the p=apr ((0, @), 1, 6) for every 1 satisfying j<I1<i. In such
o situation, namely tf p=apr ((0, @), I, 6) for every | satisfying j <<%,
then we write p=apr ((0, ), (4, %), 0). apr ((0, g), (4, ©), 9,)=apr ((0, q),
(4, %), 02) will mean p=apr ((0, ), I, 9,)=apr ((0, q), I, d:) for all I, §<I1<1,
where o is common to all such 1.

2) Let (j4,7) be as in Proposition 2.3 where (4.3) applies and let
o=apr ((0, k), 7, 7). Let 0 be a j-subsection of ¥ which satisfies C and
let © be the indicator of vy(J,Y). Then apr ((0, k), (4, ), 0)=p and 0=
apr ((0, q), (4, ©), 0) for some q=>k.

3) If j<1i, 0=(3, a, Ny \) where N, 18 an i-greatest component of
o ¥ N and if 6=apr ((0, ¢+1), J, 6), then apr ((0, q), 7, M) =apr ((0, @), 7, 0)
and n=apr ((0, r), 7, N,) for some r>q.

LeEMMA 2.7. Let (5, 7) be as in Proposition 2.8 where (4.3) applies
to (4, 7) and let p=apr ((0, k), 7, 7). Let D denote any occurrence of ©
satisfying C for 7 and let ¢ be the indicator of v(j, ). Then for
every (p,0) a sp succeeding (j,7) such that 6 properly contains P,
p=1 wunless (p, 0)=(J, "), 5<%, apr((0, k), 4, 9)=p=apr (0, k), (4, ©), 9)
and o=apr ((0, ¢+1), (4, ©), ) for some q=>k.

Proof. If (p, 6)=(J, 7), then the equations are obvious from 1) of
Lemma 2.6. For a (p, 0) satisfying the condition, if we can show that
p=1 and 0 is j-active in 7, then the first equations follow immediately
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from 2) of Lemma 2.6. Also d=apr ((0, q), (4, 7), 6) for some ¢>k.
But 040 by the assumption, so Lemma 2.5 and 1) of Lemma 2.6 imply
q>k+1.

Suppose for (p, 6) it has been proved that p=1% and 0 is j-active
inv. d=apr ((0,g9+1), 7,9), =k, and apr ((0, k), 7, 6)=p as shown above.
Therefore 6=(1, b, ¢') for some b and 4’. (4) applies to (p, §), hence
the next sp, if it exists, is (¢, €) where ¢ is an i-least component of &',
Therefore ¢ is j-active in 7.

LemMMA 2.8. Let (4, Y) be as in Proposition 2.3, let © be the indi-
cator of w4, ) and let o=apr ((0, k), 7, 7). Suppose (4.3) applies to
(4,7). Let (p, 0) be a proper successor of (4, 7) such that o satisfies C.
Then by Lemma 2.7 p=1, o=apr ((0, ¢+1), (4, ©), 0) for some q=k and
apr ((0, k), (4, ©), 0)=p. Let {0,}, be the reduction sequence for (p,0).
Then one of the following holds.

[1°] of (4.8) applies to (p, 6) (hence 6=(t, b, A £ V) where t=1 and v
18 an i-least component of M%), 0,=K, ¥ !, where p,=(, b, N Ev,)=
apr ((0, r+1), (4, 1), &) for some r>q, apr ((0, q), (4, 1), #.)=2apr ((0, q),
(4, 9), dn)=apr ((0, @), (4, %), 0) and £, <, for every 1, j<I<i.

When a<,pB for every l, j<I<1i, we write a<; .

[2°] of (4.8), ome of c.l), c.2.1) and c.2.2) of (2.2) or one of d.l)
and d.2) of (4.2) applies to (p, d), d,=apr ((0, r+1), (4, ©), 0,.) for some
r2q and apr ((0, g), (4, 1), d.)=apr (0, 9), (4, 9), 9). . B

c.2.3) of (2.2) applies to (p, o) and 0,=0% --- §0 £0,, Wwhere 6=
apr ((0, ¢+1), (4, 9), 0) and apr (0, 9), (4, %), 6)=apr (0, 9), (4, 1), 0).

d.4) of (4.2) applies to (p,0) and 6,=0% -+ $0% 0, where 6=
apr ((0, 9), 5, )=apr (0, @), (4, %), 6.) and P, is either empty or 0,=
(%, 0, 6) where i, 1% 07 Pn=C(%, 0, +++, (%, 0, 0) +++) where i=1,+1.

(2.1;2) applies to (p,0), and 0,=0% --- 4040, where, if 0=
(3, 0, a+1), then 5=apr (0, ¢+1), (4, 7), 6)=(1, 0, @), P.=(3, 0, a,¥(i,, 0, 9))
and apr (0, q), J, i), 8)=apr (0, @), (G, D), ). _

(4.1;2) applies to (p, 0) and 6,,=0%---£0 § 0, where, if 6=(1, 0, ),
then 6=a=apr ((0, ), j, 9) and ,=(1, 0, @, % (4, 0, @)).

Proof. Recall first that p=¢ and p=apr ((0, k), (4, %), ). Also
apr ((0, q), (4, %), 6,.)=apr ((0, q), (4, %), 9) is an 1mmed1ate consequence of
Proposition 2.2 and 1) of Lemma 2.6.

Case 1. (p, 6) is the last reduction pair. dJ=apr ((0, ¢+1), 1, 9),
hence (2.2) or (4.2) applies.

(2.2) Let 6=(¢, b,0'+1). p=1 forces that c.2) with ¢=1 applies.

c.2.1) and e¢.2.2) 6,,=(%, b, (%, b, 6')) where b, 10, 9,=(3, ¢, (3, b, 0"))
and 0,,,,=(%, ¢, 0,,) where b=c+1, or 0,,=(¢, b, 0") £ --- (3, b, 0'). All the
indicators connected to 6’ are ¢ and b,, ¢<b. There is an occurrence
of p such that every indicator in ¢’ connected to @ is 4. So it is easy
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to show from apr ((0, ¢), (J, %), d.)=apr (0, ¢), (4, 9), 6) that apr ((0, ¢+1),
(4, %), 0,)=(4, b, 0"), and é,=apr ((0, ¢+2), (4, %), §,) for the first two
cases and (¢, b, &')=d=apr ((0, ¢+1), (4, 1), ) for the last.

c.238) d,=p%---%pr%0,, where £=(3, 0, 9') and p,, either is empty
or assumes one of the forms (¢y, @, #£) and (iy, €, « -, (4, €, - Fp)- ).
So d=p and the desired relations can be established without difficulty.

c.2.4) and c.2.5) cannot apply here.

(4.2) Let 6=(i,b,0"). If d.1), then §,=(¢,b,, d"). If d.2), then
O0n=(t,¢ +++, (3¢ 0)--:). If d.4), then b=0 and 6,=0"#%--- £ £ 0,.
Here o’=apr ((0, 9), (4, ©), 0), b, ¢c<b. So for the first two cases 9§, =
apr ((0, ¢+1), (4, ©), ,,) is obvious. For the third case the required con-
dition obviously holds.

Case 2. (p, 0) is not the last reduction pair, but is the last sue-
cessor of (j, 7) satifying the condition. Namely, if 6=(i, b, M) and
(%, v) is the next sp, then either y=p or in v for any occurrence of o
there is an indicator which is less than ¢ and is connected to it. Since
p=1, (2.1;1) and (4.1;1) cannot apply to (p, d), and that leaves (2.1;2),
(4.1;2) and (4.3).

For (2.1;2), the desired relations are obvious.

For (4.1;2), @=p must be the case since @ is connected. So the
relations are obvious with g=%k.

[1°] 6=(t, b, ¥ v) where t=1 and v is a t-least component of N #v.
A contains apr (0, 9), 7, 0). f,=(t, b, N¥v,) where t=1. So p, satisfies
C with apr((0,q), 7,9) and 4. d&=apr((0,q+1),7,0). E.<j;Mn is
obvious. So by Proposition 2.2 apr ((0, q), 7, t.)=apr ((0, @), 7, 9) (since
O0n=FKn¥ t, and £,<;, tt,). Therefore by Lemma 2.5 y,,=apr ((0, r+1),
J, tt,) for some r>q. From this follows other desired equations.

[2°] 0.=(, b, N¥v,) and §,,=apr ((0, ¢+1), (4, %), 8,.) ete. are proved
as for the g, in [1°].
Case 3. The induction step. 6=(i, a, & £ ¢) and (3, €), the next sp,

satisfies the same condition as (p, ). In particular e=apr((0,s+1),(4,1),€)
for some s>%. By the induction hypothesis one of the following holds.

Case 3.1 [1°] of (4.3) applies to (¢, €), €, =Fp & f, fn=apr (0, u+
1), (7, 9), #,) for some wu>s, apr((0, s), (4, 7), Z.)=apr ((0, s), (4, ©), €)
and Em<j,i ‘am.

Case 3.2. [2°] of (4.8), one of c.1), c.2.1) and c.2.2) of (2.2) or one
of d.1) and d.2) of (4.2) applies to (¢, ¢). e&,=apr ((0, u+1), (4, ©), &)
for some u>s and apr ((0, s), (4, ©), e.)=2apr ((0, s), (4, 7), ©).

Case 3.3. c¢.2.3) of (2.2) applies and ¢,=E#---#Z where &=
apr ((0, s+1), (4, 1), €) and apr ((0, s), (4, ), &)=apr ((0, s), (4, 4), &).
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Note that if 4 is a successor element, then & cannot be the
(0, s+1)™ j-approximation since the outermost indicators of compo-
nents of ¢ are <i.

Case 3.4. d.4) of (4.2) applies and ¢,=E4EH --- $EHE, where E=
apr ((0, s), 7, &)=apr ((0, s), (4, ©), €,) and &, is either empty or is con-
nected and &,=(in, 0, §) where ,, 1% or &,=(i, 0, « -+, (i, 0, €) - - -) where
1=1,+1.

Case 3.5. (2.1;2) applies to (3, ¢), €, =& ¥ --- #E% v, where, if ¢=
(7:’ 0’ 5’+1), then §=(1’9 0’ 8,)=a'pr ((0’ 8+1), (.7: 7’); é)’ Um:(’l:, 0, Gf,,,,# (io’ 0, é‘))
and apr (0, s), (4, 1), €)=apr (0, s), (4, 7), ).

Case 3.6. (4.1;2) applies to (4, ¢) and ¢,=E&% --- $EFv, where, if
e=(i, 0, '), then é=¢'=apr ((0, s), 4, &) and v,=(%, 0, &, ¥ (%, 0, €)).

Since (p, 6) is not the last reduction pair, one of (4.3), (2.1;2) and
(4.1;2) can apply to it. Furthermore the assumption that (¢, ¢) satisfies
the same condition as (p, ) Implies that the outermost indicator of ¢
is i. Therefore Proposition 1.7 inhibits [1°] of (4.3) for (p, 6), hence
we have only to consider [2°] for (4.3).

[2°] of (4.3) 0=(i, a, &’ $¢). Suppose ¢’ is not empty. Let 0, be
its i-greatest component. apr ((0, g), 7, d)=apr ((0, q), 7, 6)=apr (0, ¢,
4, 8,,) and d,=apr ((0, t), 7, 6,) for some t>q>k (cf. 3) of Lemmas 2.6
and Proposition 2.2). So 8,(=(4, a, 0’ #¢,)) satisfies C with apr ((0, q),
4,0) and 4. This and Lemma 2.5 yield that d,=apr ((0, r+1), 7, 0n)
for some r>¢g. Other equations are now obvious.

Suppose 0’ is empty.

Case 3.1. [1°] of (4.3) applies to . By the induction hypothesis
€ =Fn¥ iy where fi,=apr ((0, u+1), (4, 7), £,) for some u>s, apr (o0, s),
(4, %), fin)=apr ((0, 8), (4, ©), &) and £,<;;f, Since ¢ is not marked,
s+1>q, or s>q, hence u>q. Therefore apr ((0,9),J,¢.)=apr ((0, q),7,9),
and this implies that o, satisfies C with apr ((0, ¢), 7, 0) and <. So by
Lemma 2.5 d,,=apr ((0, r+1), 5, §,) for some r>gq.

Case 3.2. is dealt with in a manner similar to Case 3.1; only
replace f, by ¢, and do not consider £,.

Case 3.3. ¢,=E#.--4%& where é&=apr((0,s+1),(j,1),¢) and
apr ((0, 5), (4, 1), =apr (0, s), (4, ©), ). Here 0=(3, a, (3, 0, &'+1)), e=
(¢, 0, +1) and é=(4, 0, &). So g=s. d,=apr ((0, ¢+1), J, d,).

Case 3.4. 06,=(i,a,E%--- $E%E,) where E=apr((0,q), J, &)=
apr ((0, q), 4, 9) and &, (if not empty) is either (i,, 0, &) or (i, 0, ---,
(1:0, 0’ é') M ')' So 3m=a’pr ((Oy q+1)7 jy Bm)'

Case 3.5. As for Case 3.3, ¢=s can be established. 0,,=(1, @, €.),
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where ¢,=E%---$&%y,, §=(, 0, &)=apr ((0, s+1), 7, &) and v,=(¢,0, ¢,
$(1, 0,8). e.'<;:€ and s=q imply that apr((0, q), 7, &.")<apr ((0, ¢),
J,en). Let 7 be a j-subsection of & which properly contains
g=apr ((0, ¢), 4, &) (=apr ((0, 9), J, )=apr ((0, @), J, 0.)) i-active. Then
N<016<,4.0, since é=apr((0, ¢g+1), 7,8 and &'<,e,. If apr((0, q),
7y en)<; &, then ¢, omits & Suppose apr ((0, 9), 7, ¢,/)=¢& and let 7 be
a j-subsection of ¢, which properly contains & <¢-active. Then
<1, apr ((0, g+1), J, €,). So &,'<;& implies that 7 <., & <;1,0,. If7
is v,, then 7<,,,d, since ¢, # (3, 0,8)<;¢,. This proves that 4,=
apr ((0, g+1), 7, 0,)-

Case 3.6. Here too s=q. 6,=(t,a,E%---£E4v,) where E=apr ((0,q),
g, ¢) and v,=(,0,&,%(i, 0, 8). &,<;.& So d,=apr((0, ¢+1), 4, d,)
can be established in a manner similar to Case 3.5.

For (2.1;2) and (4.1;2) the desired relations are obvious.

Proof of Proposition 2.3 when ome of (2.1;2), (4.1;2) and (4.3)
applies.

Let (p, 0) in Lemma 2.8 be the immediate succssor of (7, 7). Then
one of the cases listed there holds. Repeating the proof for Case 3
there for (7, 7) and ¢=Fk, we obtain the desired results.

PROPOSITION 2.4. Let (j, 7) be a sp such that Y=apr ((n, k+1), 4, 7)
where n>0 and ¥ is not the last reduction place. Let {7,}. be the
reduction sequence for (j,7). Then one of the following holds for
(4, M.

(2.1;1) apqlies and v,=apr (n+1, 1), J, V).

(2.1;2) applies and Y,=p4-- -4 (¥ 0, where pt=apr ((n, k+1), 7, ).

(5.1.1;1) applied and ~,=apr((n,l), 7, 7. <f k=0 and 7,=
apr (n+1, 1), 7, 7,.) if k<O0.

(5.1.1;2) applies and 7,=7% --- $7 £ 0, where Y=apr ((n, k), 7, 7).

[1.] of (5.2) applis to (4,7) and V,=p, %k, where p,=
apr ((n, r+1), J, ) for some r>k and £,<;, . tn. Herei,.,=v,.(5, 7).

[2°] of (5.2) applies and 7V,=apr ((n, r+1), J, V,.) for some r>k.
(5.3) applies to (4,7). Then one of the following holds.
Ym 8 comnected and 7,=apr ((n, r+1), 7, 7.) for some r>k.
Tm=lln # Kn Where tt,, and £, are connected, £,<;,,, tn ond f,=
apr ((n, r+1), 7, M) for some r>k.
Yu=T4 -+ 87 %7, where Y=apr ((n, k), 7, 7) and 7, may be empty.
(2") applies to (4,7). Then one of the following holds.
Tw=2apr (n, r+1), 7, V.) for some r=>k.
/Ym=7 # e # ¥ #lom where 7=apr ((n; k+1)r ja 7) .

Proof. If (2.1;1) is the case, then the equation has been proved
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as Lemma 3 in §2.2. For (2.1;2) and (5.1.1;2), the equations are
obvious. :

If (5.1.1;1) is the case, then the equations have been proved as
Lemma 5 in §2.2. Therefore suppose that either (5.2), (2) or (5.3)
applies. Note first that o=apr ((n, k), 7, Y)=apr (n, k), j, V.) (Proposi-
tion 2.2) and, if we let 4,,, be v,.,(j, 7), then the indicator connected
immediately to 0 is ©,4,.

We shall first prove some lemmas.

LEMMA 2.9. Let 6 be a conmected o.d. such that apr ((n, k), J, 6)=0
exists where n>0 and 0+p. If there is am occurrence of 0 say P,
such that every indicator commected to O is >v,.,(J, 0), then 0=
apr ((n, r+1), J, ) for some r=>k.

Let 6 be a connected o.d., let o be a connected sub-o.d. of & and
let ¢ be an indicator. If every indicator in 0 connected to o is >1,
then we say that 6 satisfies (the condition) D (with P and 1), or p
satisfies D for 6 (with 7).

We shall henceforth assume »>0.

LEMMA 2.10. 1) Let p=apr ((n, q), 4, 0) for some 0, q and j, and
let 9,0, =Vns(d, 0) (which is assumed to ewist). Then j<i,., and
p=apr ((n, q), [, 6) for every 1 satisfying j<I<i,...

p=apr ((n, q), (J, Tasr), 0) 18 used to describe such a situation.

2) Let (4,7) be as in Proposition 2.4 where (5.2), (2') or (5.3)
applies, let i,.,=v,..(J,7) and let o=apr((n, k), j, 7). Let 6 be a j-
subsection of Y which satisfies D with o and i,.,. Then apr((n,k),
(j, 7"%+1)9 3)':10 and Bsapr ((/n') (I), (j’ in+1)’ 3) fO’)" some QZ’G-

8) If j<i=1u1, 0=(1, @ N EN) where N, is an i-greatest compo-
nent of NEN and if d=apr((n, ¢+1), 4, 0), then apr((0, q), 7, N)=
apr ((n, q), 7, 0) and N=apr ((n, 7), 3, \,) for some r >q.

LEMMA 2.11. Let (§,7) be as in Proposition 2.4 where (5.2), (2')
or (5.3) applies to (4, ) and let o=apr ((n, k), j, 7). Let 0 denote any
occurrence of p satisfiying D for 7 with 1,.,=v,..(J, 7). Then for
every (p,0) a sp succeeding (j, ) such that 6 properly contains P,
pZ?:n+1 u/nless (p’ 3)2(.7’ 7)’ apr ((n’ k), jr 3)=p=apr ((’n’ k)’ (j, in+1), 6)
and d=apr ((n, ¢+1), (4, i,4.), 0) for some q=k.

Proof. If (p, 8)=(j, ), then the equations are obvious from 1) of
Lemma 2.10. For a (p, 8) a proper successor of (j,”) satisfying the
condition, if we can show that p>1,,, and ¢ is j-active in 7, then the
first equations follow immediately from 2) of Lemma 2.10. Also 0=
apr ((n, q), (4, tus.), 8) for some g>k. But d#p by the assumption, so
by Lemma 2.9 and 1) of Lemma 2.10 ¢>k+1.

Suppose for (p, 6) it has been proved that p>i,., and 0 is j-active
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in 7. oJ=apr((n, q+1), J,0),¢=k and apr((n, k), j, 6)=p as shown
above. Therefore 6=(3, b, &') for some ©>%,,, b and &’. The next sp
(if existent) is either (7, €) where ¢ is component of &’ or is (¢, §) where
t>p. In either case the indicator is >1,.,>7 and the sod is j-active
in 7.

LemMA 2.12. Let (3, 7) be as in Proposition 2.4, let 1,,,=v,,.(4, 7)
and let p=apr ((n, k), 3, ¥). Suppose (2'), (5.2) or (5.8) applies to (5, 7).
Let (p, 0) be a proper, non-static successor of (J, 7) such that o satisfies
D. Then by Lemma 2.11 p>1%,.,, 0=apr ((n, ¢+1), (4, T,..), 6) for some
q=>k and apr ((n, k), (4, trts), 0)=p0. Suppose (3.2) does not apply to
any sp between (j,7) and (p,9d), (p,d) inclusive. Let {5,). be the
reduction sequence for (p,0). Then one of the following holds.

[1°] of (3.3), (4.8) or (5.2) applies to (p, 6) (hence d=(t, b, A % v)
where t>1,,, and v is o t-least component of N#v), 6,=k, % tt,. where
L=, b, NE V) =2aDr (1, +1), (4, Tuss), ta) for some r>q, apr((n,q),
(j! in+1)’ I’tm) =apr ((n’ Q)r (jf in+1)’ 6m) =apr ((n’ q)i (.7; in+1)’ 3) a/nd Icm<:i,i,,+1 #m'

[2°] of (8.3), (4.3) or (5.2), (2.2) ewcept c.1) c.2.3) and c.2.5), (4.2)
except d.4), (5.1.2) except e.4), (2.1;1), (4.1;1) or (5.1.1;1) applies, 8, =
apr ((n’ 7’+1), (j, 7;fn+1)7 Bm) fO’)" some ’I'Z(] a’nd apr ((’I’b, Q)) (j’ in+1)’ 3m):
apr ((n, @), (J, tuss), 0). :

c.l) or 1° of c.2.3) applies and 8,=0%---45 where 5,=
apr (1, ¢ +1), (4, 94+.), 0) and apr ((n,q), (4, tas.), 6)=aDT (0, @), (7, Gus), 0).

2° or 3° of c.2.3) applies, t=p<iy,, and 0,=0% -+ £3 & 0,, where
g_':apr ((ny Q+1); (7, ?:n+1)9 5)7 (Om:?pr ((ny r+1), (7, 7;‘n+1)’ lom) for some
r>q, and apr((n, 9), (4, %), 0)=2aDr ((n, ), (4, Tuss, On)=2DT (%, q),
(j9 'in+1)7 5).

c.2.5) applies, 1>, and 0,=apr (n, r+1), (4, tus.), 0.) for some
r2q and apr ((n, q), (J, tass) 0u)=2Dr (1, @), (7, t0ss),s 3). )

d.4) of (4.2) or e.4) of (5.1.2) applies and 6,=564% --- 435 # p,, where
d=apr ((n, ), 3, 0)=apr (n, ), (J, 1441, 0) for some 'r>q and either o,
is empty or 6=(,0,0), p=1i and 0,=(j., 0, d) whe're Inlt or 0n=
(Jor 0, +++, (4o, 0, ) « ) where i=75,+1.

(8.1) applies and 6, =K, % 1., where if 6=(i,a,), then tt,=(i, a, &,,)
and £,=(t, @, &) with a, @ or £,=@, b, ++-, (4, b, @) -++) with a=b+1,
and £,=apr((n, r+1), (4, tar.), £.) and apr((n, r), (7, tar.), £a)=2aDpr (1, 7),
(4, Tns), 0) for some r>q.

(2.1;2) applies and 6,=6%---$54%0, where S=apr((n, ¢+1),
(J; Gns), 0) and apr (1, @), (, turs), 04)=2DT (0, @), (J, Guss), 9).

(4.1;2) or (6.1.1;2) applies and 6,=04%---40% 0, where &=
apr ((n, ), 4, 0)=apr (n, 7), (4, tus), 0.) for some r>gq.

Proof. Recall first that p>i,., and p=apr (n, k), (4, 44ss), §). Also
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apr ((n, @), (4, tass); Om)=2D1 (1, @), (4, T4+.), 0) is an immediate conse-
quence of Proposition 2.2 and 1) of Lemma 2.10. Also, once (p, d)
hits [1°], then we stop.

Case 1. (p, d) is the last reduction pair.

(2.2) Let 0=(¢, b, 9'"+1). Recall that p>1,., and t1>%,.,.

c.l) and 1° of ¢.2.3) p>4. 0,=(,b,0)¢---%(:,b,08). Let 6=
(¢, b, 0") and p, be empty. Since 1>17,,, and apr ((n, @), (4, tui), 0.)=
apr ((», q), (4, ©u1.), 0), it is obvious that 6=apr (n, ¢+1), (4, tus.), 0)=
apr ((n, ¢+1), (J, tuts), Om)-

c.2.1) and c.2.2) 4,=(,b,, (¢, b, §') or d,=(3, ¢, (%, b, 8')) and 6,.,=
(%, ¢, 0,) as the case may be. All the indicators connected to ¢’ are 4.
There is an occurrence of ¢ such that every indicator in ¢’ connected
to 0 is >1%,4,. So it is evident from apr ((n, @), (4, t.+1), 0.)=2pr (%, q),
(4, %a+1), 0) that d,=apr ((n, r+1), (4, t41.), 0.) for some r>gq.

2° or 3° of ¢.2.3) applies. Then i=p>1,,, must be the case
since 1=1,+1 and there is no (¢, 0)-dominant of 6. For J, the relations
are proved as for 1° of c.2.3). For p,, notice that 1>4,>1%,,,
(=444, 7). Therefore we can follow the proof for c.2.1) and c.2.2)
above.

c.2.4) 0,=(t, 0, (¢,0,0")) where ¢,>p. Since D>ty tntnis.
Now follow the proof for ¢.2.1) and c¢.2.2).

c.2.5) 1=1%,+1>1,,, must be the case (cf. 2° or 38° of ¢.2.3) as
above), so ¢,>1%,,,. Now follow the proof for c.2.1) and c.2.2).

(4.2) Let 0=(,b,0"). If d.1), then d,=(, b,, d’). If d.2), then
0n=(0¢ +++, (3¢ 0) ). If d.3), then a=0, p<? and §,=(j., 0, &).
If d.4), then b=0and 0,,=0"§---%0'%0,. Here é'=apr ((n, ), (4, tns.), 8)
for some r>q and p, takes a form as described. For the first two
cases, 0, =apr ((n, r+1), (4, t,11), 0,,) for some r>gq is obvious. For d.3),
In> D=0, 80 0,=apr ((n, r+1), (4, 4,4+1), 0,) for some r>q. For d.4),
the desired result holds as is mentioned above.

(6.1.2) 0,=(, b, 0") (e.l)), 0,=(,Db,d") and 0,,,=(3,0b,d,) (e.2)),
b=0, p<t¢ and 0,=(j,, 0,9") (e.3)) or 0,=0"#---£0" %0, where p,=
(jrm 0, 5’) or pm:(jm o--- (jO’ 0, 3’) o ') or 0, is empty (e.4)). For e.l)
and e.2), d,=apr ((n, r+1), (4, tuts), 0.) for some r>q is obvious. For
e.3), jn>D>1%,,, hence the same holds. For e.4) ¢’=apr ((n,r), (7, %,41),0")
for some r>q.

Case 2. (p, d) is not the lest reduction pair, but is the last suec-
cessor of (g, 7) satisfying the condition. Namely if 6=(¢, b, A #v) and
(¢, v) is the next sp, then either y=p or there is no desirable occurrence
of o in v. ;

(2.1;1) Let 0=(3, 0, x$v+1). v=p is not possible, for then i=1,,,,
and p<t due to the condition of (2.1;1) on the one hand, while p>1
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as was mentioned above on the other hand. Therefore v contains no
desirable p (hence v j-omits o). Therefore a P occurs in A, hence in
0n=(%, 0, N § v, % (4, 0, £)). Since apr ((n, q), J, d.)=apr ((n, 9), J, ) and
there is an occurrence of P in 4, satisfying D with 4,., 0,=
apr ((n, r+1), J, ,,) for some r>gq.

For (2.1;2), (4.1;2) and (5.1.1;2) the proposition is obvious.

(3.1) In this case \ is empty, so v=p, and hence i=1%,,,. £,=
(2, by 0) Or (3,0, -+, (t,¢ 0)---). It is obvious that £,=apr ((n, k+1),
(j’ -n+1)7 ) and p apr ((n k)’ (jy ‘n+1) Icm)

(3.2) does not apply to (», d), since in order to reach (3.2) there
must be a predecessor which [1°] applies to.

(4.1;1) is not possible for this case, for if (4.1) applied, then v
would be p since \ is empty, so 1=%,., and p=1,,,. But p<i is the
condition for (4.1;1).

(56.1.1;1) is not possible, for then 6=(¢,4,, 0, 0) and P<t,., Wh1ch
is not the case.

[2°] (of (3.8), (4.8) or (5.2)). 0=(¢, b, n£v). We claim that there is
an occurrence of p satisfying D with 4,,,. For, if v omits p, then
the claim is obvious. Suppose v=p and v<;v, where y, is a compo-
nent of . Since y=p, 1=1,,,, and hence v<, vy, implies that apr ((n, k),
(4, Tu11), YVo)=p and there is an occurrence of o in y, satisfying D with
%wt:- Therefore in fact N, contains apr ((n, @), (J, tnsy), 0) %.ii-active.
0,=(, b, n%v,). Since 4, contains apr((n,q), s, 0) and J,<;0,
apr ((», q), 7, 0,)=apr ((», q), 7, ). Since apr ((n, @), 7, 0) is contained in
A t,4-active, d,=apr ((n, r+1), 7, 0,,) for some r>gq.

[L1°] (of (3.3), (4.3) or (5.2)). 0=(t, b, NEY), On=Fn# tln, =
¢ b, NEv,). v=(4,0, @) and t>1. If v=p, then ¢=7,,,<¢. So this is
not the case, hence )\ contains @, hence apr ((n, q), 7, 6) also. p#,<;d.
So apr ((n, 9), 4, tw)=2apr ((0, 9), J, 0) and p,=apr ((n, r+1), J, tt,) for
some r>q. K£,<ji,, Un is obvious from the situation.

Case 3. The induction step. 6=(¢, a, 0’ #¢) and (¢, €) is the next
sp. If (¢, €) is non-static, then the induction hypothesis holds for (¢, ¢).
If (4, ¢) is static, then consider the next sp, (v, €), for which the induec-
tion hypothesis holds. Here v>%. In particular e=apr ((n, s+1),
(4, tnsr), €) for some s>k. By the induction hypothes1s one of the fol-
lowing holds.

Case 3.1. [1°] of (3.3), (4.3), or (5.2) applies to (3, ¢) (br (v, ),
en=Fn#¥ fny Fu=2Dr ((n, u+1), (4, t4ss), A,) for some u>s. apr((n, s),
(j’ ?:n+1)’ ﬁm)zapr ((n) 3), (j, in+1)’ 6) a'nd Em<j,i”+1 ﬁm'

Case 3.2. [2°] of (3.3), (4.3) or (5.2), c.2.1) and c.2.2) of (2.2),
(4.2) except d.4), (5.1.2) except e.4), (2.1;1), (4.1;1) or (5.1.1;1) applies,
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én=2aDpr (1, w+1), (4, 1u1.), &x) for some u>s and apr (n, s), (4, 1,11), &n)=
apr ((n, s), (4, tass), €).

Case 8.3. c.l) or c.2.3) of (2.2) applies and ¢,=&# .- #& where
e=(t, b, &' +1), é=(t, b, ¢') and é=apr (n, s+1), (4, 1,..), &).

Case 3.4. d.4) of (4.2) or e.4) of (5.1.2) applies and ¢, =% --- &£,
where é=apr ((n, ), 7, €) and &, is either empty or connected and the
following holds: ¢=(¢, 0, é) and ¢, =(¢,, 0, ) when t,, { t or &, =(%, O, - - -
(ty, 0, &) ---) when t=¢,+1.

’

Case 8.5. (3.1) applies and ¢,=£, # /,, where £,=apr ((n, u+1),

(4, Tass)y K,) and apr (n, u), (4, tors), £,)=2DT (0, %), (§, 9,..), €) for some
u=>8.

Case 3.6. (2.1;2) applies and ¢,=E#-- %%y, where &=
apr((n, s+1), (4, ta+s), €) and apr((n, s), (4, Guss), €n)=8Dr (0, 8), (§, G44), €).

Case 8.7. (4.1;2) or (5.1.1;2) applies and ¢,=&# ... &4y, where
E=apr ((n, w), J, e)=apr ((n, u), (J, tns), €,) for some u>s.

Since (p, 0) is not the last reduction pair, only one of the following
can apply to it: [2°] of (3.8), (4.3) or (5.2), (2.1), (4.1), (5.1.1) or (3.1).

(a) [2°] of (3.8), (4.3) or (5.2). Suppose first ¢’ is not empty.
Then apr((n, q), J, 0")=apr ((, 9), 4, 0)=apr (n, 9), 7, 8,) (by 3) of
Lemma 2.10 and Proposition 2.2). Therefore 6, satisfies D with
apr ((», 9), J, 0) and %,,,. From this and Lemma 2.9 follows that 0, =
apr ((n, r+1), 4, 0,,) for some r>gq.

Suppose next ¢’ is empty.

Case 3.1 applies to (7, €) or (v,¢). Since ¢ is not marked, s+1<q,
or s>¢q. Therefore apr((n, s), j, Z.)=apr ((n, s), 7, €) implies apr ((», q),
J, En=2aDpr ((n, 9), j, §)=apr ((n, ), 4, 8). This implies that 0, satisfies
D with apr ((n, q), J, 0) and 4,,,. So by Lemma 2.9 §,=apr ((n, r+1),
J, 0,) for some r>gq.

Case 3.2 applies to (¢, €) or (v, ¢). The argument immediate above
goes through with ¢, in the place of f,,.

Case 3.3. 0,=(t,a,8%---%&) where é=apr ((n, s+1), (J, t,r), ),
apr ((», 9), 7, §)=apr ((», q), 7, 0) and s>q. So the result follows.

Case 3.4. 0,=(i,a,&%--- $E4E,) where é=apr((n,s), j,¢) and
s>q. So apr((n,q), j, 0)=apr ((n, q), 4, §) is contained in §,. Since
0,<;0, this implies apr ((n, @), J, 9,,)=apr ((n, q), 7, 6). When &, is not
empty, ©=1,,, hence §,<,¢ and d,=apr ((n, r+1), (4, tus), 6,) follows
for some r>gq.

Case 3.5. s>q and wu>s, hence wu>q. Therefore apr ((n,q),
(G) Tass), En)=2DC (1, Q), (J, Ta11), 6). So 0, satisfies D with apr ((n, q),
J,0) and %,.,. So d,=apr ((n, r+1), 7, 0,,) for some r>gq.
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Case 3.6. 0,=(1,a, E%---#E4y,) where é=apr ((n, s+1), (4, tnt1), &),
apr ((n, q), 7, &)=apr ((n, q), 7, 0) and s>q. If e=(t, 0,& +1), then &=
¢ 0,¢) and v,=(t0,¢, ¥ (t, 0, €). &,/<;.¢& and t>%,.,>5. So 0,=
apr ((n, r+1), (4, Tps), 0,) for some r>s>gq.

Case 3.7. (4.1;2) or (5.1.1;2) applies. 0,=(i,a,Ef---$EHv,). This
can be dealt with in a manner similar to Case 3.6.

(8) (4.L1;1) or (5.1.1;1). 6,=(,0,¢,% (%, 0,¢)) where i=1,+1.
AP lpire S0 10041 En<j: € and e=apr ((n, s+1), (4, tusr), €) Where
s>k. It follows that s+1>¢, and hence d,=apr ((n, u+1), 4, 0,) for
some %>>q is obvious.

(v) B1) 6,=k, %, where 0=(i, a,¢), t.=(,a,¢,) and £,=
(%, @, &) O K,=(i, b, +++, (¢, b,€)-+-). Since d=apr ((n, ¢+1), j,0) for
some q>k, ¢ contains apr((n,q), j,0) %..-active. Therefore «,=
apr ((n, r+1), 4, £,,) for some r>q is obvious.

(6) @.1;1) 4,=@,0,¢, £(%,0, 1)), where 0=(3, 0, &' +1), #=(3, 0, )
and ¢,’ is obtained from &’ by replacing ¢ by €,. T>DP>0,4. S0 4>0,4,
and hence 0 contains apr ((n, q), (J, %n+1), 0) Pn.-active. 0,<;0. So
apr ((ny Q), (j’ ?:n+1)’ Bm)=apr ((n’ q)’ (j’ in+1)9 3) and 6m=apr ((%’ ""'I'l),
(4, Tusr), 0,) for some r>gq.

(e) (2.1;2), (4.1;2) or (5.1.1;2). The desired relations are obvious.

Proof of Proposition 2.4 where (5.2) or (5.3) applies to (3, 7).

Let (p,d) in Lemma 2.12 be the immediate successor of (7, 7).
Then one of the cases listed there holds. Repeating the proof for
Case 3 there for (4,7) and ¢=Fk, we obtain the result. If (5.3) applies
to (4, 7), then start with its immediate successor, and let (p, 0) be the
immediate successor of the latter.

§3. The reduction sequence of an o.d. converges
to it; non-critical cases.

Let & be a connected o.d., let j, be an indicator and let {&,},. be
the reduction sequence for (j,, @). The objective of this section is to
establish that {a,}. is truly a fundamental sequence for &, namely
{&@,.}. converges to & with respect to j,.

THEOREM 2. The reduction sequence for (j, &) converges to & from
below with respect to <;. Namely given any S snch that /§<,-0 a,
there is an m such that B<; Q,.

Theorem 1 provides with the “from below” part. The m in Theorem
2 can be determined primitive recursively from &, 8 and j,.

The proof of Theorem 2 consists of four parts: §§3.1-3.4. The
idea can be explained as follows. Given an o.d. 5 satisfying 8<;, &,
we first define a sequence of connected sub-0.d’s of B (which will be
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called comparison factors, or emf) subject to the sp’s and the tsp’s of
a. Then we can show that for each sp or tsp of @, say (j, 7), and its
corresponding emf of B, say 0, there is an m such that 6< i Ym. Theorem
2 is a special case of this fact.

The lemmas and definitions below should save some cumbersom
descriptions of various situations.

LeEmMA 3.1. Let a and B be two o.d.’s for which apr ((n, k),
J, BY<;apr ((n, k), j, &) holds for some (n, k). Then B<;a.

Proof. Let d=apr((n, k), 4, B) and 7 =apr((n, k), 7, ). 6<;7
holds if and only if one of the following holds.

1%, w(d, 0)<wv(g, 7) or vi(4, 6)=w(4, ¥) and apr (0, 7, 0)<; apr(0, 7, 7),
where ¢ is the indicator of w,(7, 7).

2°, There is a number [>1 such that (0, )<(n, k) and apr ((0, I—1),
J, 0)=apr ((0, I—1), 4, 7) and either v,,(4, 0)<vw,n(J, 'Y) or vy,;(J, 0) =
Vi,0(d, ) and apr ((0, 1), 7, 6)<,., apr ((0, 1), 4, ¥), where % is the indicator
of v(4, 0) (=v(J, 7).

3°. There is a pair of numbers (m, I), where m>0 and (m, [+1)<
(n, k) such that apr ((m, 1), 4, 0)=apr ((m, 1), 7, v) and either [=0 and
Vmii(J5 0)<Vpsi(d, V), OF 1>0, v,,1,(J, 0)=2,1.(4, ¥) (=p) and apr ((m, 1+1),
3y 0)<,p1, apr ((m, I+1), 5, 7). _

On the other hand, apr ((m, 1), 7, a)=apr ((m, 1), 7, ¥) and apr ((m, 1),
J, B)=apr ((m, 1), 7, 6) if (m, 1) < (n, k). So 1°-8° supply a sufficient
condition for g<; a. :

DerFINITION 3.1. Suppose a=apr ((n, k+1), 4, @) and one of the
following holds for a and B.

l) apr ((m’ l)r j’ 18)<] apr ((mv l)) j’ Of) for some (m9 l)g(n’ k)'

2) apr((m, 1), j, B)= apr((m, 1), j, @), apr ((m, [+1), j, @) exists and
apr ((m, 1+1), 4, B) does not exist for some (m, I+1)<(n, k).

3) apr((n, k), j, B)= apr ((n, k), j, @) and apr ((n, k+1), j, B) exists.

3.1) n=0 and v, 14(J, B) <Vor+n(d, @).

3.2) >0, k=0 and v,..(4, B)<Vu(J, ).

Then « is said to (j-) dominate B at an early stage.

ProposIiTION 3.1. If a j-dominates B at an early stage, then
B<;a. -Suppose B<;a and a=apr((n, k+1), j, ). Then either «
j-dominates B at an early stage or apr ((n, k), 5, B)=apr ((», k), j, ),
Vuri(d, B)=2.1.(J, @) (=p) and apr ((», k+1), j, B)<,..apr((n, k+1), j, @)
when n>0.

In n=0, we should replace the second equation with v .., (J, B)=
Vo urn(d, @) and let p be the indicator of v(J, &) (=v,J, B)).

Proof. From Definition 3.1 and Lemma 3.1.
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- DEFINITION 3.2. Consider two o.d.s’s @ and 8 and an indicator <.
Suppose a=a, ¥ --- ¥ @, and f=p, % --- & B;, where «,, ---, @, are com-
ponents of « and @, , >, ;> +-- ;>a,, and B, ---, B, are components
of g and B, ;>B; ;> -+ ;=>B;. The following two conditions, (w) and
(6), are necessary and sufficient in order that 8<,a hold. We will
refer to those two conditions throughout this section.

(w) m>l and a,=43, - -, @;=0,.
(@) There is k such that <!, m and «,=p8, -+, @,_,=8,_, and
Bu<i au- .

§3.1. The definition of comparison factors.

DEFINITION 3.3. Let /5 and @ be connected o.d.’s satisfying B <;, 4.
We will define a sequence of connected sub-o.d.’s of 5 subject to the
sp’s and tsp’s of &; those sub-0.d.’s are called comparison factors, or
emf’s of B (relative to (j, &). It is possible that two successive
cmf’s are identical. Notice that we are assuming that 5 is connected.

Let 8 be the first emf of 5. Suppose a cmf, say o has been
defined corresponding to a sp or a tsp of &, say (J, 7). The next step
is defined according to cases. Here we need not distinguish between
[L°] and [2°]; the cases are exhausted in (1)-(5).

A. (J,7) is the last reduction pair of & Stop. ¢ is the last emf
or (.

B. (4, 7) has a successor.

(2.1;1) v=(3, 0, a+1), i=1%+1and j<i. Put #=(4, 0, @). Suppose
that the components of a are «, a,, ---, «,, which are arranged in
the non-increasing order with respect to 4.

(2.1;1.a) v=apr (0, 7, 7).

Case (1) w4, 0)<(3, 0), v(j, 9)=(¢, 0) and apr (0, 7, 0)<, ¢ or o=
Stop. 6 is the last cmf.

Case (2) apr(0, 7, 0)=p¢ and apr((1, 1), 7, §) exists. Let it be
(p, b, B) and suppose »<<i. Stop. 0 is the last cmf.

Case (8) apr (0, 7, )=y and apr ((1, 1), 5, 6)=(p, b, B) where (p, b)=
(4, 0). Suppose that the components of B are 8, B, ---, B;, which are
arranged in the non-increasing order with respect to ». Apply Defini-
tion 8.2 to @ and B with respect to ¢. (V) applies. Let the next sod
of 7 be «,.

(v.1) u<w. Stop. ¢ is the last emf.

(».2) u=w. Let B, be the next cmf.

(2.1;1.b) v=apr (0, k+1), 4, 7).

Case (1) p j-dominates 0 at an early stage or d=pg. Stop. ¢ is
the last cmf. '
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Case (2) apr((0, k+1), j, )=p¢ and apr((, 1), j, 6)=(p, b, A).
vy(4, 0)<14, or vy(4, 6)=1, and p=14, Stop. ¢ is the last cmf.

Case (8) apr((0, k+1), j, O)=p. apr((, 1), 4, 0)=(», b, B), v:(J, 0)=1,
(p, b)=(3, 0).

() holds for «, B and 4. Let «, be the next sod of 7.

».1) w<w. Stop. 0 is the last emf.

».2) w=w. Let B, be the next cmf.

Case (4) apr ((0, k+1), 4, 0)=", v(J, 9)=1, p=1 and b>0.

Case (4.1) The next sod, say p, is the first component of «, viz.
po=a, Let apr((1,1), 7, 0) (=0,,) be the next cmf.

Case (4.2) The next sod is @, where w>1. Stop. ¢ is the last
cmf.
2.1;1.¢) v=apr ((n, k+1), 5, ¥) where n>0.

Case (1) p j-dominates 6 at an early stage or d=p. Stop.

Case (2) p=apr((n, k+1), j, ), apr (n+1, 1), 5, 9)=(p, b, B) exists,
and either v,.,(J, )<t or v,.,(Jj, d)=1% and p=1, Stop.

Case (3) apr ((n, k+1), 4, d)=p, apr (v+1, 1), 3, 9)=(», b, B) exists,
Va1o(d, 0)=1, and (p, b)=(3, 0).

(».) holds.

(».1) w<w. Stop.

v.2) u=w. Let 8, be the next cmf.

Case (4) As in Case (3) except that (p, b)>(4, 0).

Case (4.1) The next sod is the first component of «, namely «..
Let apr (n+1, 1), 7, ) (=0(,11,1)) be the next cmf.

Case (4.2) The next sod is «, where w>1. Stop.

2.1;2) v=(t, 0, ®+1), i=1%,+1, there is an (4, 0)-dominant in «
and j=¢1.

We consider the following “transitory” condition (7'): the immediate
predecessor of (j, 7) is transitory, the corresponding cmf is d,, and if
we let j,, Ji, -+, J., be the sequence of indicators defined for (2') in
Definition 1.1, then j=4=j,, §<;, ¥ if v+1=u, Y=apr((n, k+1), j, V)=
©=(4, 0, @) and 0*=apr ((n, k+2), 7,, 6) exists. Put 6*=(p, b, B).

Case (1) (T) holds and (p, b)=(z, 0).

(v) applies to @ and B with respect to ¢ and u=w (cf. (2.1;1) of
this definition for % and w). Let 8, be the next cmf.

Case (2) (T) holds, and (p, b) > (%, 0) and w=1. Let 0* be the
next emf. :

Case (38) All other cases. Stop. 0 is the last cmf.
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(») holds.
®».1) u<w. Stop.
(».2) u=w. Let B, be the next cmf.

Case (4) As in Case (3) except that (p, b)>(3, 0).

Case (4.1) The next sod is the first component of @, namely a,.
Let apr ((n+1), 1), 7, 6) (=0 (p41,y) be the next cmf.

Case (4.2) The next sod is @, where w>1. Stop.

(2.1;2) 7v=(,0, @+1), i=14,+1, there is an (4, 0)-dominant in «
and j=t¢. We consider the following “transitory” condition (7): the
immediate predecessor of (j,Y) is transitory, the corresponding emf
is 05, and if we let j,, 7, -+, ., be the sequence of indicators defined
for (2') in Definition 1.1, then j=4=47,, Y=apr ((n, k+1), 5,, 7) for some
n >0 and k& where u,=v+1, d=apr ((n, k+1), 7,, 6,)=(3, 0, @)=p, and
o*=apr ((n, k+2), j,, 6,) exists. Put 6*=(p, b, B).

Case (1) (T) holds and (p, b)=(4, 0).
(v) applies to @ and B with respect to ¢ and w=w (cf. (2.1; 1)
of this definition for # and w). Let B, be the next emf.

Case (2) (T) holds and (p, b) > (¢,0) and w=1. Let 6* be the
next emf.

Case (3) All other cases. Stop. ¢ is the last cmf.

Note that for this case the next ecmf “steps back”. This does not
cause a trouble, since the corresponding sod decreases its complexity.

(8.1) or (3.2) v=apr (0, 7, V)=(4, @, @); @ is connected and marked.
Let d,=apr (0, 7, 6)=(p, b, B). Suppose that the components of B are
By, By ¢+, By, which are arranged in the non-increasing order with
respect to p.

Case (1). (p, b)<(¢, @). Stop. ¢ is the last cmf.

Case (2). (p, b)=(4,a). Let B, be the next emf.

(3.3) 7=apr(0, 7, V)=(4, @, a); not all the components of « are
marked suppose that the components of & are «, «,, ---, @,, which
are ordered in the non-increasing order with respect to 7. Let 8,=
apr (0, 7, 0)=(p, b, B). Recall that the next sp of & is (¢, v') where ¥’
is an -least component of a, or ¥'=«,,.

Case (1). (p, b)<(%, a). Stop.

Case (2). (p, b)=(4, @). Apply Definition 8.2 to @ and 8.
(w) Stop. ¢ is the last emf.
0.1) «a, is not 7' (i.e. wu<m). Stop. d is the last cmf.
0.2) a,is v or u=m. Let B, be the next emf.
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(4.1) v=apr((0, k+1), 4, V)=(, 0, @), a=apr ((0, k), j, 7) (cf. Pro-
position 1.10), ¢=%,+1 and j<+i. For this case, either 1) or 2) in
Definition 3.1 holds.

Case (1) 1) or 2) with (m, 1)<(0, k) (i.e. m=0 and I<k) or 2) with
(m, 1)=(0, k) and o=apr ((0, k), j, ). Stop. ¢ is the last cmf.

Suppose apr ((0, k), 7, 6)=apr ((0, k), 7, Y) and d=apr ((0, k), 7, 9)
apr ((0, k+1), 4, 0) cannot exist.

Case (2) wy(J, 0)<t,. Stop. ¢ is the last cmf.

Case (8) wyJ, 0)=1,. Let apr (@, 1), 7, 0) be the next cmf. Notice
that in this case the next emf may be ¢ itself.

(4.1; 2) j=<. Consider the following condition (7"): (7") is described
as (T) for (2.1; 2) except that apr (n, k+1), j,, 6))=a (in the place of
=p) is required.

Case (1) (T') holds. o¢*=apr ((n, k+2), j,, 0,) is the next emf.

Case (2) Not Case (1). Stop.
(4.8) v=apr ((0, k+1), 7, V)=(3, a, @).

Case (1) 7 j-dominates 0 at an early stage. Stop. ¢ is the last
cmf,

Case (2) apr((0, k), 4, 9)=apr((0, k), j, V) and vu.(d, V)=
Vopsn(d, ) (=a). Let apr ((0, k+1), 7, 6)=(4, a, 8). Apply Definition 3.2
to & and A.

(w) Stop. ¢ is the last cmf.
0.1) m<u, so «, is not 7. Stop. 0 is the last cmf.
0.2) w=m, so «, is v'. Let B, be the next cmf.

(6.1.1) v =apr((n, k+1), 7, V)=, 0, @), a =apr ((», k), 7,7) (cf.
Proposition 1.11), i=1%,+1 and j<x.

(5.1.1; 1) j<4i. For this case, either 1) or 2) in Definition 3.1
holds.

Case (1) 1) or 2) with (m, I)<(n, k) or 2) with (m, l)=(n, k) and
o=apr ((n, k), j, ). Stop. ¢ is the last cmf.

Suppose apr ((n, k), j, 9)=apr ((n, k), j, ) and d=apr ((n, k), J, 9).
apr ((n, k+1), 7, 6) does not exist.

Case (2) k=0 and v,..(J, 0)<i, or k>0 and v,..(J, 0)<4, Stop.
0 is the last cmf.

Case (8) k=0 and v,.(j, 0)=1, or k>0 and v,.,(J, 0)=1%. Let
8myn=apr ((n, 1), 7, 6) be the next cmf when k=0 and let &1, =
apr (n+1, 1), 7, 6) be the next cmf when £>0.

(5.1.1; 2) j=14. Stop. ‘

(5.2) v=apr((n, k+1), 7, V)=(1, a, @) and i=v,,,(J, 7¥) where n>0.
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Case (1) 7 j-dominates & at an early stage. Stop. & is the last
cmf, :

Case (2) apr ((ny k)’ -7., 6)=apr ((’I’l/, k)’ jy ’Y) and vn+1(j’ 8):vn+1(j! fy):i‘
Let apr ((n, k+1), 7, 0)=(3, b, B).

Case (2.1) b<a. Stop. B is the last emf.

Case (2.2) b=a. Apply Definition 3.2 to a and B.
(w) Stop. ¢ is the last cmf.
(0.1) u<m, so a, is not v'.
0.2) u=m, so @, is v'. Let B, be the cmf.

(56.3) and (2') vY=apr ((n, k+1), 7, =0, a, @), >0 (=(, 0, +1)
for (2')), and i>v,,.(4, 7).

Let j, jy +++, Ju, be the sequence of indicators defined in (5.3) and
(2') of Definition 1.1. We define emf’s of S corresponding to the tsp’s,
G D, G )y oy Gy V-

Case (1) 7 j-dominates § at an early stage. Stop. d is the last
emf.

Case (2) apr ((n, k), §, 0)=apr ((n, k), 7, V), Vpis(d, )=2,4.(j, 7) and
apr ((n, k+1), j, 6) exists. Let apr ((n, k+1), j, 6) be the next cmf,
corresponding to the tsp (4, 7). In this case the next emf may be &
itself.

Suppose we have defined 7,, - - -%,, cmf’s corresponding to (5, 7), - -,
(G 7), and v<w,. So Y=apr((r, s+1), j,, 7) for some r and s, and
(5.8) or (2') applies to (5,, 7).

Case (V 1) 7 j,-dominates 7, at an early stage Stop. 7, is the
last emf. '

Case (v.2) apr ((r, 8), §., 7.)=apr (7, 8), Jo, V), Vess(Foy Do) =00 1:(G0y V)
and apr ((r, s+1), j,, 1,) exists. Let 7,,,=apr ((r, s+1), j,, 7,) be the
next emf, corresponding to (j,., 7). Here also the next emf may be
7, itself.

This completes the definition of emf’s.

PROPOSITION 3.2. Suppose B is connected, B <jy @ amd ¢ is a emf
of B corresponding to (j,7), where (4,7) is a sp or atsp of @& Then
0 is connected and:

I. In each case of Defiition 8.8, all the possibilities are covered,
hence the definition is complete; and

II. o<;n.

Proof. Suppose for (j, ) 6 has been defined, and the proposition
holds for (7, 7) and §. It is obvious that at each stage 0 is connected.
Therefore we shall consider I and II.
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Basis: for 58 and (j,, @), II is assumed.

(2.1;1.a) 1. As was proved in §2, p=apr(0, j, ). 06<;7=
apr (0, 7, 7) by the induction hypothesis (II). Therefore either v,(j, 0)<
(%, 0) or v,(4, 6)=(4, 0) and d,=apr (0, 7, 9)=(3, 0, §")<,7=(3, 0, «+1). So
0'<;a+1or 0’<,a. Therefore 0,<,(¢,0, ®)=p. If d,=p¢ and 0+0,
then apr ((0, 1), 7, 6) cannot exist and apr ((1, 1), 7, 0) exists. v.(7, 0)<1,
and, if apr((1, 1), 7, 6)=(p, b, B), then (p, b)<(4,0). Suppose (p, b)=(%, 0).
Then (4, 0, 8)<, =0, must hold, or B<, . If a=B%B for some B
then a would contain itself. So (®) in Definition 3.2 does not hold. So
only (v) is possible. In order to claim that (v.1) and (v.2) are the
only possibilities, we prove a lemma.

LEMMA. If p=(i,0,a)=apr (0, j, ), apr (0, 7,0)=, apr ((1,1), 7, )=
(i, 0, B), v(J, )=1, and (v) applies to «, B and i, then w>wu, where
a, =", an i-least (i, 0)-dominant of @ and a,=pB, +++, &y, =B,_, and
B.<; .

Proof. Suppose w>w. There is a component of B, say B,, in
which g is i-active. x>u>w. Since u>w, the outermost value of
a, is <(%, 0). On the other hand the outermost indicator 8,>%,. This
and B,<,8,<;a, force that B,=(i, 0, 8”), B.,=(i, 0, 8') and a,=
(3, 0, @) and B"<,;,B'<,,&'. But a is i-active in 5", hence a’'<; 8",
So w>wu. '

From the lemma. The claim is obvious.

II. When the next emf exists, u=w. So ¥'=«, and 8,<; «a,.

(2.1; 1.b) p=apr ((0, k+1), 7, 1) (cf. §2). Suppose vy(J, 6)=v,(J, 7).
apr ((0’ k)’ j, 3):apr ((O’ k)y j’ ’Y) and apr ((07 k+1), j, a)za(o,k+1) exists.
Then 8 e <44, 0, @)=yt is proved as for (2.1; 1l.a). Suppose 0, p+y=
(3, 0, @)#08. Then apr ((0, k+2), 7, 0) does not exists but apr ((1, 1), j, 0)=
dun=(p, b, B) does exist. v,(j, 6)<i, and p=1 or p=1,. Suppose
vy(j, 0)=1, and p=14. For this case we need the following lemma.

LEMMA. Let 7 be a conwnected o.d. If j<z, v(J, N)=1, &=
apr (1, 7, 7)=apr ((0, k), 7, ) for some k, and N+a, (hence 7 properly
contains an occurrence of ), then N<, &,.

Proof. The definitions a,=apr (1, 7, 7) and v,(j, 7)=1 evoke the
equations apr ((0, p), %, a,)=apr ((0, p), J, a,)=apr ((0, p), 7, ) for every
p such that 0<p<k. o, 7)=¢ and 7+#«, imply that @, cannot be
4-active in 7. Consider the i-approximations of 7:7,=apr (0, ¢, 7) and
No.n(=(@pr ((0, D), %, 1)) for some p=0,1, ---. Note that the i-approx-
imations of 7 are j-active in 7. The very definition of @, (as the 0%
j-approximation of %) implies 7, <, If 9 <,.a, then 7<;a, re-
garding «, as the 0" i-approximation of a,. If 7,=«,, then v (%, 7)=1
and there is an i-active occurrence of @, in %, which is j-active as
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well. So due to the definition of «,, (as the (0, 1) j-approximation
of 9), Ny <iwi Xoye  If <y, then with the same reasoning as for 0%
approximations (and the fact that 9,=a,), 7<, @, (regarding «, as the
(0, 1)** {-approximation of a,). Otherwise, there is an i-active occur-
rence of «, in 7. Continue this reasoning. Unless there is a number
p such that p<k, 9, =,y and 7, <;i, Ao, We eventually reach
the equation 7y,=a,,=a, This means that «, is ¢-active in 7,
vielding a contradiction. Therefore there is a p satisfying the condition
as above, which implies 7<; a,.

Let a, be #. 7 be 9, and & be k+1 in the lemma immediately
above. Then by the lemma §,,<; £.

Case (3) I. (p,b)=(%,0). Then (3,0, 8)<; (4, 0, @), or B<, . As
for (2.1; 1.a), it can be shown that only (v) is possible. Then a lemma
similar to that for (2.1;1.a) holds: under the circumstances w > u.
From this follows that either (v.1) or (».2) holds.

II. B.<, a,=".

Case (4.1) By the lemma proved above, d,,=(i, b, 8)<, t=(3, 0, ).
Since b>0, this implies d0,,,<; @, or é,,,<,0="". But d,, contains p
properly, so <, must hold.

Case (4.2) No further emf.

It is obvious that all the possibilities have been exhausted.

(2.1;1.e) 60<;7 and p=apr ((n, k+1, 4, #£). It can be easily shown
that if v j-dominates 0 at an early stage, then so does /. Suppose
apr ((n, k), j, )=apr ((n, k), J, V), vari(d, 0)=1, and apr ((n, k+1), , d)
exists. Then apr ((n, k+1), 7, 0)=0 101 <s,s0:tt, for Otmrn <iny+rY and
1=1,4, imply that 0., 4.+y=(4, 0, §'), hence 6’<,@. Suppose apr ((n, k+1),
J,0)=p¢ and o=y, apr((n+1,1),7,0)=0(4.,, exists. We need the
following lemma.

LEMMA. Let 9 be a connected o.d. and j and i be indicators such
that <t and t=1,+1.

1) If n properly contains an occurrence of «,=apr (n, j,7) and
Vuri(d, D) =1, then 1<, a,.

2) If n properly contains an occurrence of e, ., =apr (n+1, 7, 9)=
apr (n, k), 4, ) for some k>0, and v,..(j, 9)=1, then 7<, &,

Proof. The distinction between 1) and 2) is only a matter of
subscripts, so we shall prove 2) as an example.

The condition v,.,(j, 7)=1, evokes the relation v,,,(4, 7)>%, hence
the equation (aq,,,=)apr ((n, p), 1, @,..)=apr (n, p), j, 1) for all p such
that 0<p<k. The condition that » properly contains an occurrence
of a,, and v,..(J, P)=1%<+¢ imply that «,,, cannot be i-active in 7.
Consider the i-approximations of 7; ., =apr((p, 1), 1, ). Note that the
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4-approximations of n are j-active in 7. Let ¢,=v,(4, ), »=0,1, ---,
n+2. If 0<p<n+1, then ¢,=v,(i, &,;,). From the definition of «,
(=apr (0, 7, 9)), no=apr (0, 3, N<, . If <, then <, «,,,, regarding
o, as apr (0, %, @,,,). If =, then there is an ¢-active occurrence of
a, in . It is also j-active. So from the definition of a,,(=apr ((0, 1),
Ty s Doy Sepri@e,ny I <, then 7<; @, ,,; othewise there is an i-active
occurrence of &, in 7. Continue this reasoning.

Suppose, with this reasoning, we reach %=, n=0x,. This
would mean that there is an i-active occurrence os «,,,, yielding a
contradiction. Therefore there must be a (p, 1)<(n, k) at which the
equality break down. Let (p,!) be the first such. Then either apr ((p, ),
i, 1) does not exist, or apr ((p, 1), 7, 7) exists with I=1 v,..(3, )<
or ’vp+1(7:’ v):‘pﬂ and 77(za,l)<:(,,+1)+1 a(p,l)- Ill any case 7]<z Xoppye

In the lemma immediately above, let 7 be 04,11,,, ®,+, be ¢ and k
be k+1. Then 0.y, <; -

Case (3) As has been seen, either (v.1) or (v.2).

Case (4.1) 0441, <:7' is proved as for (2.1;1.b). '

(2.1;2) Cases (1) and (2). The condition (T') demands that v,..(j,, )=
Vpri(d, 00)=1, Since g=apr((n, k+1), 7,, #£) whose n>0, 6* <, ¢. So for
Case (1) B8<,a, and hence B,=8,<;a, (the next sod) by definition.
For Case (2), 6*<,p. But p<,,0*. So 0*<,a. But a is a part of
6*, hence 6*<,a. &* is connected, so this means 6* <, «,.

(8.1) and (8.2) I. 8<;Y by the induction hypothesis (II), hence
(p, b)<(%, @), so either Case (1) or Case (2) must hold.

II. If Case (2), 6<;7 implies 0,<;7, hence B<,a. Since a is
marked, this implies 8,<; @. Recall that the next sp is (¢, @) and the
next emf is B,. Therefore II is proven for the next stage.

(8.3) 'If Case (2), <, ; hence for (0.2) B,<,a,=7" by definition.

(4.1;1) 0<;7 by the induction hypothesis.

I. If apr((0, k), 5, &)=apr (0, k), 7, V)=, then apr ((0, k+1), j, 9)
sannot exist. So either d=apr ((0, k), 7, ) or apr (2, j, 0) exists and
V(g 0) <. ‘

II. Case (3). The next sp is (¢, @) and the emf is apr((1, 1),
7, 0) (=04,)-

Taking 8., as the 7 in the Lemma proven for (2.1;1.b), we obtain
94,0 <. apr (0, k), 4, 9)=apr (0, k), 4, N)=a.

(4.1;2) Case (1) 0*<,a from the definition. « is the next sod.

(5.1.1;2) is dealt with exactly in the same manner.

(4.8) 0<;7 (the induction hypothesis) and proposition 3.1 yield
that either Case (1) or the equations of Case (2) hold and apr ((0, k+1),
45 0)<isapr (0, k+1), 3, 7), viz. (3, @, 8)<i+: (%, @, @). Thisimplies 5<;a,
hence the sufficiency of (@) and (6), and B,<;a,=7" when (6.2) holds.
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(5.1.1.; 1) 0<;7 by the induction hypothesis.

I If apr((n, k), j, 0)=apr ((», k), j, Y)=a (cf. Proposition 1.11),
then apr ((n, k+1), j, 9) cannot exist. So either d=apr ((n, k), 4, ) or
apr (n+1, g, 0) exists and v,.,(j, 0)<%, (when k=0) or apr(n+2, j, )
exists and v,.,(J, 0)<%, (when k£>0).

II. Case (3). The next sp is (¢, @) and the emf is either apr ((n, 1),
3, 0) (=0.,,) (When k=0) or apr ((n+1, 1), j, 9) (=0(s+1,y) (When k& > 0).

Let us consider the latter case. Taking d,,, as the 7 in the
Lemma (Proven for (2.1;1.c), we obtain 0,4, <;apr ((n, k), 7, 0)=a.

(5.2) I. Suppose Case (1) does not hold. Then apr ((n, k), 7, §)=
apr ((n, k), 4, 7) and v,.,(J, 0)=v,..(5, 7) (=%). Let apr((n, k+1), 5, §)=
(v, b, B). Since < ; 7, Proposition 3.1 implies (p, b, 8)<..: (i, @, @), hence
p<t. On the other hand, p>7 by the definition of apr ((n, k+1), 7, 6)
(since v,4,(J, 0)=7). So p=1 is the only possibillity. This implies that
either b<a or b=a and B<,;a.

II. If (0.2) is the case, B8,<;a,=7.

(5.3) and (2') I. Note that if Case (1) does not apply, then
apr ((n, k+1), 7, 0) exists.

II. If Case (2), 7,<;, 7 implies 1,,,<;,,,”, Wheae j,.,=v,,,(5,, 7,)+1.

This completes the proof of Proposition 3.2.

§3.2 Proof of Theorem 2

Theorem 2 follows from the proposition stated below. This is a
basic property possessed by the cmf’s.

PROPOSITION 3.3. Let 8 be a connected o.d. satisfying B<10
Let (j,7) be a sp or a tsp of (4, &) and let 6 be the emf of B corre-
sponding to (j,7). Let {7,}, be the reduction sequence for Y. Then
one of the cases (1*)~(3*) below holds.

(1*) There exists an m and a component of ¥, say P, satisfying
0<; Ome

2*) Yu=af$---$atp,, where either o, is empty (b.3), d.4.2) and
e.4.2)) or o, is connected and assumes one of the forms 0,=(k,, 0, @)
where k,, 11 (d.4.1) and e.4.1)) and 0,=(i, 0, &,) & (i, 0, @) where Y=
(3,0, @) and i=1,+1 ((4.1;2) and (5.1.1;2)), and 6<; a.

(3*) Yu=u¥--- 140, where Y=(i, a, a+1) and p=(, a, @)
and either 0, is empty (c.1) and 1° of c.2.3)) or assumes the form
(@, 0, @, ¥ (4, 0, 1)) ((2.1;2)).

(2') and (5.3) can fit to one of the forms given above.
The proof of Proposition 3.3 will be presented in §§8.3 and 3.4.
Here we shall complete the proof of Theorem 2 assuming Proposition 3.3.

THEOREM 2. The reduction sequence for (j, &) converges to &
from below with respect to <;,.
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Proof. 1. Let B be a connected o.d. satisfying E<,~0 &. Then
as a special case of Proposition 3.3, with =38 and (4, V)=, Q),
B <y On<iln (in case of (1*)) or B<;, @<; @ (in case of (2*)) or
Bgio(i’ a, “)Sjo avv ~

2. Let 5=p,%--- #ﬁq and B<;, & We may assume 3, is a j,-
greatest component of 8. Then B,<; @. So 1. applies. If (1*) is
the case, then B,<;, 0, Where p, is connected. So 8,<;, 0. for every
p=1,2, .--,q, and hence E<,~0 On<j, @n. If (2%) is the case, then
B, <j . So B,<; a for every p, and hence B<; afa%..-fa=a,.
(8*) can be dealt with likewise.

This completes the proof of Theorem 2, and hence the existence
of fundamental sequences.

§3.3. Proposition 3.3—Basis

Let us restate here what we are going to prove:
Let 6 be the last cmf of (a connected) 8 corresponding to (g, 7).
Then the statements in Paoposition 3.3 hold for ¢ (cf. §3.2).

Proof. We look for the cases where the construction of cmi’s
stops (cf. Definition 8.3). Note that d is connected.

A. (4,7) is the last reduction pair of & hence Y=y and j=¢ in
the notation of Definition 1.1.

(1) a.l) For this case we show that for any connected 0<<;7 (=
(4, @, 0)=v), 6<; 7, for some m. Q,=Y.(=v,). If 0<;7, (7, 0)< (%, @)
must hold. If the indicator of v,(j, d) is <4, then d<;v, If =41, then
there is an m such that the second element of v,(j,0)<a,. So
0<;Yn=0m. So (1*) is the case.

a.2.) Asin a.l), suppose 6 <; ¥(=v) where 0 is connected. v,(J, 9) <
(4, @), viz. w(d, 0)<(i,b). If <, then d<;v. If w4, 0)=(i, b), then
we define the nesting number of j-active (¢, b)’s in 6 as follows. Let
n=(p, ¢,7’) be a j-active sub-o.d. of 6 such that 7' does mnot contain
any j-active occurrence of (%,b). The nesting number of 7, denoted
by n(n), is 0 if (p, ¢)<(3, b) and is L if (p, ©)=(4, b). (Note that (p, 0)<
(4, b).) Let 7=(p, ¢, ') be a j-active sub-o.d. of & where 7' contains
a j-active (3, b). If (p, ¢)<(3, b), then n(n)=max (n(1,), - -+, (7)), Where
7, +++, 9, are the components of 7; if (p, ¢)=(1, b), then n(n)=
max (n(7.), - -+, n(7)+1.

Let n,=n(d). m,>1. We shall show that 0<;v,,., by induction
on the complexity of 4.

Suppose first n,=1. We will prove that <, v, for all [ such that
j<l<i. If & is of the form (i, b,9’), then there is no l-active (¢, b)
in 8. So w4, 8")<(3, b), which implies 0’<,v; in particular 0" < Yy
from which follows d<,y, for any I>4. Let j<I<7 and let 7 be an
l-section of &. wy(l, 7)<(i,b). So n<,y,<,v, hence <,y for all [,
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i<l<i. If 6=(p, ¢, ') where (v, ¢)<(%, b), then j<p<1, for & contains
a j-active (¢,b), and v,(j, 0)=(%,b). 0<;v, is obvious if I>p. Let
l=p. 0'<,y, by the induction hypothesis. So d<,v, Let j<I<p and
7) be an l-section of 6. By the induction hypothesis <,y,. So d<,;y,
for all such I.

Suppose next n,>1. Again we shall show that (from the induction
hypothesis) 6<,v,, for all I such that 7<I<s. If 0=(4, b, d’) then the
nesting number of each component of ¢'<n,—1. So §'<,v,,_, by the
indution hypothesis. In particular ¢'<,v, , (using the fact that {v,}.
is an increasing sequence with respect to any [, 7<I<14). So ¢ <i Vg
Let j<I<i and let 7 be an I-section of 6. Then n())<n,. So by the
induction hypothesis 1<, V.,; hence 0<;v,,. If dis of the form (p, ¢, §’)
where (p, ¢)<(3, b), then 6<,v,, for any I>p. Let j<I<p and let %
be an [l-section of 4. Then by the induction hypothesis 1<, V.,, hence
0<;Y,,. In any case 0,,=v,, hence (1*).

a.3.1) j=t>% and h>1.

1°. i, 11 v,=(@, b, (i, 0, 0))=apr (0, 7, v,) and v,(5, v,)=(q, b).
If 0<;v, then v(J, 0)<(, @), i.e., vy(j, 0)<(3, b). If <, then 6<;y, If
=, consider apr (0, 7, 0)=(, b, §"). Let » be the greatest indicator
occurring in ¢’. There is an m such that »<<¢,. Then evidently
0'<; (tms 0, 0), so apr (0, 7, 0)<,apr (0, j, v,), which implies 6 <; v,,(=p,.).

2°. I has the maximum element ¢ and a,, | A. v,=apr (0, j, v,)=
(%, b, (¢, @m, 0)). Suppose 6<;v. Then vy(j, 6)<(%,b). If <, then d<; v,
If =, then apr (0, j, 9)=(4, b,0"). There is an m such that all the
values occurring in ¢’ are <(, a@,). Then §'<,(, a,, 0), so apr (0,
J,0)<;apr (0, 4, v,) (=v,). Therefore é<;v,(=0u)-

3°. I has the maximum element ¢ and A has the maximum ele-
ment e. £,=(,e -+, (,¢0),---) and v,=(4, b, £,). apr(0, 7, v,)=
Yn. Suppose §<;v. If v(j, 0)<(, b), then 6<;v,. If =, let apr (0, 7, )
(4, b,8"). We can define the nesting number of i-active occurrences of
(¢,e) in ¢’ in the same manner as the nesting number in a.2). Let
it be m,. Note that all the occurrences of (¢, ¢) are l-active in &, for
every l. We can show as for a.2) that ¢'<,«,, for every [ such that
1>%. Then 0<,v,,

b) This case can be dealt with in a manner similar to a).

b.2.2;1) 1°. v,=(iy, €, (im, 0, 0))=apr (0, 7, v,) and v,(7, v,.)=(1,, €).
If 60<,v, then w7, 0)<(¢,0) or <(i,e). If <, then 6<;y, If =,
consider apr (0, 7, 0)=(1,, ¢, 0’). Let p be the greatest indicator occurring
in ¢’ and suppose p<t,. The evidently ¢’ <, (3,, 0, 0), so apr (0, 7, 0)<iyVYm-

2° Kn=(4€ -, (¢ e, 0)---) and V= (10, €, Kn). apr 0, 4, Yu) =Y.
Suppose 0<;v. If w4, 9)<(iy €), then d<;v,. If =, let apr (0, 7, 6)=
(%o, €, 8'). Define the nesting number of iactive occurrences of (¢, e)
in ¢’ (cf. a.2)). Let it be =, All the occurrences of (¢, ¢) are l-active
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in &, for every I. 0'<;k,,, for every 1>1, (cf. a.2)). Then 6<; Yoot

b.2.2;3) j<i, 0<;7. If w4, 0)<(%, e), then 6<;y, Suppose =.
Define the nesting  number of j-actiue (7, ¢)’s. Then follow the proof
of a.2). .

(2) c.1) Suppose 0<;v for a connected 0. If w7, d)<(s, @) or
v(J, 0)=(14, @) and apr (0, 7, 6)<,(¢, a, ), then 6 <; v(=(t, @, @)). Suppose
v(J, 0)=(%, @) and apr (0, 7, 6)=(%, a, 6"). Then 6<; (¢, @, ®+1) implies
0'<,a+1,viz. 9'<,a. So apr(0,7,0)<,(%, a, ). jF>i and w7, d)=
(%, @) imply that d=apr (0, 4,8). So if apr (0, j, §)+~(i, ¢, @), then d=
(4, @, @). Therefore (3*) holds.

c.2.1) We will work out this case in two steps: the case where
j=1% and the case where <<% in general.

j=1. We need some lemmas for this case.

LEMMA (1). Suppose 0 is connected and (3, a, 2)<,0<; (4, @, @ +1).
Then 6<,,,(1, @, @+1).

Proof. Under the assumption, a<,0. So a+1<,0 (since 0 is con-
nected). Thus (¢, @, +1)<,,, 0 would imply (4, @, ®+1)<, 6, contradict-
ing the assumption.

LeMMA (2) Suppose 6 is connected and (¢, a, a)<,0<, (1, a, ®+1).
Then 0 is of the form (i, b, 0') where b<a and (4, ¢, ®)<, 0" <, (¢, a, € +1).

Proof. Let & be of the form (%, b,d"). (i, a, ®)<,d implies k>1.
Suppose k>¢. Then (3, @, ®+1)<,0 for all I>¢. Therefore 6 <,(%, a,x+1)
implies o<, @+1, so 0<,; (%, a, @), contradicting the assumption. So
k=1.

Suppose b=a. If 6<,.,(, a, @), then ¢’ <,a. This implies 6 <, (1, a, @),
contradicting the assumption. So (3, a, @)<,;,0<,, (¢, @, a+1) (by
Lemma (1)), from which follows a<,d'<,a+1. This is impossible.
Thus b+#a. If b>a, then (i, ¢, a+1)<,,, 0, contradicting Lemma (1).
So b<a. &'<,(t, a, ®+1) is obvious. (¢, b, §")<,4, (¢, a, @), since b<a.
So in order that (¢, @, @)<, 9, (4, @, ®)<; 0’ must hold.

Now back to c¢.2.1). Suppose 6<; (¢, @, @+1). Note first that {v,}.
is increasing for all <.

Case 1) 0<,(1,a, ). Thend<, (3, a,, (¢, @, @))=y, is obvious. (1*).

Case 2) (i,a,0)<;0<,(t, @, a+1). Let I be the set of connected
0.d.’s of ¢ defined as follows. 0 belongs to I". If 7 is in I and 7 is
an ¢-section of 7, then each component of » is in I'. Only those are
in I'. If 7 belongs to I' and there is no ¢-section of 7, then we say
that 7 is a simplest member or I'. l

We shall prove for each 7 in I' that there is an m such that
v<; (%, @m, (¢, @, @)) (=v,), by induction on the complexity of 7. As a
special case, 0<, v, for some m.
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From the definition and the assumption, 7<, (¢, @, «+1) for any
Y in I'. Let 7 be a simplest member of I". Suppose 7 is of the form
(p, b,7). 7<,(, a, @), for otherwise p=1 by Lemma (2), hence each
component of 7' belongs to I', contradicting the choice of 7. So
v<, (3, ay, (3, @, @)=y, Suppose Y=(p, b, ¥') where ¥’ contains a member
of I'. If (3, @, @)<;7, then Lemma (2) implies p=% and b<a, hence
Y is an t-section of 7. By the induction hypothesis, for each 7 a
component of 7', there is an m (depending on %) such that 7<,y,.
Let m, be the greatest such m. Then v'<,v,,. Since b<a, there is
an m such that @, >b and @, >a,, Pick such an m. v<,y, if I>4,
and 7' <;VYn, <iVm. S0 7<,v,. This completes the case where j=f¢,
and we have seen that (1*) holds.

Now we drop the condition j=1%. Let 0 be an arbitrary connected
o.d.

We prove that

(*) Given and j <4 for which 0<;v=(%, @, ®+1) holds, there is
an m such that 0<;v,.

The proof is by induction on the complexity of ¢ within which by
induction on the number of indicators satisfying the following condition
(C): an indicator [ satisfies (C) if j<I<+¢ and there is an [-sectin of
0 or y. The number of such indicators depends on j (when ¢ is fixed)
and if [ satisfies (C) for j, then the number corresponding to ! is less
than that which corresponds to j. Therefore the induction hypothesis
applies to ! (presuming that d<,v). When 6=0, 0<;y,. Suppose d is
not 0. The case where j=% is done. So suppose j<1%. Let [ be the
least indicator such that 7<!<7 and there is an [-section of & or v.
By the induction hypothesis (*) holds for I. Suppose 0<; (¢, @, @+1).

Case 1) 6<,v. Then by (*) for I,0<,v, for some m. Let 7 be
a j-section of 6. Then 7<;v, so by the induction hypothesis 7<;v,
for some n. Let m,=max (m,n). {v,.}. is increasing with respect to
! and j, so 0<;Y,, and 7<;V,,.. Therefore by the choice of I, 6<;v,,.

Case 2) v<;0. Since 0<;y, there is a j-section of (¢, a, @+1),
hence of «, say %, such that d<;7. 7 is a j-section of y,, so 6<;y,.

c.2.2) a=b+1.

Suppose 6<;v=(%, b+1, a+1). This case can be dealt with in a
manner similar to the proof for c.2.1). Note that {v,}. is <;-increasing
for every I. :

Jj=1. If 6<,(3,0+1, @), then o<, v, If (¢,b+1, @)<,0<,(¢,b+1,
a+1), then by Lemma (2) (with a=b+1) 0 is of the form (¢, ¢, d’)
where ¢<b and the components of §'<, (4, b+1, @+1). By the induction
hypothesis, ¢'<;v, for some m. (See the proof for c.2.1) for detail.)
So 0<, Vpise '
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J<t. The proof for c.2.1) goes through. In any case (1*) holds.
c.2.3) =0 and t=q.

LemMmA (8) If 0 1is commected and 6<,v (=(i,0, ®+1)), then
0<, (4,0, a).

~ Proof. Suppose d=(k, b, 0')<;v. If k>i or k=¢ and 5>0, then
v<y;,0, hence by Lemma (1) (proven for c.2.1)) 6<, (¢, 0, @). If k=1 and
b=0, then d<,v implies 0'<,a@+1 or §'<,a. Therefore 0'<, (i, 0, ).
If k<<, then 0<, (3, 0, @) is obvious.

Lemma (3) proves that (3*) holds for this case.
c.2.4) a=0,j=t<t and 4, [ 4. Suppose d§<,v=(3, 0, a+1).

Case 1. y=apr (0, j,v). Then #=(3, 0, a)=apr (0, 7, 1) (cf. Case
1 of 2.1 in the proof of Proposition 2.1). d,=apr (0, 7,0)<,v. So by
Lemma (3) above. 6,<,(¢, 0, @)=p. If 6,<, tt or 6,= =0, then §<; v,.
Suppose 0,=p+#0. Then apr ((0, 1), 7,0) cannot exist and w,(j, §)<i.
So (4, 0)<%,<% for some m. It is evident that v,=apr ({1, 1), 7, v,),
apr (0, 7, v, )=¢ and v,(J, V,)=%,. So 0<;V,.

Case 2. v=apr((0, k+1), j, v) for some k. Then pg=(1,0, @)=
apr((0,k+1),7, #) and apr((0, k), 7, #)=apr((0, k), 7, v). Also apr((0, k+1),
Iy V)= V(J, Vu)=1n (<%, is assumed.) and vy, =apr((1, 1), 7, v.).
Suppose 0<;v. Then either vy j-dominates 6 at an early stage or
apr ((0, k), 7, 0)=apr (0, k), 7, v) and apr ((0, k+1), 7,)<,, v (cf. Pro-
position 8.1). If the former is the case, then d<;t, hence d<;v, is
obvious. Suppose apr((0, k), 7, 6)=apr ((0, k), 7, v) and apr((0, k-+1), 7, §)
exists. apr((0, k+1), 7,9)<,,v and w4, v)=2,(j,0)=¢ imply that
apr ((0, k+1), 7, 6)<,v. Therefore by Lemma (3) apr ((0, k+1), 7, 0)< .,
hence <,,. If <, holds, or = and d=apr ((0, k+1), 7, §), then 6<; v,
is obvious. Suppose apr ((0, k+1), 7, 0)=p=#06. Then w7, 0)<%, for
some m, hence 0<;y,.

Case 3. v=apr ((n, k+1), 7, v) for some n>0 and some k. Then
r=apr ((n, k+1), j, ¢) and apr((n, k), j, #)=apr ((n, k), j,v). Also
apr ((n, k+1), J, va)=f. V.(d, Yu)=1, and y,=apr((n+1, 1), 5, va).
(<1, is assumed.) Suppose 0 <;v. Suppose apr((n, k), ,8)=apr((n, k), 7,v)
and apr((n, k+1), 7, 0)<,;,v. Recall that 1=v,,,(J, ¥Y)=v,..(4, 6). Then
apr ((n, k+1), 7, 0)<,v. So by Lemma (3) apr ((n, k+1), 7, 6)<, ¢, hence
<;+:. As for Case 2, now follows §d<;y, for some m. «

c.2.5) a=0, 5<% and i=1,+1. Since the requirement for (2.2) is
that there be no (%, 0)-dominant of 7, the outermost indicator of every
component of a« in <¢. Also (2') is not the case. Therefore y=
apr (0, 7, v) and the outermost (¢, 0) is the only j-active (¢, 0) (a greatest
j-active value). Therefore p=apr (0, 7, #) and, if 6<;y, then 4, =
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apr (0, 7, 0)<,v. As for Case 1 of ¢.2.4) 6,<,¢t. Suppose 0,=p=#4d. If
vy(7, 0)<%, then 0<;y, Suppose vy (j,d)=1,. Put apr((, 1), 7,0)=
(p, b, B).

Suppose (p, b)=(%, 0). Then (¢, 0, B)<, t=(3, 0, ®), hence B<,a.
It is not the case that =g # 8 for some @', since B contains a.
Therefore (v) applies to B, « and ¢. Let 8=0, % ---£B,4--- & 8, and
a=a, §---$a,%---fa, where the components are ordered in the
non-increasing manner with regards to <. Here o, #---#a, =8, #%.--
£8.., and B,<;a,. There is an I, w<I<I,, such that p is i-active in
B,. The outermost values of the components of 8 are <(i, 0), since
those of a are, so 8, is of the form (4, 0, &), @, is of the form (4,, 0, @)
and B, is of the form (¢, 0, B”). B,<;B.<;a, then implies that
B'<,,B<;,,a'. But a is i-active in B8’. So a’'<;, 8. Therefore
B"<;, & is impossible. Namely p<<, or p=1, must be the case.

1°. (p, b)<(%,, @,) for some m, hence (p, b, B)<, v,=apr ((1, 1), 7, v,.),
which implies 6 <; v,,.

2°. Let 7 be an 4-subsection of apr ((1, 1), 7, ) which contains p
properly. Then 7 is of the form (4, ¢, 7). (Follow the proof for p=1,
given as above.) We shall show that <, ; v, for some m for any such
7. If each component of 7’ either omits # or is p, then 7' <, pt# --- # p
for some number of #’s, hence <, ;v,. Suppose each component of
7" which contains ¢ properly is <, ,v, for some m. We may assume
that m is common to all those. Since ¢ is i,-active in v,,, a component
of 7" which omits #<, v,. Therefore 7'<, v,, hence N<ips Vmsie

It is easily seen that apr (0, 7, v,.)=g, v.(j, ¥.)=1%, and v, =apr ((1, 1),
JyYn). So apr((,1), 7, 6)<;Y,, which implies 6<; v,.

In any case (1*) holds for c.2.4) and c.2.5).

(4.2) v=apr((0, k+1), t,v)=(4, @, @) and a=apr ((0, k), t, v) (cf.
Proposition 1.10). Therefore if §<,v for a connected 6, then v ¢-dom-
inates 0 at an early stage (cf. Definition 8.1). For this case we state
a little lemma.

Lemma. apr((0, k), ¢, v,.)=2apr((0, k), ¢,v) (=) and v, =apr ((0,k+1),
t,v,) (d.1) and d.2)), v,=apr ((1, 1), ¢, v,) (d.3)),v,=a# --- @ or y,=
af---fafp, where the indicator of vy(t, p,.)<t (d.4)).

So if apr (0, k), t, 6)=apr ((0, k), ¢, v) (=) and apr ((0, k+1), ¢, 6) (=
(%, ¢, B)) exists, then c=wv,,.,(¢, 0)<a.

d.1) If 1) or 2) of Definition 3.1 is the case, then § <, y, is obvious.
Suppose 3.1) is the case.

There is an m such that ¢<a,. Since y,=apr «0, k+1), ¢, v,),
< Vu(=0,). (1%).

d.2) Suppose 3.1) is the case. ¢c<a means ¢<b. y,=apr ((0, k+1),
t, v,). So, if ¢<b, then 6<,y,. Suppose ¢=b. If we can claim that

(*) for every t-subsection of apr ((0, k+1), ¢, 0), say %, which
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contains apr ((0, k), t, 6) (=a) properly, there is an m (depending on 7)
such that 7<, ;.. V.

Then as a special case apr ((0, k+1), ¢, )<, v,, for some m, hence
0< Ve (1%).

Proof of (*). Let n=(,d, ') where d<b. If each component of
7’ either omits « or is «, then <, #.--fa. So 9<,v,. If a com-
ponent of 7' contains an occurrence of « properly, then there is an m
such that 7'<,v,. Then it is obvious that 7<, ;. Vi

d.3) In this case, if apr((0, k), ¢,0)=apr ((0, k), ¢, v), then apr ((0, k+1),
t, 0) cannot exist, for v=(7, 0, @) and a=apr ((0, k), t,v). So 1) or 2)
of Definition 3.1 applies. If apr ((m, ), ¢, 6)<,apr (m, 1), t, v) for some
(m, 1)<(0, k), then 6<,v,. Suppose apr ((0, k), ¢, d)=apr ((0, k), ¢, v)=«.
Let p=wyt, 0). There exists an m such that p<<,. v,=apr((1,1),
t,v,) and 7,=v,t, v,). So 6<,y,. (@*%).

d.4) Since t=1, there cannot be apr ((1, 1), ¢, ). So if apr ((0, k),
t,0)=a, then the only possibility is that 6=a. So (2*) holds.

(5.1.2) y=apr ((n, k+1), ¢, v)=(1, a, @), a0, =0 and t=1, or =0,
t<i and 4, [ 4. ©=v,.,(,v) and a=apr ((», k), i, v). Suppose §<,v.

~el) If v t-dominates 0 at an early stage, then 6<,y, since
apr ((n, k), t, v,)=a and v,,(¢, v,)=1. Suppose apr ((n, k+1), ¢, §) exists,
apr ((», k), t, 0)=a and v,.,(t, v,)=1i. Let apr((n, k+1), t, 0)=(p, ¢, &').
Then p>1, (p, ¢, 0") <, (¢, @, @), so p=1 and ¢<La. If ¢=a, then é'<,
must hold, but ¢’ contains @ as an ¢-subsection. So ¢<a@. There is
an m such that ¢<a,. 0<,v,. (1*).

e.2) If v t-dominates 6, then d<,y,. Suppose apr ((n, k+1), ¢, d)
exists, apr((n, k), t,0)=a and v,.,(t, 0)=1¢. Let apr((n, k+1),t,0)=
(¢, ¢,0"). Then c<a, viz. ¢c<b. If ¢<b, then 6<,v, If ¢=b, then we
can prove a statement similar to the (*) in d.2): Let 7 be any t¢-
subsection of apr ((n, k+1), £, 0) which properly contains @. Then there
is an m such that 7<, ., v,. (we ought to remark that if n=(q, d, ')
contains an ¢-active «, then g¢=+¢.) In particular (j, ¢, ¢’ )<14r1 y, for
some m. This implies 6<<,v,. (1%).

e.3) If 1) or 2) of Definition 3.1 with (m, I)<(n, k) or 2) with (m, )=
(n, k) and o=apr ((n, k), ¢, 0), then d<,y,. Suppose apr ((n, k), t, )=
a and d=apr ((n, k), t, 5). Note that apr ((n, k+1), t, 6) does not exist.

Case (1) k=0. Let v,.,(t, 6)=p. Then p<%, hence P<t,,=v,..(t, V)
for some m. o0<,y, (@1%)

Case (2). k>0. Consider spr ((n+1,1),t,0) (which exists under
the circumstances) and let p=w,,,(¢ 0). »<4. There is an m such
that p<im. Va14f, Yu)=%n, hence 6<,v,. (1*).

e.4) a=0 and t=14. Suppose apr ((», k), ¢, 0))=a and apr ((n, k+1),
t, 0) (=(p, b, 0")) exists. Since v=(3, 0, @), p<i; but then a would not be
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t-active in 0, contradicting the situation. So v dominates 6 at an early
stage, and either 6<,@. (when é omits a) or 6=a. (2*) holds.
" B. (4,7) is not the last reduction pair (but ¢ is the last emf).
(2.1;1)(2.1;1.8) v=(4, 0, @+1)=apr (0, 7, 7). p=(4, 0, @)=apr(0, j, ).
Let (¢, o) be the next sp. p is an i-least (¢, 0)-dominant of v. {0On}n
has been defined so as to satisfy Proposition 2.1. See also Lemma 1
for (2.1) in the proof of Proposition 2.1. :
Suppose 0<;7. As in Case 1 of c¢.2.4),d,=apr (0, 7, 0)<, p. If
0,<; tt or 9,=p=0, then §<;7,is obvious. When d,=g, apr ((0, 1), 7, 9)
cannot exist and v,(7, 0)<i. If w4, 0)<4,, then 6<;7,. Now consider
the case where d,=p¢+0d and v,4, 0)=14,. Let apr((, 1), 7, )=(», b, B).
If (p, b)<(4,0), then 6<;7%. So let us assume that (p, b, B)=(3, 0, B).
%, 0, 8)<; #=(@1, 0, @) must hold, so B8<,a. As for c.2.5), if we let
:8=B1 # °ce # Bll and a=a, # tte #aly then @, # e, =P, # tte # Bu—l and
B.<;«, for some u, and there is an I>w such that g is 7,-active in 5.
The lemma for (2.1;1.a) in the proof of Proposition 3.2 claims that

(*) if o=a,, then w>wu.
By (*), if w>u, theu a,, ---@, remain invariant in a(‘o \# (%, 0, 2), sO
(B<ia(£>#(zo, 0, 1), and hence (7, 0, B)<<; 7, or 6<;%,.

(2.1;1.b) v=apr((0, k+1),5,7). apr((0,k), 5, #)=apr((0, k), j,7) and
p=apr ((0, k+1), 5, ¢£). Suppose 0< ;7. As for the preceding cases,
only the case where apr ((0, k+1), 7, 0)=p¢+#0 and wv,(j, ¢£)=1, matters

(cf. Case 2 of c.2.4)). Let apr((,1), 7,0)=(p, b, B). If p=1, then
0<;Y. So suppose p=i. -

Case (3) (p, b)=(¢,0) and w>u. Then B<, a, % (4, 0, ¢£) and 6<;7,.

Case (4.2) p=1,b>0 and w>1. Let a* be a component of « in
which apr ((0, k), 7, tt) is 4-active. (Such a component exists.) If in
a, (an i-greatest component of «) apr ((0, k), 7, £t) is not ¢-active, then
a, omits apr ((0, k), 7, #£), hence a,<,apr ((0, k), 1)<, a*, contradicting
the fact that «, is an i-greatest component. So apr((0, k), 7, 1) is
t-active in a,. We claim that

(**) apr (1, 1), 7, 0)<, apr (0, k)j, 1)
From (**) apr (L, 1), J, )< @, hence apr (L, 1), 4, <. a() )% G 0, 1,
and apr ((1, 1), 7, 9)<;7, is obvious. Therefore d<;7,. ’

For (**), note that p=(7, 0, @)=apr ((0, k+1), 5, #). Therefore
apr ((0, k), 7, 1) is not 4-active in apr ((1, 1), 4, 6). Using this fact and
following the proof of the Lemma for (2.1;1.b) in Proposmon 3.2, we
can conclude (**).

(2.1;1.c) v=apr ((n, k+1), 4, ¥) where n>0. p=apr ((n, k+1), 7, t).
Suppose 6<;7. Let us consider the case where apr ((n, k+1), 7, d)=
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p+#0 and v,.,(J, 0)=1, Letapr((n+1,1),7,0)=(»,b, B). If p=i, then
0<;"Y. So suppose p>1.

Case (3) (p,b)=(¢,0) and w>u. 6<;7,.

Case (4.2) (p, b)>(3,0) and w>1. In «, an i-greatest component
of a, apr ((n, k), j, ) is i-active. We claim that

(***) apr (n+1, 1), j, )<, apr ((n, k), j, ) .

From (***) apr((n+1,1), j,0)<,@, hence apr((n+1, 1), 7,8)<;7, or
0<; Y.

For (***), note that #=(¢, 0, @)=apr ((n, k+1), J, 1) and i1=w,,,(J, 9).
Therefore apr ((n, k), J, 1) is not i-active in apr ((n+1, 1), 7, §). Using
this fact and following the proof of the Lemma for (2.1;1.c) in Pro-
position 3.2, we can conclude (**).

(1*) for those cases.

(2.1;2) The proof for c.2.3) goes through and (3*) holds for this case.

For this case the induction step is irrelevant. The same comment
for (4.1;2) and (5.1.1;2).

(8.1) Case (1) w47, 0)<vy(d, 7)=(, a). (Recall that j>1.) 7, con-
tains a component of the form (i, @, @,) (cf. Proposition 1.13), and
’Uo(j, (7', a, am)):(i’ a’)' SO 3<J (i! @, ao)-

(3.2) Case (1) w7, 0)<v(d, V=@, 0). vy(7, Vw)=(, 0). So 6<,;7,.

3.3) [1°] Y.=k, ¥ p, for some k,, where f,=(t, b, A v,.).

Case (1) w7, 0)<(t, b)=2vy(J, ttw). So 6<; tt,. (If j <t, the max-
imum, j-active value of p,<that of v=(¢, b) (ef. Proposition 2.1).)
Therefore put p,=p, and m=0.

Case (2) (w) v=(t, b,n¥v). A=0"#)\ for some ¢’ and A\, where ¢’
is not empty while \' may be empty, and apr (0, 7, 0)=(¢, b, 8"). 7,=
K, % tt, where p,=(t, b, v ¥v,). Therefore (¢, b, §")<<, 4,

Since vy(7, t)<v,(J, Y)=(¢, b) (cf. Proposition 2.1), 1, <, apr (0, 7, ).
So apr (0, 7, 0)<,apr (0, j, %), hence 6<; ¢, Put o,=p,.

(0.1) 0<; ty=0,

(3.3) [2°] Case (1) w44, 0)<(®@, a)=v(F, V). So 6<;7,.

Case (2) (w) apr(0, j,0)=(, a,d’), where a=d"#a' £7; 7=, a,
dta’ g7). So apr (0, 7, 0)<;7,<;apr (0, 7, 7,) (since the j-active values
of 7,<(%, a); cf. Proposition 2.1). So 0<; 7.

6.1) 6<;7,; proved as for (w).

(4.1;1) a=apr (0, k), j, 7.,.) (Proposition 2.2).

Case (1) 0<; 7,

Case (2) apr((0, k), j, 9)=apr (0, k), 7, Vo) =a. (], 9)<t=2yJ, 7o)
SO 5<g ’Yoo
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(4.1;2) The proof for d.4) goes through. (2*) holds.

(4.3) [1°] .=k, ¥ t, where p,=(t, b, A £ v,,).

Case (1) apr ((0, k), j, tm)=apr ((0, k), 7, 7¥) (Proposition 2.2) and
Vo,p+n(Jy Un)=b. So 6<; 1, hence put o,=p,.

Case (2) (w) See [1°] of (3.8). apr((0, k+1), 5, 6)<,p, and
<, apr ((0, k+1), J, ).

0.1) o<; t.

(4.3) [2°] See [2°] of (3.3). \

(6.1.1;1) Case (1) a=apr ((n, k), J, Vm). So 6<; ..

Case (2) apr((n, k), j, 0)=apr ((n, k), j, V) =a and v,.(j, §)<
Vurs(J, Y0) (=%0) or v,4,(d, 0)<v,..(4, 7)) (=1%) (as the case may be). So
0< ;Y. .

(5.1.1;2) The proof for e.4) goes through. (2*) holds.

(5.2) [1°] Case (1) apr((n, k), j, #n)=2Dr ((n, k), 5, 7) and v,.,(4, ttn)=
t (cf. Propositions 2.2 and 2.4). So §<; .

Case (2.1) 0<; tto.

Case (2.2) (@) 0<; th.

0.1) o< ;tty.

(5.2) [2°] See [2°] of (8.3).

(6.3) and (2') Case (1) or Case (v.1) Let p, be a component of
Yn for which apr ((n, k), j, 0.)=apr (n, k), 7, ¥). Then 6<,;t,.

§ 3.4. Proposition 3.3—Induction step.

Let 0 be the emf corresponding to (4,7). Then we show Proposi-
tion 3.3 for 0 and (7, 7), assuming the same for the next cmf.

(2.1;1.a) Case (3) (».2) u=w. B,<;®, (=7). By the induction
hypothesis, 8,<; 0, for some m where o, is a connected component
of 7,, hence B<; a(g ) £ (%, 0, #£) (when (1*) applies to (¢, 1)), or B, <, 0
and 7,=0% - ¥0% 0, hence 8, %8, % -+ #8,<.7, for some m and
B<; a(Z )# (%, 0, ) (when (2*) or (3*) applies). In any case apr ((1,1),
3,0)<;7m (=apr((1,1), 7, V). So 6<;7,.

(2.1;1.b) Case (3) (v.2) See above.

v Case (4.1) As for Case (4-2)7 apr ((1’ 1)7 j’ a)<1. apr ((Or k), .7-, f")<i a,
(=7). In a manner similar to (2.1;1.a) above, we can claim by the
induction hypothesis that apr((1,1), 7, 6)<,%. for some m, hence
apr ((1’ 1)7 j, 8)<i me’ or 3<J 7m°

(2.1;1.c) Case (3) (».2) See (2.1;1.a)

Case (4.1) See (2.1;1.b).

In any case (1*) holds.

(3.1) and (3.2) Case (2). As for (2.1), B, <,« implies 8<,a, for
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some m. Therefore (¢,a, 8)<,(, a, a,). Also apr((0, 5, (¢, a, @,))=
(4, @, @,,) (since 7>1i). So 6<; (i, @) Xp)<jVm

(8.3) [1°] Case () (v.2) 7=(¢, b, n#v) and the next sp is (¢, ).
By the induction hypothesis applied to 8, and (¢, v), 8<, My, for some
m. This is proved as for (2.1;1). So apr (0, 7, 0)<, tt.=(, b, N v,).
On the other hand apr (0, 7, ¢,.) >t (cf. Case (2) (w) of (8.3) [L°]),
hence apr (0, 7, )<, apr (0, 7, ¢,) and 0<; &,,, wWhere V,=K, £ tn.

[2°] Case (2) (6.2) As in the preceding cases 8<, @, for some m.
@, a, @,)<; (%, a, @) (Proposition 2.1), so 7,7, V.)=(, a) and (3, ¢, «,)<,
apr (0, 7, V.). Soapr (0, 7,0)=(, a, B)<; (%, a, a,)<,; apr (0, 7, 7..), which
implies 0<; V.

(4.1;1) Case (3) apr((1,1),4,90) (=04)<;«, for some m, be the
induction hypothesis. 0,,,<; ®,<;7. is obvious. So 0, <;Vm, from
which follows 6<; 7, since 7,=apr ((1, 1), 7, 7,.) and v.(J, V,,)=1, Where
1=1,+1.

(4.3) [1°] Case (2) (6.2) The induction hypothesis holds for 8, and
Y, 80 B<, N Ev, some m. So (¢, b, B) <, (¢, b, NEv,). apr((0, k), 7, Vn)=
apr (0, k), 4, 7) and g, =(t, b, M ¥ v,.)<,., apr ((0, k+1), j, ¢t,.) (cf. Proposi-
tion 2.8). So 0<; Yy

[2°] Case (2) (0.2). See [1°].

(5.1.1;1). Case (3) Let us consider the case Where k>0, induction
hypothesis 8,411 <: &, for some m. S0 0y <:Vm (for a,<,7,).
From this follows 0<;7,, since 7,=apr ((n+1,1), 7,7,) (Proposition
2.4) and v,,(J, Vu)=1%, Where i=1,+1. The case where k=0 can be
treated similarly.

(5.2) [1°] (6.2) From the induction hypothesis 8<;«, for some
m, 80 (7:’ a@, :8)<i+1 (7:7 @, am)z)am' #m:apr ((ny ’i"+l), j9 f’cm) for some T—>—k
(cf. Proposition 2.4), and Thence apr((n, k+1),J,0)<ip lu<in
apr ((n, k+1), 7, ttn). So 0<; Uy

[2°] This can be dealt with in a manner similar to [1°]; use
Proposition 2.4.

(5.3) or (2') Case (2) By the inductive hypothesis either (1*)
apr ((n, k+1),7,0)<; 0, for some p, a component of 7v,, or (2%)
apr ((n, k+1), 4, 0)<; 0and V,,=0% - § 0% 0,, or apr ((n, k+1), 5, 6)<;,
(%, 0, @) where Y=(3, 0, «+1) and j,=1 (c.2.3.)).

Suppose (1*) is the case. Here j,=t%u,+,+1, apr((n,k), j, d)=
apr ((’I’b, k)’ j,, 'Y) a‘nd vn+1(j9 3)=0n+1(.7.’ 7)=?;n+1' lom iS either 7m (Where
v, is connected) or f,. This can be confirmed by going over the
foregoing part of this proof. In either case p,=apr ((n, r+1), J, 0.)
for some r>k, since the 7, for j and the one for j, are the same
(cf. Definition 1.4 and Proposition 2.4). Therefore apr ((n, k+1), 7, 0)<;,
Pn<; apr ((n, k+1), j, 0,), which implies 6<; 0.

Suppose (2*) is the case. Then 7,=a%---fa%p, where 7=
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(i, @, @). From the conditions on (7, 7), b.3), d.4.2) and e.4.2) can be
eliminated immediately, for the indicators of the tsp’s for (7, ¥) and if
1 is a limit indicator, then Ju, <%, hence d.4.1) and e.4.1) are also
eliminated. Therefore only (4.1;2) and (5.1.1;2) are left for (T ugr 7).
Namely j,,=i=1%+1, a=0, a is connected and p,,=(i, 0, @, % (3, 0, )).

Suppose first that (4.1;2) applies to (Jup 7) and w,=1. Then
Vnii(d, V)=1,, and apr((n, k+1), ,0)<;7. Put d=apr ((n, k+1), 7, 5).
By the induction hypothesis 6<,a. Since i>v,.,(4, 7), & properly con-
tains apr ((n, k), 3, V)=p. So a=apr ((n, ¢+1), j, @) for some ¢>k.
We claim that p,=apr((n, ¢+2), j, 0,) and apr ((n, ¢+1), j, 0.)=a.
Then, 6<, @ implies 6<, apr (n, k+1), 7, 0..), s0 6<; 0, when §<, a.

In order to establish the claim, it suffices to show that p,.<,«,
for a,<;;a and (i,0,@)<,p0, Since (4.1;2) applies to (¢,7),
apr ((0, s+1), 4, v) and a=apr ((0, s), 3, 7). So a=(i, b, &) for some b>0.
Therefore 0, <., @ and @, % (i, 0, )<, @. So p,<, .

Next suppose 6=a. Then g=Fk. If there is no apr (n, k+2), 7, 9),
then this immediately implies §<; 0,. So, suppose apr (n, k+2), 7, 6)=06*
exists. 6*<,a (=0). By the induction hypothesis 6* <, «,, for some m,
hence 0*<, 0,. This implies that 6<; p, for some m. In any case
(1*) holds.

Next suppose u,>1 and consider (j,,7) where v+1<u. Suppose
o=apr ((n, k+1), j,, 7) and 6<; v. This and the condition for this case
imply that apr((n, k+1), j,, 0)<;,,,7. Therefore by the induction’
hypothesis d=apr (n, k+1), 7,, )< ip+1 Om for some m. If we can estab-
lish that o, =apr ((n, ¢+1), j,, 0,) and apr ((», k), 7,, 0.)=2apr (1, k), 5., 0)
for some g>k, then 6<; , apr((n, k+1), j,, 0,). So 6<;, Op.

For the desired relations, note that as above a properly contains
apr ((», k), 4., V)=p. It is j,-active in p, and p,<; 7 can be easily
established. On the other hand 7<;,,, 0. So 0,<;, ., 0. (i, 0, @)<;, e
V<jpy 0o @¥n<;. &, hence in particular a,<; @<, 0. Those ine-
qualities guarantee that p,=apr ((n, ¢+1), j,, 0,) for some ¢>k and
apr ((n, k), 7., 0n)=2apr (%, k), 4., 0)=p.

In any case (1*) holds.

Next, let us consider the case where (5.1.1;2) applies. Suppose
first that u=1. 6<,a and a=apr((n, ¢+1), j, @) for some ¢>k. If
we can claim that o,=apr ((n, ¢+2), j, 0,.) and apr ((», ¢+1), 4, p.)=¢,
then the proof for (4.1;2) goes through.

Since (5.1.1;2) applies to (¢,7), Y=apr((r,s+1),%,7) and a=
apr ((r, 8), 1, 7). 1=v,,(¢, 7). So a=(p, b, @) for some p>1% and v<,,, a.
This means that either (p, )>(3, 0), or (p, b)=(¢,0) and a<,a’. But
the latter is impossible. So (d, b)>(%, 0), hence p,<,;,@. From this
follows p,<;«, and hence the claim.

Finally, suppose (8*) is the case. Then 7,=p¢# --- % ¢ % 0, where
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7=, @, «+1) and ¢=(3, @, @), c.1) can be eliminated. Let (j,, 7) be
the next sp. Then either 2° or 3° of c.2.3) or (2.1;2) applies to (5., 7).
In any of those cases, j,,=i=1,+1.

Suppose first that (2.1;2) applies to (J.,7) and w%,=1. Let
apr (», k+1), j,8)=8. Then §<; 7. By the induction hypothesis
o<t 0n=0(0,0,a,#% (4, 0, 2)). We shall first show that p,=
apr (n, k+2), j, 0») and apr (%, k+1), J, 0n)=f. Here i,=v,.(J,7),
p=apr ((n, k+1), 7, 1), @, <;.a and a,% (%, 0, #)<,a. Therefore it
suffices to show that p,<,#¢. But this follows immediately from
a, (i, 0, <, a.

Now suppose 6<; #. Then 6<;p, is obvious. So let us assume
that 6=p. If apr((n, k+2), 7, 0) does not exist, then §<; p, is obvious.
So suppose that 6* =apr ((»n, k+2), 7, 6) exists. Let 6*=(p, b, B). 0*<,
and p>14,, We shall show that 0*<,p, for some m. Then follows
5<J’ Ome

Case 1. p=1, 0*<,p, is obvious.

For the subsequent cases, notice that if (p, b)=(4, 0), then 8, a.

Case 2. (p,b)=(i,0) and w>u (cf. Definition 3.3 for w and w).
Then B<,;a implies B<; &, & (%, 0, ), hence 0* <, 0,.

Case 3. (p,b)=(3,0) and w=wu. By the induction hypothesis
B<,; a, for some m, hence 0*<; 0,.

Case 4. (p,b)>(i,0). For this case p<,.(p, b, 8). So in order
-that (p, b, )<, (p,b,B)<;a. But a is a part of (p, b, 8), so
(p, b, B)<; . Therefore (p, b, B)<,; @, for some m, hence 0*<; 0,.

Next suppose u,>1 and consider (j,, ¥) where v+1<u, Suppose
v=apr ((», k+1), j,,7) and 6<; 7. As for (2*) above, it suffices to
show that p,=apr ((n,q+1), 7., 0,) for some ¢=>k. p=apr((n,k+1),7,, )
and v,4,(Jn )<t @n<j,:, hence apr (n, k), J,, On)=apr (1, ), Jo, ££)
and this is j,active. So the result.

If c.2.3) applies to (Ju, 7), then j, =%, V.=p%.---$¢4%p0, and
either 0,,=(%, Gp, ) O 0, =(ig, € =+, (Tpy €, LH o= F 1) - ++).

If u,=1, then j,=1, v,.(j, V)=1, d=apr ((n, k+1), 4, 8)<;, 7, and
hence 6<;p. It is obvious that p,=apr((n, k+2),J, 0,) and
apr ((n, k+1), 7, pn)=p. If 6<, ¢t or 6=y and there is no apr ((n, k+2),
j,0), then 6<;p,. Suppose 6=y and 6*=apr ((n, k+2), j, 6) exists.
0*<, p. Put 6=(p, b, B). Suppose (p, b)>(3,0). Then in order that
0*<,; ¢, 0*<,. But there is no (i, 0)-dominant of &, so this is impos-
sible. Therefore (p, b)<(¢, 0). If (p, b)=(4, 0), then B<,a must hold,
but a contradiction can be deduced from this as for c¢.2.5) in this
proof. So p=1, (since v,,.(J, V)=v,1.(4, 0)=1,). For 2°, b<a, for some
m, hence 6<; p,. For 3°, let 7 be an arbitrary i-subsection of o*
which contains g properly. Then 7 is of the form (i, ¢, 7). As for
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Case 2° of c.2.5), we can show that 7<, 0, for some m. So in
particular 0*<, o,, and hence §<; po,.

When u,>1, for (7,7) where v+1<wu, follow the proof for (2.1;2)
above. ¢=Fk-+1 here.

§3.5. When « is not connected.

Just a word about the fundamental sequence of (j,, &) where & is
not connected. Suppose & consists of the components «,, «,, ---, a,,
where those components are ordered in the non-increasing order with
respect to j,. Let {8,}, be the fundamental sequence for (j, «,).
Then {a, ¥, % --- # «,,_, % B..}. can be taken as the fundamental sequence
for (4,, Q).

§4. Critical cases

We shall first consider a.3.2). The critical case a.3.2), is subject
to the following condition (cf. §1): let (¢, v) be the last reduction pair
of & with respect to j,. Then v is of the form (i,b+1,0) and t>1,
and if we let & be the least indicator occurring in the sp’s of @, then
h<i.

In order to define the reduction sequence for a critical case, we
first locate a particular sp of &, which we call (g, p).

DEFINITION 4.1. Let g be the last indicator occurring in the sp’s
(including tsp’s) of & such that g<i. Let the corresponding o.d. be g.
This notation will be observed throughout this section.

LEmMMA 4.1. A sod of p with respect to i is also a sod of & (with
respect to j,): it appears as a sod after p. In particuler if g=1,
then the sp’s of (3, ¢t) are exactly those of (j,, &) which are successors

of (g, ).

Proof. Let us denote a sp of (¢, ) by (4,7). The proof is by
induction on the number of sp’s of (¢, £) between (7, ) and (4, 7). The
first one is (¢, ) and ¢ is a sod of &. Suppose (5, 7) is a sp of (J,, @).
If v is the last reduction place for the former or (j,7) is static and
the next sp is the last one, then we are done. If not, then the next
sp or the second successor when (7,7) is static which is strictly
different from v is (p, 7’'), where Y=(p, ¢, ) and ¥’ is either a p-least
(po, 0)-dominant of ¥ when (2.1;1) applies to (4, 7) and p=pn,+1 (cf. 3)
of 4) of Proposition 1.1).

This can be shown just by going over Definition 1.1. Recall that
the last reduction place of (j,, &) is v, hence (j', ¥) must have a successor
whose sod is strictly different from 7, and from the definition it must
be (p, 7). _

When g=1, the first ones to compare are the same: (g, t)=(1%, ).
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For a (4, 7) to be the last reduction pair of (i, t), either v=(p, ¢, 0), =
(p, ¢, 0’"+1) or=(p, ¢, 0) and ¢ is connected and marked. For the first
two, ¥ must be the last reduction place of (j,, &) also (hence only the
first one is possible). For the third case, § is connected and marked
for (4, &) also, hence (j, 7) satisfies the same condition for (j,, @) (for
being the last reduction pair), which means that Y=y, but this is
impossible.

The proof of the lemma has an implication that the sp’s of (4, &)
which are successors of (g, ) are exactly the same as those of (¢, 1)
(as long as the latter are defined).

§4.1 The case where g=1.

First we deal with a special case of a.3.2); namely the case where
g=t. So g=1 will be assumed throughout §4.1.

DEFINITION 4.2. Let p* be the figure obtained from ¢ by replacing
the scanned vy by a new symbol, say X. Let y} be obtained from
¢* by applying Definition 1.4 to all the sp’s (of (j,, &)) between (g, ¢)
(or (4, 1)) and (¢, v), leaving X unchanged. In case the reduction results
in more than one component, X will occur only in the inductive part.
For instance, if v=(4, @, @) and its reductian should assume the form
¢, a,, @) % (1, a, @), then 7} assumes the form (7, a,, @) % (4, a, a}). As
a consequence, there will be exactly one occurrence of X in t}. Note
that Definition 1.4 concerns with the induction steps, so (¢, v) can be
bxcluded from the consideration. By Lemma 4.1 we may regard
Definition 1.4 as applied to the sp’s of (7, &) also.

m matters in g} when one of (3.1), [1°] (2.1;2), (4.1;2) and (5.1.1;2)
applies.

Now define v,, and p,, simultaneously. v,=(%, b, 0); ¢t,= y;*(‘jf) where
the right hand side is a figure obtained from g by replacing X by

Yo: Vi1 =(1, b, t,); #mﬂ:;ziﬂ(;fi +1)>'
It is obvious that g, and vy, are o.d.’s.

Let 7 be a sod of (J,, & which succeeds p¢t. Define 7m=7*(§ ) It
is obvious that 7, is a sub-o.d. of x, and that 7, can be defined in-
ductively as in Definition 1.4, starting with v,.

We shall show that {7,}. is the reduction sequence for (j, 7).

It can be easily shown that all the propositions (including Proposition
1.13) in §1 hold when a critical case is involved.

We claim that {v,}. is the reduction sequence for (¢,v). Note
that all the propositions in §1 hold when a critical case is involved.
(This includes Proposition 1.13.)

LEMMA 4.2. Suppose o is an i-section of M,.  Then o is either
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Um—y, am t-subsection of p or o=(p, 0, d") where (p, 0,0’ +1) is an -
subsection of p (for (2.1)).

Proof. Consider a sod of (g, ¢), say ¥ (=(p, ¢, 6)). We shall show,
by induction on the number of sod’s succeeding <, that if ¢ is an -
section of 7,, then o is either p,_,, an ¢-subsection of £ or a=(p, o, ¢’)
where 7=(p, 0, 6’+1) (which is an i-subsection of ;z) As a special
case, take Y=y, proving the lemma.

7. can assume one of the following forms: (p, ¢, d,,) (This will
be called X,), M % (D, €4, ), M (D, d, -+ +, (D, d, 0)--+), Where c=d+1,
(0, 0, 6, %(pyy 0, 9)) where p=p,+1, Ny # (P, ¢, 6) Where p,1 0,
M ¥ (Doy @y 0) Where a,, T A, N, & (Do, €, +++, (Do, €, 6) +++) Where ¢ is the
maximum element of 4,0%---%0%(p, 0, 0. % (., 0, 9)), (», 0, 0,. % (»,, 0, v))
and v§.-- $v%(p, 0,0, #(p, 0, v)) where v=(p, 0, 6+1), and v=(p, 0, 9).
Recall that by the choice of x, p>1, hence p,> and we may assume that
Pn>1% The sixth and the seventh cases are from [1°]; 7=(p, ¢, A D), U=
(g, 0, @), p>q and (p, ¥) is the next sp. By definition of y, ¢>>14, hence
D> 1.

Suppose ¢ is an i-section of 7,. If 7isy, then v, is v, =(, b, ttn_,).
So o=p,_,, and this satisfies the condition. Suspose ¥ properly contains
v. Then either ¢ is an i-section of 4§,, an i-section of §, the & in
(», 0,0, % (v, 0, 0)) or the v in (p, 0, 8, % (p, 0, v)) when p,=i. All the
possibilities are exhausted with those form, for p>¢ for all cases and
p,>1% for the sixth and the seventh cases. If ¢ is an i-section of
On, then the induction hypothesis applies. If ¢ is an i-section of o,
then it is an ¢-section of p.

LEMMA 4.3. Let 1<t and let ¢ be an l-sectwn of tn. Then o 1is
an l-section of (.

Proof. As in Lemma 4.2, consider every (j,7) a sp between (g, 1)
and (¢, v) and its reduction {7,},. The lemma is proved by induction
on m, within which by induction on the complexity of 7. Suppose

m=0. Then 70—’7*<X ), and v,, has no l-section, so it is trivially shown

that an [-section of 7, is an I-section of v which is an I-section of p.
Suppose next m>0. Following the notation in the proof of Lemma
4.2, |<i<p implies that for any m p,_, cannot be ¢. If ¢ is an l-section
of t,_,, then by the induction hypothesis o is an I-section of g. Neither
dsy 0 moOr v occurring explicitly in 7, can be o, for p,>! and we may
assume that p,>l. Therefore for every m ¢ an l-section of 7, is an
l-section of v, an [l-section of x,_, or an Il-section of §,. For the first
case it is obvious that ¢ is an I-section of g. An Il-section of g, _, is
an [-section of p. If o is an [-section of §,, then by the induction
hypothesis (on the complexity) ¢ is an I-section of p.
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ProprosITION 4.1. Let (j,7) be any sp between (g, tt) and (t,v),
where (¢, V) is included but (g, 1) is excluded. Then, for every such
that 1<1<7, Y.<, and, if o is an l-section of v,, then o<,7.

Proof. Recall that v, =(, b, #,_,), where tt,,_,=0if m=0. y,<,v=
(¢, b+1, 0) is obvious for every l>%. There is no I-section of v, for
~ such I. '

Suppose (7, 7) is a sp between (¢, v) and (g, &), (g, £t) being excluded.
Let v=(p, ¢, ). p>1. There is a sp (p,7’), where 7' is a component
of 0 (cf. 1) of Proposition 1.4) 7,<,Y by the induction hypothesis.
If the transition to (p, 7’) is not by [1°], (2.1), (3.1), (4.1), (5.1.1), (2") or
(5.8), then 7,=(», ¢, 0,). So 7,<;(p, ¢, 6)=7 is obvious for every I>p.
Let 2<l<p and let ¢ be an l-section of 7,,. Then ¢ is an l-section of J,,
hence ¢>,0 (by the induction hypothesis). But J is l-active in 7, so
0<;7, and this implies that 7,<;7 for any such /.

Suppose the transition is by [1°]. Then 7, assumes one of the
following forms: (p, ¢., 0) & (p, ¢, 6,,.) where e, ¢, (0, d, +++,(p,d,0)---) &
(p, ¢, 0,,) where c¢=d+1, (p,, ¢, 0)#(p, ¢, 6,) Where ¢=0 and p, T p,
(¢, @, 0) % (p, ¢, 0,,) where p=q+1,¢=0 and a,lA4, and (q,e, ---,
(q,e,0)+++)8(p, ¢, 0,,) wWhere ¢c=0, p=qg+1 and e is the maximum element
of A. In any case, 7,<;7 is obvious if [>p, for 0,<,0 by the
induction hypothesis. For [=p, an I[-section of 7, is either 4§, or
(p: d, ] (p, d7 3) . ')- 3m<p3<p7is obvious. (p; d’ ) (p’ d, 3) . ')<p7
can be proved by induction. So in any case 0<,7, hence 7,<,7.
Suppose 1<l<p. If the outermost indicator in a component of 7, is
p, then an [l-section of it is either an [l-section of §, in which case
0<,0<,7, or an l-section of 4,, in which case ¢<;7 by the induction
hypothesis. If the outermost indicator is ¢, where p=¢g+1, and l=g,
then ¢ is either & or (g, ¢, +--, (¢, ¢,0) ---). The latter being <,7 can
be shown by induction. If i<l<gq, then the argument for the first
case goes through. If the outermost indicator is »,, and if p,>1,
then an [-section is an l-section of 6. In any case ¢<;7, hence 7,,<,".

Suppose the transition is by (2.1;1). Then 7,=(p, 0, 0n % (D,, 0, £))
where p=p,+1,7=(p, 0, §'+1), £=(p, 0, §") and 5;=3'<3 ) O & (Do) 0,
£)<,0" as has been proven earlier, hence 7, <,7 if pzl'.” If l=p,0 is
o B (D, 0, k), 80 0<,0'<,7. Suppose t<I<p. If l=p, and o is &,
then k< ;7 is obvious. For other cases the proposition follows from
the induction hypothesis.

If the transition is by (2.1;2), then v,=t%--- 2k #p0,, Where p,=
(p, 0, 6, % (Do, 0, £)). The proposition is trivial, having proved the
proposition for (2.1;1).

Suppose the transition is by (38.1). Then 7,=(p, ¢, d,) % (p, ., 0)
or V,=(p, ¢, 0. % (p,d, (p,d, -+, (p,d,0)---)). Ineither of those cases,
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Tw<:7 is obvious from the induction hypothesis if I>p. For l=p,
an [-section of 7, is either d,, or 0 (the first case), or is either 4, or
(o, d, -+, (p,d,0) ) (the second case). For the first case the pro-
position is obvious (by the induction hypothesis). For the second case,
we can show that 7,<,7 by induction on m. If ¢{<l<p, a similar
argument as above goes through.

Suppose the transition is by (4.1;1). Then 7,=(p, 0, d,, £ (g, 0, 9))
where p=¢g+1. ,<,0 and (g, 0, 6)<, 0 (since in this case the outermost
indicator of ¢ is p). So 7,<,7 if I>p, and when ¢ is 4§, %(q, 0, 9),
0<,0<,7. Leti<l<p. Ifl=qandbisd, 0<,7is obvious. For other
cases, the proposition can be proved from the induction hypothesis.

The transition is by (4.1;2). Then v,=0%--- £ £(p, 0, 0., £ (g, 0, 9)).
Note that here j=p. For the last term in 7,, the proposition is proved
as for (4.1;1). For 9, 0<,7, and other conditions can be shown trivially.
Notice that here the upper bound for ! (namely j) is necessary.

If the transition is by (5.1.1;1), then 7,=(», 0, d,. £ (q, 0, 6)) where
p=¢q+1, and the outermost indicator of ¢ is >p. The rest of the
proof for (4.1;1) goes through.

If the transitionis by (5.1.1;2), thenv,,=0%--- 0% (», 0, 0, % (¢, 0, 9)).
Follow the proof for (4.1;2).

For (5.3) and and (2'), let (7, 7) be the next sp. Then 7>j. The-
refore the propostion follows from the induction hypothesis.

PROPOSITION 4.2. For every I, 1, <, tt and, if ¢ is an l-section of
My then o<, pt.
Also am h-active value of p,< the corresponding value of .

Proof. The last statement is obvious. We shall show the first
part by induction on m. Let p=(p, ¢, ). Recall that p>4 and there
is a sp (p, '), where 7' is a component of 4.

m=0. g, assumes one of the following forms: (p, ¢, ,) (which we
denote by A\y), M % (D, ¢, 0), Mo % (p, d, 0) Where c=d+1, (», 0, 5, % (g, 0, 9))
where p=q+1, N ¥ (9, ¢, 6) where p, | D, M%(q, @, 0) where a, | 4,
N # (g, €, 0) where e is the maximum element of 4, and (p, 0, 8, £ (q, ¢, 0))
where p=q+1,6=0"+1 and p=(p, 0, 0"). Note that the condition p>1
prevents (2.1;2), (4.1;2) and (5.1.1;2). We may assume p,>i. ¢>i by
the definition of x. The sixth and the seventh cases come from [1°];
p=(p, ¢, N§v),v=(r,0, @), p>r and (p,v) is the next sp. Therefore
r>1, hence ¢>1. The last cast is by (2.1;1). A<,z for any I>p since
0,<,0 (Proposition 4.1). In each case except the first, the fourth and
the last, the second term being <, ¢ for I>p is obvious. The fourth
and the last cases will be dealt with at the end. A p-section of any
of those o.d.’s is either <,0 or =4, hence <, . Let i<I<p and let
o be an l-section of y,. Then either ¢ is an I-section of §,, and I-section
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of §,l=q and 0=0 or l=p, and 6=5. If the first, then 6<,5 from
Proposition 4.1. In any of those cases, o<,z is obvious. Let <3
and let ¢ be an l-section of g, Then ¢ is an l-subsection of ¢ (cf.
Lemma 4.2 with m=0 and Lemma 4.3). So o<,, hence 1<, 1.

Consider the fourth case. This case is possible when r=(p, ¢, 0)
satisfies that 0 is connected and the outermost indicator of & is >p.
So by Proposition 4.1 4,% (g, 0, )<, 0, which implies 1<, for every
I>p. 0,%(q,0,0)<,z. Suppose i<l<p and ¢ is an Il-section of j7
Then either ¢ is an Il-section of 6, or &, or ¢ is & (and l=gq). If the
first is the case, then by Proposition 4.1 0<,8,<,0<, ¢t. For the latter
two, 6<,0<, . Suppose !<¢. Then Lemmas 4.1 and 4.2 apply.

Consider the last case. Namely #t=(p, 0,6+1) and p,=(p, 0, o, %
(g, 0, 0)) where p=(p, 0,8"). d;%(q, 0, )<, by Proposition 4.1 (since
¢" has a (g, 0)-dominant). So z,<, ¢ if I>p. & %(q, 0, 0)<, . Suppose
1<I<p and o is an l-section of f,. Then either ¢ is an I-section of
o; or of o, or ¢ is p. Then by Proposition 4.1 o<, p. If 1<%, then
Lemmas 4.2 and 4.3 apply.

m+1. t,.,<,p is proved as above for I>1, applying Proposition
4.1 with m+1. Suppose ¢ is an i-section of ,.,.. Then ¢ is either
Un or an i-subsection of p¢ (Lemm 4.1). For the former case, o=
tn<;tt by the induction hypothesis. For the latter case, o<, ¢ is
known. So g, <,¢. Let I<i and o be an l-section of p,,,. By
Lemma 4.2, ¢ is an [-subsection of /¢, hence 0 <, ¢t. Therefore P <y LA
for every 1.

PROPOSITION 4.3. Let (4,7) be a sp which is a predecessor of
(9, ). For every 1<j,7,<,7 and, if o is an l-section of 7,, then
o<;7.

Proof. For (g, pt), this has been proved in Proposition 4.2. If v
properly contains g, then then the proof of Proposition 2.1; induction
step goes through (cf. §2.2). Note that the reason why there is a
lower bound of ! in Proposition 2.1 is the existence of the case a.3.1),
which is irrelevant here. Therefore Proposition 4.3 holds for all I.

As a special case of Proposition 4.3, we obtain &, < io Q.

PROPOSITION 4.4. Let (j,7) be a sp or a tsp and suppose that Y=
apr ((n, k+1), 4, 7) for some (n, k) (where the last reduction pair for
a is a critical case). Then apr((n, k), j, V.)=apr ((n, k), 7, 7). (See
Proposition 2.2) '

Proof. Lemmas 2.1-2.4 for Proposition 2.2 in §2.8 hold. (In fact
Lemma 2.1 is irrelevant here.) In the proofs of Lemmas 2.2 and 2.3
the v here cannot satisfy the condition on §, hence the peculiarity of
v does not affect the proof. Since v=(¢, b+1, 0) itself cannot satisfy
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the condition on 7, only the induction step of the proof of Proposition
2.2 matters. We have proved 7, <; 7 in Propositions 4.1-4.8, so Lemma
2.4 can be applied.

PrOPOSITION 4.5. Propositions 2.3 and 2.4 in §2.8 hold when the
last reduction pair is a critical -case.

Proof. The proofs of Propositions 2.3 and 2.4 go through. The
(p, 0)’s there are not the (¢, v) of this section.

In order to show that {&,}, converges to & (with respect to j,),
we need a proposition similar to Proposition 3.3.

Suppose 3 is connected and A<, @ We can define emf’s of 3
as in Definition 3.3 (§8.1). Our task is now to prove.

PROPOSITION 4.6. Let (7,7) be a sp of (j,,, @) such that v contains
p and let 6 be the corresponding cmjf of B. Then Proposition 3.3.
holds for (3,7) and 4. (See §3.2.)

If we can show that {x,}, coverges to x with respect to g (=1),
then, following the proof in §3.3, we can claim the proposition for
such (7, 7). Therefore, it suffices to prove the following.

PROPOSITION 4.7. Suppose B is conmnected and B<, it (where g=1).
Let (5,7) be a sp of & such that 7 is contained in p and & be the
corresponding emf (of B relative to (3, t)). (Y=p is inclusive.) Then
_Proposition 3.3 holds for (j,7) and B. (See §3.2.)

From this, in particular, 8<, ¢, for some m when B is a cmf
of (j,, &) corresponding to (g, ).

LEMMA 4.4. Suppose B<,t and the emf’s of B (relative to (3, t))
are defined as long as the sp’s of g are defined (hence the last emf
corresponds to (t,v)). If the last emf is of the form (i, b, 7), then
N, K.

Proof. We shall show that under the circumstances every cmf
(of B) is t-active in 8. This implies in particular that (¢, b, ) is i-active
in 8. So 7<;(3,b, 7)<, B, .

The assertion can be proved by going over the cases in Definition
3.3. Let (4,7) be a sp or a tsp of (4, #) and 6 be the corresponding
cmf. Note that j>4; this is so by 2) of Proposition 1.4 and the fact
that all the indicators connected to v are >%. Suppose ¢ is i-active in
B. We first consider the cases except (2.1;2), (4.1;2) and (5.1.1;2). Except
for those cases, when the next cmf is defined, we first take a j-approx-
imation of 0, say 0*. 0* is j-active in J, hence i-active in 8. Suppose
Y=(q,d,7’). Then ¢>% (¢ is connected to v) and 6*=(q, d, 6"). The
next cmf is a component of ¢ except for the following cases: Case
(4.1) of (2.1;1.b), Case (4.1) of (2.1;1.c), Case (8) of (4.1;1), Case (3) of
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(5.1.1;1), (2') and (5.3). &' is 4-active in d*, so in B also. For the
exceptional cases except for (2') and (5.8), the next ecmf is a j-approx-
imation of 4, which is j-active, hence is i-active in o.

Consider Case (v.2) of (2') or (5.8). 6=7, and j,=j. 7,.,=apr((r,
s+1), ., 1,) is the next emf. 7,,, is j,active in 7, and 7, is i-active in
B. Since j,>t, this means that 7,,, is i-actiue in B.

Now consider the cases which have been excluded so far: Case
(2) of (2.1;2), Case (1) of (4.1;2) and Case (1) of (5.1.1;2). Due to the
conditions of those cases, (j,7) # (%, #). The next cmf is a j,-approxi-
mation of 6, but j, >4. So it is ¢-active in §, hence in B also.

Lemma 4.4 supplies us with the means how to employ the induction
on the complexity of B for the proof of Proposition 4.7. Namely, we
prove the proposition by induction on the complexity of B, within which
by induction on the number of emf’s between 8 and its last cmf.

Assume the proposition for all the connected 0.d.’s which are simpler
than S.

Basic in Definition 3.3. If B is the case, then the proof in §3.3
goes thraugh. Suppose the last cmf, say 6=(p, ¢, ), corresponds to
(¢,v). Note that t>¢ and v, and p, are connected. If (p, ¢)<(3, b),
then 6<,y,. If =, then 7<,p¢ by Lemma 4.4. By the induction
hypothesis the proposition holds for 7, so in particular %<, , for
some m. This implies 6<,v,.,.

Induction steps. Following the proof in §3.4, we can show Pro-
position 3.3 for any (j,”7) and the corresponding & satisfying the
condition. In particular 8<; ¢,.,,.

This completes the proof of Proposition 4.7, hence we are done
with the critical case when g=1.

§4.2. The case where g<i.
Next we deal with the case where g<z.

LEMMA 4.5. Consider the sp’s of (3, tt). By a remark after Lemma,
4.1, the sp’s of (i, 1) (except (¢, y) itself) are exactly those of (j, &)
succeeding (g, 1) as long as the former are defined. Therefore the
last sp of (4, tt) is a successor of (g, ). If it is (t,v), then it is @
critical case with g=1 according to a.3.2), and hence the argument
i §4.1 employed to (i, ) (in the place of (5, @) yields {v,}, and
{ttu}n as defined in Definition 4.2 and {{,}, converges to pt with respect
to 1. If the last sp is mot (t,v), then it is @ non-critical case and
{ttu}n can be defined as in earlier sections. Define v,=(i, b, 0); v,.,=
(%, b, ttn). The v,’s here are not the ones defined before.

DEFINITIION 4.3. Let u#* be the figure defined in Definition 4.2.
Let e be obtained from p* by applying Definition 1.4 to all the sp’s
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of (g, 1), leaving X unchanged. Let e,,,=s,”,i<;¥

(For o, and v,, see Lemma 4.5 above.)

We wish to claim that {¢,}, serves as the reduction sequence for
(9, 19).

If (4,7) is a sp of (g, ), then {7,}, will denote the corresponding
reduction sequence induced from {¢,},.

We can equivalently define 7,, as follows. If 7 is v, then let v, =
Y.. If 7 is not v, then apply Definition 1.4, depending on the induction
hypothesis.

LEMMA 4.6. p,<,p for all 1 such that 1<1.

Proof. If (¢, ) is a critical case, hence the last sp is (¢, v) (cf.
Lemma 4.5), then by Proposition 4.2 the lemma holds for all I. If it
is not a critical case, then it is not the case a.3.1) or b.2.2;2), since
the last sp is a sp of (j, &) succeeding (g, ) (cf. Lemma 4.5). So
from the proof of Proposition 2.1, g, <,z for all I such that I<s.
(In the proof of Proposition 2.1, the only cases where the lower bound
has to be placed a.3.1) and b.2.2;2).)

The following lemma is a parallel to Lemmas 4.2 and 4.3.

) where v,=(4, b, ttn_).

m

LEMMA 4.7. 1) Suppose o is an i-section of ¢,. Then o is either
Ym_i OT an i-subsection of .
2) Let 1<i and suppose o is an l-section of e,. Then o<, p.

Proof. 1) Consider a sod of (g, 1), say ¥ (=(p, ¢, §)). We shall
show, by induction on the number of sod’s succeeding v, that if ¢ is
an i-section of 7,, then ¢ is either g, , or an i-subsection of p. As
a special case, take Y=g, proving the lemma.

7. can assume one of the forms listed in the proof of Lemma 4.2.
The conditions on the indicators there are valid here also. Suppose ¢
is an ¢-section of v,. If 7 is v, then 7,=v,=(3, b, ¢t,,_.). So =4, _,,
which meets the condition. Suppose ¥ porperly contains y. Then the
same situation as in the proof of Lemma 4.2 holds.

2) The proof is much the same as the proof of Lemma 4.3 with ¢,
in the place of ¢, concluding for each case that o<, . The only case
which does not arise in Lemma 4.8 is the case where ¢ is an l-section
of ¢, (the t, as considered here in §4.2). Suppose (4, #) is a critical
case. Then, by Lemma 4.1 we may apply Lemma 4.3, hence ¢ is an
l-sectisn of p. If (4, ) is not a critical case, then §2 applies and by
Proposition 2.1 o<; . (The reason why there is a bound for [ in
Proposition 2.1 is the existence of a.3.1) and b.2.2;2), which are irre-
levant here (cf. Lemma 4.1).)

We can establish the proposition below, following the proof of
Proposition 4.1.
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PROPOSITION 4.8. Let (j,7) be any sp (of (j,, @) between (g, t)
and (i, v) where (t,v) is included but (g, ) is excluded. Then for any
l such that i<l<j3,7.<,7 and, if o is an l-section of 7., them <,7.
Also {V,}. 18 an increasing sequence with respect to l.

PropPOSITION 4.9. Any h-active value of ¢,< the corresponding
value of p. For every l,e,<,t and, if o is an l-section of &,, then
o<, . We can also show that {¢,}. s an increasing sequence with
respect to g.

Proof. We prove only the second part. Let pg=(p,c, d). p>1t
and there is sp (p, 7') where 7' is a component of f.

€, assumes one of the following forms. (p, ¢, d,) which we shall
denote by N\,, M, (D, Cw, 0), M B (0, d, -+, (p, d, 6) +++) Where c=d+1,
(p, 0, 0, % (Do, 0, 6)) Where p=p,+1, Ny % (Du, ¢, 0) Where p,, 1 D, N & (D0,
G, 0) Where a,, | A, N, (Do, €, =+, (Dy, €, 0) -+ +) Where ¢ is the maximum
element of A4, and (p, 0, 05 & (p,, 0, v)) where p=p,+1, #=(p, 0, 6’+1) and
y=(p, 0,0"). p>i>q, so p,>¢ and we may assume that p,>i. The
condition g<p excludes the cases (2.1;2), (4.1;2) and (5.1.1;2). Since
0,<,0 by Proposition 4.8, ¢,<, ¢t is obvious when I>p except for the
fourth and the last cases, which will be considered later. Suppose
1<l<p and ¢ is either an l-section of 4, (In this case 6<;d by Pro-
position 4.8.), an l-section of ¢ (In this case o<, 0 is obvious.), d itself
or (py, € *++, (Do, €, 0) +++). In any case o<,p. Therefore ¢,<,z for
all such /. Suppose <% and let ¢ be an l-section of ¢,. Then o<, ¢
by Lemmas 4.6 and 4.7, and ¢,<; ¢ for all such .

Consider the fourth case; this case is possible when p=(p, ¢, d),
where 0 is connected and the outermost indicator of 6 is >p. So by
Proposition 4.8 d,, # (p,, 0, 0)<,d. This implies ¢, <,z for every I>p
and 0, % (p, 0,0)<,#. Suppose t<I<p and ¢ is an l-section of ¢,.
Then ¢ is either an l-section of d,, or of 4, or & itself. In any case
o<, tt (cf. Proposition 4.8). If <14, then apply Lemmas 4.6 and 4.7.

Consider the last case, namely (2.1;1) applies to (g, ). By Pro-
position 4.8 and the condition of (2.1;1), d,, % (p,, 0, ¥)<<, é’. - This implies
e,<;t for every Il>p and o5, % (p, 0, v)<, 2. Suppose 1<l<p and ¢
is an l-section of ¢,. Then o is either an Il-section of 6, or v. In
either case o<, by Proposition 4.8. If [<%, then apply Lemmas 4.6
and 4.7.

PROPOSITION 4.10. Let (5, 7) be a sp such that ¥ contains pt. For
every 1, 7,<,7 and, if o is an l-section of V,, then o<<,7.

Proof. For (g, p), this has been proved in Proposition 4.9. If v
properly contains y, then the proof of Proposition 2.1; induction step
goes through.
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As a special case, &,<;, 4.

Next we with to show that &, converges to a.

ProposITION 4.11. Let (5,7) be a sp or a tsp (of (4, &)) and suppose
that Y=apr ((n, k+1), 7, 7) for some (n, k) (where the last reduction
pair for & is a critical case and g<i). Then apr((n,k), j,7,) =
apr ((n, k), 7, 7).

Proof. The proof of Proposition 4.4 goes through for this case
also. We have proved 7, <;7 in Propositions 4.8~4.10.

ProprosiTiON 4.12. Propositions 2.3 and 2.4 in §2.3 hold when
the last reduction pair is a critical case and g<t.

Proof. See the proof of Proposition 4.5.

Suppose now B<;, @ for a connected . We can define cmf’s of
B as in §3. Evidently, Proposition 3.2 holds. -

If we can show that {e,}, converges to ¢ with respect to g, then,
following the proof in §3.3 we can conclude the desired convergence.
Therefore it suffices to prove the following. ‘

ProposITION 4.13. Let B be a connected o.d. such that B<, .
Let (4,7) be a sp of & such that 7 is contained in p and let o be the
corresponding emf of B. Then Proposition 3.8 holds for (j,7) and o
relative to (g, ¢). (See §3.2.) Note that the sp’s of (4, &) succeeding
(g9, 1) are exactly those of (g, ) (cf. Proposition 1.9).

As a special case, Proposition 3.3 holds for 8 and (g, 2).
The following lemma is a crucial point for the proof of the
proposition.

LeMMA 4.8. Suppose B<, t and the cmf’s of B are defined as
long as the sp’s of (jo, &) are defined, hence the last ecmf of B cor-
responds to (t,v). If the last emf (of B) is of the form (j, b, ), then
n<; M.

Proof. We first locate a particular sub-o.d. of B, which will be
denoted by B*, as follows. _

1) p=apr((n, k), g, ¢t) and apr ((n, k), g, B) exists. B*=apr ((n, k),
9, B)-

2) p=apr((0, k+1), g, 1) and (4.1;1) applies. B*=apr((1, 1), g, B).

3) wp=apr((n, k+1), g, ¢) and (5.1.1;1) applies. B*=apr ((n, 1), g, B)
when k=0 and S*=apr ((n+1, 1), g, B) when £>0.

4) p=(p, 0,6’ +1) and (2.1;1) applies. B*=(p, 0, d').

Note that one of 1)~4) holds (¢<p excludes (2.1;2), (4.1;2) and
(5.1.1;2)) and that the term in the right hand side of each equation
exists under our assumption.

In any of these cases B* is g-active in B. So B<,pr implies
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B*<, .

Using this fact, we first show that

1° g,

and then that

2° 7 is t-active in B*.

From 1° and 2° follows n<, .

1°, For 4), B*<, ¢t is obvious. We shall consider 1)~3). Suppose,
contrary to the claim, that p#<,8* (#=p8* is impossible.) In order
that B8*<, ¢, there must be an indicator I, such that g<I,<+% and that
there is an l-section of x, say £, which satisfies B*<,, k.

We claim, under the assumption x#<; 8*, that 1.1° there is a (j, 7)
a sp (of (J,, @)) succeeding (g, 2) such that 7 is of the form (p, ¢, N £7),
where (p,7') is a sp and £ is an [-section of A (hence X\ is not empty).

Suppose there is not such (5, 7). Then at each stage of defining
sp’s £ is an [-section of the sod, for all the indicators connected to
the last reduction place are >¢>l,. In the end the sod must be v
(the last reduction place), which has no l,-section. So there must be
a (4, 7) claimed as above.

From 1.1°, we shall infer that 1.2° under the circumstances £ is
an lisection of B*.

When 1.2° is established, we can conclude that £<, B8*<; &, a
contradiction. Therefore there can be no such [, which enforces
B* <, . '

The proof of 1.2° is carried out exploiting the (7, 7¥) whose existence
has been established in 1.1°.

Let v be of the form (p, ¢, M%7'), where £ is an [ssection of N,
and suppose Y=apr ((r, s), 7, 7). »>i. Let 0 be the emf of B corres-
ponding to (4, 7). Since (4, 7) is not the last sp, the next emf of B
can be defined. (4.1) and (5.1.1) cannot apply to (j,7) since M£7 is
not connected. Also we may assume that neither (2') nor (5.3) is the
case with (4, 7). (2.1) will be considered later. Let us consider o=
apr ((r, s), 4, 0) (=(p, ¢, v40")). Since £ is an l-section of A in p also
and p>1, £ is an [-section of p. Consider (2.1;1). Y=(p, 0, M 7 £0)
and 0 contains po=(p, 0, A7) j-active. £ is an [-section of p.

If (2.1;2) is the case, then 0 contains p as above j,-active for some
.. (2.1;2) is possible only if (4, V)#(g, ). If (4, 7) is not an immediate
successor of (g, #) then j,>%, and hence j,>l,. Therefore £ is an [
sections of 8. If (4,7) is an immediate successor of (g, #), (as a tsp),
then p=7=(j,0, x4 £0) and j,=¢g. Due to the condition of (2.1;2)
having the next cmf, g=apr((n, k+1), 9, #) for some n>0 and
apr ((n, k+1), g, B)=0=(p, 0, A, £7'). But by definition 8*=0 here (cf. 1)
in the definition of 8*), so £ is an l;-section of B*. (The conclusion is
proved directly for this case.)
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For the cases other than the latter of (2.1;2), p is j-active in & and
7>t unless (7,7) is (g, #). So this means that £ is an [-section of &.

If (4,7) is (g, ¢), we consider B* instead of 8, so p=pB*, hence &
is an [-section of 8*, which completes the proof.

Suppose (4, 7)+~(g, #£). Consider (g, 7) a sp or a tsp between (g, 9
and (7,7). Let 6 be the corresponding cmf. We shall show by in-
duction, on the number of sp’s and tsp’s between (g, 7) and (7, 7) that
£ is an [section of 4.

If (g, #)=(4, 7), then the proposition has been shown above. Suppose
(2, P#(3, 7), except for (2.1;2), (4.1;2) and (5.1.1;2), p, the next cmf,
is either a g-approximation of & or a component of X in (p, ¢, ) where
(p, ¢, \) is a g-approximation of 6. By the induction hypothesis, & is
an [-section of po. If (g, 9)#(g, 1), then p, ¢>i>1,. So in either case
it is obvious that £ is an [-section of 4. If (g, 7)=(g, 1), then p>i>1,
still holds and we consider o=PB* So £ is an l-section of B*.

Suppose one of the excluded cases applies. Then we first take a
Jr-approximation for some j,. If j,>i, the proof immediately above
goes through. If j,<4, then j,=g, or (¢, )=(g, #£). So we consider
B*, and k£ is an [-section of B*.

This completes the proof of 1.2°, hence of Lemma 4.8.

Now we shall finish up with the critical case by proving Proposi-
tion 4.13.

Proof of Proposition 4.13. Suppose (j, V)=(t,v). Then the j=
t-active values of 0<(i,b), since 6<,v (=(¢, b+1, 0)) (Proposition 3.2).
If <, then 6<,v,=(¢,b,0), for ¢t>4i. If =, then 6 is of the form
(,b,7) and by Lemma 4.8 <, #t. Therefore by Lemma 4.5, there is
an m such that <, g¢,. From this follows 6<,v,,,. Taking this as
the basis and following the proof of Proposition 3.3, we obtain the
desired result.

§4.3. The second critical case, b. 2.2;2).

This case is subject to the following condition: let (¢, v) be the last
reduction pair of & with respect to j,. Then v is of the form (¢, 0, 0),
1=1%+1, t>1, and if we let & be the least indicator occurring in the
sp’s of &, then h<1,. .

This case can be treated parallel to the first critical case, a.3.2).
We have only to replace ¢ by ¢, and (3,b) by (i, ¢). We shall only
point out a few things. '

Let g be the last indicator occurring in the sp’s of & such that
9<%, Let the corresponding o.d. be g. The sp (g, ¢£) will act as the
corresponding one in Definition 4.1.

For Lemma 4.1, sp’s of (4, ¢) be considered.

In §4.1, g=14, be assumed. v, and y, are defined as in Definition
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4.2 with the following modification: v,=(4,, ¢, 0) and v,.,=(%, €, 4n).

In Lemma 4, suppose 8<,, ¢ and that the last cmf is of the form
(%o €, 7).

Replacing ¢ by %, and (¢, b, ) by (%, ¢, ), the rest of the material
in §4.1 goes through.

In §4.2, g<i, be assumed.

In Lemma 4.5, if the last sp of (4, &) is (¢, v), then it is a critical
case with g=1, according to b.2.2;2). So {V,}. and {#,}. are defined
as for the case (%, ¢t). Now follow the argument, replacing ¢ by 1,
and (7, b) by (3, e).
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