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Abstract

The finite transformation semigroups are investigated. The main
object which is treated here is the wreath product of transformation
semigroups. The properties of the wreath product and the transfor-
mation semigroup are applied to homomorphisms and automorphisms
of automata.

Introduction

In this paper, if no confusion will arise, a semigroup and a group
always mean a transformation semigroup and a permutation group,
respectively.

M? is the semigroup of all transformations of a set 2 into itself.
S? is the symmetric group on 2. If |2|=n, M?and S° are denoted by
M~ and S*, respectively.

Let J be a subsemigroup of M? J is called transitive on 2, if
for any pair a, be 2 there exists an element x€J such that (a)z=b.

For each zc M? we may define the mapping matrix P(x), which
is |2|x|2| type matrix whose entry in position (3, j) is 1 if (d)r=g
and zero otherwise, where i, j€ 2. In case z is a permutation, P(x)
is called a permutation matrix.

For the subsemigroup T of M? we define two subsemigroups of
M=

C(T)={x e M?|xt=tx for all teT},
C(T)={x e S?|xt=tx for all teT}.

Definition 1. Let T be a semigroup on 2. {B;|i=1,---,7} is
called a complete block system of T, if the following (1) and (2) hold,

(1) 2=B,+---+B, and B;NB;=¢ for all pair 4, j(s+J),

(2) Every element of T either maps all letters of a set B, into
B, or into another set B;.

Every semigroup T on 2 has the trivial block systems 2 and
{{a}la e 2}. '

PROPOSITION 1. Let G be a group on 2 and J be a subsemigroup
of C(G). Then, the set of G-orbits is a complete block system of J.

117



118 G. TANAKA

Proof. Let {2} be the collection of G-orbits. If (w)zef; for
zedJ and u €2, then since there is some g G with (uw)g=v for arbit-
rary vef,, we have (v)r=(w)gr=(u)rgec(2,)9=2;. Thus (2,)xZR;
holds.

PROPOSITION 2. If J is a transitive semigroup on 2, then C(J) is
semiregular on Q.

For the proof, see Lemma 1 of [1].

Definition 2. An (finite) automaton A is a triple, A=(Q, I, N),
where £ is a nonempty finite set (of states), I is a semigroup (of
inputs) and N is a (next state) function from 2x I into 2 such that
N(a, zy)=N(N(a, x), y) for all z,yeI and all a L.

Definition 3. An automaton A=(R, I, N) is called connected, if
for any a €2 there exist some xel and some bcQ—{a} such that
N(a, ©)=b or N(b, x)=a. Especially, if for any pair a,bc2 there
exists some x €I such that N(a, x)=b, then A is called strongly con-
nected.

Definition 4. Let A=(2, I, N) and B=(4, J, L) be two automata.
A function (7, £): A— B is a homomorphism of A, if the next condi-
tions hold,

(1) & I—J, is one-to-one and onto,

(2) 7:2—4, is a mapping,

(3) N(a, x)p=L((a)y, (x)¢) for all a2 and all xeI. If 7 is, in
addition, one-to-one and onto, (7, §): A— B is called an isomorphism,
and A and B are called to be isomorphic to each other, denoted by
A~ B. An isomorphism (7, 1): A— A is called an automorphism of A.

The set of all automorphisms of an automaton A forms a group,
denoted by G(A4). In this case, the elements (7, 1) € G(A) are denoted
simply by 7. Let A=(®, I, N) be an automaton and (7, £) be a homo-
morphism of A. If (7, &) is neither an isomorphism nor |(2)7|+1, then
(7, &) is called a proper homomorphism of A.

Definition 5. An automaton A=(L, I, N) is called a permutation
automaton, if z*: a— N(a, x), ¢ € 2, is a permutation on 2 for all z e I.

Let A=(2, I, N) be an automaton and z,ye€I. Define the equi-
valence relation ~ on I by x~y if and only if N(a, x)=N(a, y) for all
acQ. We denote by Z the set of all y eI such that x~y and by I(4)
the set of all such classes. I(A) forms a semigroup under the natural
operation, i.e., Z-y=wy. For each Ze I(A) we assign the mapping
x*: a— N(a, ) where a € 2. This is one-to-one mapping and we have
N(a, x)=(a)r*. When no confusion will arise, we denote N(a, x) or
(@)z* by (a)r simply and we do not distinguish I(A) from I(A)*=
{x* |2 € I(A)}.
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Wreath product and automata

For an arbitrary abstract semigroup J, we have the right regular
representation 7 of J such that

(a)n,: x—xa, where a, xcJ .

This representation is generalized in the following way. Put
4={1,2, ---,n} and Jxd={(x,7)|xed,ic4d}, and to each acJ we
assign the transformation on JXx 4

(@)7a: (2, 1)—(wa, 7) .

Then we have the right semiregular representation 7, of J. For an
arbitrary positive integer n, (J)),~(J)7,. Further, if J is a group,
J~(J)1n, holds.

ProOPOSITION 3. If G 1s a regular grodp on 2, then €C(G) is
regular on 2 and C(G)=C€(G). Furthermore €(G) is isomorphic to G.

Remark 1. If G is abelian, €(G)=G, [4]. If G is not abelian, for
g.€G and h,c€(G) the mapping g,—h; is an inverse isomorphism as
permutation group, where (1)g,=(1)h,=1 for some fixed 1€ Q.

PROPOSITION 4. Let G be a semiregular group of order k on 2
and G, be the constituent of G on a G-orbit. Then xeC(R) if and
only if P(x) satisfies the following condition:

(1) P(x)=(Xy;), where X,;eP(€(G,) or X,;;=0,kxk type zero
matriz, for 1=1, j=|2|/k.

(2) For each t,1=1,2, -+, |R2|/k, there exists a unique number
t such that X, € P(€(G,)).

COROLLARY 1. Let G be a semiregular group on 2 and 2,, 2,, -+ -, 2,
be the all G-orbits. Then we have

(1) Foranarbitrary subsemigroupd of C(G), 2={02,]i=1, 2, n}
18 a complete block system of J.

(2) For any fized element xcC(G) and any pair s, te 2,(s#t),
(s)z=(t)x holds.

Let 2={a, b, ---, ¢} and 4={1,2, ---, n} be two finite set and let
H and K be subsemigroup of M? and M4, respectively. We define the
semigroup H=HxHx -+ x H (n-product) on 2x 4 by

(dy 7')[hly h’z; T h’n]:((d)hw ’L) ’

for all (d,7)e 2x4 and all [k, hy, -+, h,] € H. The element @< K acts
naturally on 2x 4 by

@, p=(d, (1)) -
The semigroup generated by H and K is called the wreath product of
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H by K, and denoted by H!K. The product [h,, hy -+, k] @ is
written by [hy, hy, <+, k@], Since @[y, by <<y Byl =Ry Bares ***»
Rt ], We have

[hh hz’ Yy h’n: @]'[gl’ Gy ** %y Jus 7]]=[hlg(1)¢) hzg(2)¢, Yy hng(n)!o: ¢77] .
From Proposition 4 we have the following Proposition.

PROPOSITION 5. Let G be a semiregular on 2 and G, be the con-
stituent of G on a G-orbit. If |R|/|G|=mn, then

C(@)=C(G ) M".

Let H, and H, be two transformation semigroups on £, and 2,,
respectively. If 2,N2,=¢, the semigroup H,+ H, on 2,U R, is defined
by

(a)h, if acf,,

(a)(hl+h2?:{(a)h2 if ac,,

where h, e H, i=1,2. This definition generalizes in the obvious way to
the case of more than two factors.

Definition 6. Let A,=(2, I, N,),i=1,2, -+, n, be automata such
that 2,N2;=¢ (1#4). The sum of outomata, A=A4,+4,+---+A4,, is
the automaton A=(U~, 2;, I, N) where N(a, x)=Na, ) if ac2,. If
A,~A, for any i, the sum of automata A=A4,+A4,+---+ A4, is denoted
by nA,.

We notice that the theorem in chapter 14 of [5] is also true for
finite automaton.

PROPOSITION 6. Let A be an automaton such that A=mn,A,+
Ay + « - - +m,A,, where A, is connected for any 1. Then
G(A)=G(ANS" +G(ANS"+ -+ - +G(ANS"" .
Example 1. We consider the following state diagrams:
(a?» 1) (a'ly 1) (662, 1) (CL“ 1)
A, ) [ [ )
X x X
(@5 2) (ay, 2) (a 2) (a, 2)
A, ) [ [ °
X X x
(bv 1) (bz, 1) '
B ® N o.

A=2A,+B is a sum of automata. t=(1, 2) is an isomorphism from A4,
to A; 1=51+#75<2) by

(a, yr=(a, (})7)=(a, J) -
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Put h=(a,, a.)(as a)), then G(A)=G(4;)=<k) by
(@, Dh=((a)k, 7)), i=1,2. .
In the same manner, G(B)=<{k=(b, b,)). Thus G(A)={hY1S*+{k)1S"

COROLLARY 2. Let A=(2, I, N) be an automaton such that G(A)
18 a nontrivial semiregular group. Then A is conmmected excepting
the case A=2A, for some connected automaton A, such that G(A,)=1.

Proof. We may write A=n,A,+---+n,4, where r=1, n,>1 and
A, is connected for all 3.

Suppose r=2. If n,>2 for some 4, then G(A) is not semiregular.
Thus n,=1 for all ¢+ and A=A,+---+A4,. Since G(4)#1 and G(4)=
G(A)+---+G(4,), G(A) is not semiregular. Thus we have r=1 and
A=nA,. If n,=3, then G(4) is not semiregular. If »,=2, then
G(A)=G(ANS*. Since G(A) is semiregular, we have G(4,)=1.

Definition 7. Let H and K be subsemigroups of M? and MY,
respectively. Further let J be a subsemigroup of H!KX. An automaton
(J: HIK)=(2x 4, J, N) is defined by N((a, ), x)=(a, i)z for all (a, i)e
2% 4 and zeJ.

Let G, be a regular group on 2, and |2,)=%, and put
G={lg, 9, -+, 9:1]lgeG}. If J is a subsemigroup of &(G,)1M*, then
€J)=2G. Thus G is contained in the automorphism group of
(J: €&(G) M),

ProposiTION 7. If A=(2,I, N) is an automaton with w states
and G=G(A) is semiregular on 2 of order k. Then there exists a
subsemigroup J of C(GNM""* such that (J: €(G ) M**)~A, where G,
is a constituent of G on a G-orbit.

Proof. Let 2,%2, +--,2,, (r=n/k), be the G-orbit on 2. The
constituent G; of G on 2,,9=1,2, ---, r, is isomorphic to G. Since G,
is isomorphic to G; as permutation group for any ¢ and j, we may
assume that if we put 2,={a,,;, @s, *++, a1}, 1=1,2, -+, r, then

g S0 | OWED EE OReD
Qg1 Qo Qj,r
holds for all ge@G.

Define the mapping 7: a., — (a;, 7), then 7 is a one-to-one mapping
from £ onto 2!x4, where 2!={a, a, -+, )} and 4={1,2, ---, r}.
Since I(A)=C(G), 2={2,|t=1,2, ---, 7} is a complete block system of
I(4). For each xel we define the mapping @, on 4 by (V)p,=j, if
(2)r=Q;. Let P(x)=(X,,), where X,,is kxk type matrix for each
s and t (1<s,t<r). Define the mapping p: I(4) — &(G.) 1 M* by

(E)pz[gl’ G2y * %y Gt ¢x] ’



122 G. TANAKA

where P(g9,)=X, . for i=1,2, ---, n. Then N(a.,;, ®)=(a.)x=a,,, Where
a,=(a,)g; and v=(7)p,. Thus

(N(ay,,y 2))n=(a, v)
z(aty i)[gl: 25 * "y Gut 9%]
=(a't,i)77[gn Gz ** s Gt @z] .

By putting J=(I(4)p) we have an isomorphism from A onto (J: &(G )1 M*'*).
The proposition is proved.

Let G, be regular on 2, and 4={1, 2, --+, n}. For a subsemigroup
JSG(G )M we define the following sets J and J9,

J={peM!|[*, -+, x:p]eJ}.
Let M,={neM'|(i)p=1}. We put
J‘“={h¢€@(qx)|[*, Tty }fi: M) *277]€J» WeMz} .

i-th

PROPOSITION 8. Let H be a regular group on 2 and J be a sub-
semigroup of HIM*, where 4 is finite. Then J is transitive on 2Xx4
if and only if (1) and (2) hold:

(1) J is transitve on 4,

(2) J9=H for all i=1,2, ---,|4].

Proof. Suppose that J is transitive on 2x 4. Then for any pair
(a, 7), (b, 7)€ 2x 4 there exists weJ with (e, 9)2=(b, 7). Thus J O£
and we have (1) and (2).

Conversely if (1) and (2) hold, then for arbitrary pair (a, ©), (b, j) €
Q% 4 there exists some #=[g,, g5 ***, g.: 7] €J such that (7)p=7j from
(1). Since H is transitive, there is k; € H such that ((@)g:;)h;=b. By
(2) there is some y=[h,, +-+, hj, *++, h,i ] €J With ()r=37. Thus we
have 2y ¢J and (a, 9)xy=(b, J).

Homomorphism and automorphism of automata

The imprimitive permutation groups are reduced to transitive
groups of smaller degree by Proposition 7.2 of [4]. This is generalized
to the representation of transformation semigroup which has the
complete block system.

Let J be a semigroup on £ and 1et 2={0Q,]9=1,2, ---, 7} be a
complete block system of J. Then we may define the action of xed
on 2 by (2)r=2;, if (2)xZL2;.

PROPOSITION 9. The automaton A=(2, I, N) has a proper homo-
morphic image if and only if I(A) has a complete nontrivial block
system.
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Proof. Let 2={2,|i=1,2, ---, 7} be a complete nontrivial block
system of I(A). We define the function N: 2xI— 2 by N(2,, x)=2;,
if (2)2<0,. Since 2 is a complete block system of I(A4), A=(2, I, N)
is an automaton. The mapping 7: 2—Q is defined by (a)p=2,, if
a€f;. Then 7 is a proper homomorphism from A onto A, since
r#1, |2].

Conversely, suppose that A has a proper homomorphic image
A=(2,I,N’). For wu,e2 we put I'(u)={ac2|(a)p=wu;}. Then
Q=I(u)+++++I'(w,) and I'u)NI'(u;)=¢, if i#=j. Since N(a, 2)7=
N’((a)y, x)=N’(u;, ) for all ael'(u;) and xel, we have I'(u,)xS
I'((w)x)=I(w;) for some j. Thus {I'(w)|i=1, .--,7} is a complete
nontrivial block system of I(A).

Example 2. Consider the next state diagram:

3 1 2 4
A=e0 o [ o.
z x ©

Since {1, 4}x={2} and {2, 3}x={1}, {I",={1, 4}, I'.={2, 3}} is a complete
block system of I(A)={x). The next A’ is a proper homomorphic
image of A.

rl Fz
A=0—ae.
X

Let J be an semigroup on 2 and H be a subgroup of &(J), fur-
thermore Q2={2,, 2,, ---, 2,} be the set of H-orbits. Suppose that
(u)x € 2; for some ue R, and x€J. Since for any ve€ 2, there is he H
with (u)h=v, we have (2,)r<®2;. Thus 2 is a complete block system
of J. Therefore we have a representation of J on Q2.

Definition 8. Let A=(2, I, N) be an automaton and G(A) be its
automorphism group. Then for a subgroup H of G(A), the factor
automaton A/H, is A/H=(2y, I, N;) where 2 is the set of H-orbits
and Ng(§, )=N(s, ) for all €2, and all e l.

PROPOSITION 10. Let A=(R,I, N) be a strongly connected auto-
maton and H be a normal subgroup of G(A). Then, G(A)/H is iso-
morphic to a subgroup of G(A/H). Furthermore, if |2|=|G(A)|, then
G(A)/H~G(A/H) holds. ‘ ’

For the proof, see [2].

The next Proposition is due to Ito [3]. The proof given here is
different from that given by [3].

ProrosITION 11. Let A=(2, I, N) be a strongly connected auto-
maton such that |2|=p|G(A)|, where p is a prime unmber, and H be
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a normal subgroup of G(A). Then if A is not a permutation auto-
maton, G(A)/H~G(A/H).

Proof. Since A is strongly connected, A/H is strongly connected.
Thus G(A/H) is semiregular on 2,, where 2, is the set of H-orbits.
The number of H-orbits is p|G(A)|/|H|. Since |G(A)/H|<|G(A/H)| by
Proposition 10, |G(A/H)|=|G(A)/H| or p|G(A)/H|. If |GA/H)|=
|G(A)/H|, then G(A/H)~G(A)/H.

Suppose that |G(A/H)|=p|G(A)/H|. Then G(A/H) is regular on
Qg. I(A) is a semiregular group on 2, by Proposition 3. Since I(4)
is transitive on 2, I(A) is a regular group on 2. Let I" be a H-orbit.
Since I' is contained some G(A)-orbit, by Corollary 1 we have (s)x+(t)x
for any pair s, tel” (s+#t) and for x e I(A). Thus I(4) is a permuta-
tion group on 2. ’
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