On $p^{\omega+n}$ -projective abelian p-groups

by

K. BENABDALLAH, J. IRWIN and J. LAZARUK

(Received June 7, 1976)

Recently, a great deal of attention has been given to totally projective and p^{α} -projective primary groups. The first authors together with M. Rafiq have studied $p^{\omega+1}$ -projective p-groups in [2]. In this article we establish a few characterizations and properties of $p^{\omega+n}$ -projective groups. We also show that every p-group contains subgroups of the form Tor(A, P) where P is the Prüfer group and A is a subgroup of the given group. All groups considered are abelian primary groups.

Let α be an ordinal number. A subgroup H of G is said to be p^{α} -pure in G if the short exact sequence:

$$0 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 0$$
,

corresponds to an element of $p^{\alpha} \operatorname{Ext}(G/H, H)$. A p-group G is said to be p^{α} -projective if $p^{\alpha} \operatorname{Ext}(G, X) = 0$ for all group X. In this article we restrict ourselves to the case $\alpha = \omega + n$ where ω is the first infinite ordinal and n is a natural number.

The symbol \bigoplus_c denotes direct sums of cyclic groups. Most of the notation is the same as in [4].

I. Purity and $p^{\omega+n}$ -projectivity.

In this section, we consider various properties involving pure subgroups. The following result makes it easier to handle $p^{\omega+n}$ -purity.

LEMMA 1.1 ([5]). A subgroup C of E is p^{w+n} -pure in E if and only if there exists a subgroup M in E such that:

$$M \cap C = 0$$
, $(M+C)/C = (E/C)[p^n]$, and $(M+C)/M$

is pure in E/M.

We apply this immediately to obtain a simple method of producing $p^{\omega+n}$ -pure subgroups.

LEMMA 1.2. Let H be a pure subgroup of G. Then $H/H[p^n]$ is $p^{\omega^{+n}}$ -pure in $G/H[p^n]$.

Proof. In Lemma 1.1, let $E=G/H[p^n]$, $C=H/H[p^n]$ and $M=G[p^n]/H[p^n]$. It is a routine matter to see that the conditions there

are satisfied.

LEMMA 1.3 ([5]). Let C be a $p^{\alpha+1}$ -pure subgroup of E. If E is p^{α} -projective then C is a summand of E, and thus C and E/C are p^{α} -projective.

We establish next a generalization of a result in [1].

THEOREM 1.4. Let K be a pure subgroup of G, such that $G/K[p^m]$ is $p^{\omega+n}$ -projective for some $n, 0 \le n < m$ then G/K is $p^{\omega+n}$ -projective. Further, if K is $p^{\omega+n}$ -pure in G then it is a summand of G and G is $p^{\omega+n}$ -projective.

Proof. By Lemma 1.2, $K/K[p^m]$ is p^{ω^+m} -pure in $G/K[p^m]$ and since n < m it is also p^{ω^+n+1} -pure. But $G/K[p^m]$ is p^{ω^+n} -projective and an immediate application of Lemma 1.3 and the isomorphism theorems yeld that G/K is p^{ω^+n} -projective. If K is also p^{ω^+n} -pure then K is a summand of G. Now $K/K[p^m] \simeq p^m K$ is a subgroup of a p^{ω^+n} -projective group and therefore it is p^{ω^+n} -projective and K also is p^{ω^+n} -projective (see remarks after Lemma 2.2). Since $G \simeq K \oplus G/K$ we see that G is p^{ω^+n} -projective.

THEOREM 1.5. Let K be a pure subgroup of G such that G/K is p^{w+n} -projective. Then G/H is isomorphic to G/K for every pure subgroup H of G satisfying $H[p^{n+1}] = K[p^{n+1}]$.

Proof. Let $B=K[p^n]$. By Lemma 1.2 the sequence $0\to K/B\to G/B\to G/K\to 0$ is $p^{\omega+n}$ -pure exact and since G/K is $p^{\omega+n}$ -projective it must be split exact and K/B is a summand of G/B. Now $H[p^{n+1}]=K[p^{n+1}]$ implies that $H[p^n]=B$ and $(H/B)[p]=H[p^{n+1}]/B=(K/B)[p]$. A well known result shows that H/B is also a summand of G/B. In fact if $G/B=K/B\oplus R/B$ then $G/B=H/B\oplus R/B$ and $G/H\simeq G/K$.

II. Some chracterizations of $p^{\omega+n}$ -projective p-groups

We recall first two important results:

LEMMA 2.1 ([5]). A group E is $p^{\omega+n}$ -projective if and only if there exists a subgroup $B \subset E[p^n]$ such that $E/B = \bigoplus_c$.

LEMMA 2.2 ([2]). Let G be a group. There exists an exact sequence $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$, where $M = \bigoplus_c$ and $p^*K = 0$ if and only if there exists an exact sequence $0 \rightarrow S \rightarrow F \rightarrow G \rightarrow 0$ where $p^*S = 0$ and $F = \bigoplus_c$.

These two results have numerous consequences. In particular we see that every subgroup of a $p^{\omega+n}$ -projective group is likewise $p^{\omega+n}$ -projective and a group G is $p^{\omega+n}$ -projective if p^mG is $p^{\omega+n}$ -projective for some natural number m.

The following results parallel those obtained in [2] for $p^{\omega+1}$ -projective p-groups.

THEOREM 2.3. Let $0 \rightarrow K \rightarrow F \rightarrow G \rightarrow 0$ be a pure exact sequence where $F = \bigoplus_c$. Then, G is p^{w+n} -projective if and only if it is isomorphic to a summand of $F/K[P^n]$.

Proof. If G is $p^{\omega^{+n}}$ -projective, let $B=K[p^n]$ then, by Lemma 1.2 the sequence $0 \to K/B \to F/B \to G \to 0$ is $p^{\omega^{+n}}$ -pure and therefore K/B is a summand of F/B. Conversely if G is isomorphic to a summand of F/B, it is $p^{\omega^{+n}}$ -projective since by Lemma 2.2 F/B is $p^{\omega^{+n}}$ -projective.

THEOREM 2.4. Let G be a group and $n \ge 1$. G is p^{w+n+1} -projective if and only if there exists a p^{w+n} -projective group H, such that $G \cong H/S$ where $S \subseteq H[p]$.

Proof. By Lemma 2.2, if G is $p^{\omega+n+1}$ -projective then $G \simeq F/B$ where $F = \bigoplus_c$ and $p^{n+1}B = 0$. Let H = F/pB and S = B/pB then $p^n(pB) = 0$ so H is $p^{\omega+n}$ -projective and pS = 0. Conversely if $G \simeq H/S$ where $S \subset H[p]$ and H is $p^{\omega+n}$ -projective then by Lemma 2.2 $H \simeq F/K$ where $F = \bigoplus_c$ and $p^nK = 0$ let $S \simeq M/K$ where $M \subset F$ then $p^{n+1}M = 0$ and $F/M \simeq G$ and therefore G is $p^{\omega+n+1}$ -projective.

COROLLARY 2.5. If G is $p^{\omega+n}$ -projective and $S \subseteq G[p^m]$ then G/S is $p^{\omega+n+m}$ -projective.

THEOREM 2.6. Let G be a group and $n \ge 1$. Then G is $p^{\omega+n+1}$ -projective if and only if there is a subgroup S of G[p] such that G/S is $p^{\omega+n}$ -projective.

Proof. If G is $p^{\omega+n+1}$ -projective then there exists $A \subset G[p^{n+1}]$ such that $G/A = \bigoplus_c$. Let S = A[p] then G/S is $p^{\omega+n}$ -projective by Lemma 2.1. Conversely if $S \subset G[p]$ and G/S is $p^{\omega+n}$ -projective then there exists $K/S \subset G/S$ such that $(G/S)/(K/S) = \bigoplus_c$ and $p^n(K/S) = 0$. Therefore $G/K = \bigoplus_c$, $p^{n+1}K = 0$ and the result follows from Lemma 2.1.

III. An imbedding theorem.

It is well known that not every group is contained in a group of the form $\operatorname{Tor}(A,B)$ where A and B are reduced. However we show that every unbounded group G contains a subgroup of the form $\operatorname{Tor}(A,P)$ where P is the reduced Prüfer group and A is a subgroup of G. Furthermore if $G \neq \bigoplus_c$ then A can be chosen so that $\operatorname{Tor}(A,P) \neq \bigoplus_c$. But first we recall a result in [2].

LEMMA 3.1 ([2]). Let G be a group such that $G \neq \bigoplus_c$ and $G^1 = 0$. Then G contains a subgroup B such that $B = H \oplus K$ where $H \neq \bigoplus_c$, $K = \bigoplus_c$ and fin r(K) = |H|. We need also

LEMMA 3.2 ([6]). If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a p^{α} -pure exact sequence with $\alpha \geq w$ and E is any group then

$$0 \rightarrow \operatorname{Tor}(A, E) \rightarrow \operatorname{Tor}(B, E) \rightarrow \operatorname{Tor}(C, E) \rightarrow 0$$

is a p^{α} -pure exact sequence.

LEMMA 3.3. Let $B = \bigoplus_{n=1}^{\infty} Z(p^n)$ and P the Prüfer group, then B contains a copy of Tor (B, P) and there exists a summand A of P such that P contains a copy of Tor $(A, P) \neq \bigoplus_{c}$.

Proof. Tor (B,P) is isomorphic to a countable direct sum K of copies of B and B contains a copy of K. By [3] (pb. 19 a, p. 143), we can write $P = A \oplus B'$ where $B' = \bigoplus_{e}$ is unbounded. Now, there exists a pure exact sequence $0 \to B \to P \to Z(p^{\infty}) \to 0$ where B is high in P. Let S = B[p], then the sequence $0 \to B/S \to P/S \to Z(p^{\infty}) \to 0$ is by Lemma 1.2, $p^{\omega+1}$ -pure exact. But $B/S \cong B$ and $P/S \cong P$ thus there exists a $p^{\omega+1}$ -pure exact sequence

$$0 \longrightarrow B \longrightarrow P \longrightarrow Z(p^{\infty}) \longrightarrow 0$$
.

By Lemma 3.2, $0 \rightarrow \operatorname{Tor}(A, B) \rightarrow \operatorname{Tor}(A, P) \rightarrow \operatorname{Tor}(A, Z(P^{\infty})) \rightarrow 0$ is $P^{\omega+1}$ -pure exact, but $\operatorname{Tor}(A, Z(p^{\infty})) \simeq A$ which is $p^{\omega+1}$ -projective since P is $p^{\omega+1}$ -projective, therefore $\operatorname{Tor}(A, P) \simeq A \oplus \operatorname{Tor}(A, B)$. However $\operatorname{Tor}(A, B)$ is a countable \bigoplus_{c} so that B' contains a copy of it and P contains a copy of $\operatorname{Tor}(A, P)$ which is clearly not \bigoplus_{c} .

THEOREM 3.4. Let G be an unbounded group. Then G contains a subgroup of the form Tor(A, P) where P is the Prüfer reduced group and A is a subgroup of G. Moreover if $G \neq \bigoplus_c$, then A can be chosen so that $Tor(A, P) \neq \bigoplus_c$.

Proof. We break the proof into three cases:

1) $G = \bigoplus_{c} 2$) $G^{1} \neq 0$ and 3) $G \neq \bigoplus_{c}$ and $G^{1} = 0$.

Case 1 and 2 are easily settled by Lemma 3.3. Indeed the groups respectively in these cases contain a copy of B and a copy of P.

Case 3. If $G \neq \bigoplus_c$ and $G^1 = 0$ then by Lemma 3.1 there exists subgroups M and N of G such that $M \neq \bigoplus_c$ and $N = \bigoplus_c$, fin r(N) = |M| and $M \cap N = 0$. Furthermore M can be chosen to be $p^{\omega+1}$ -projective by Theorem 2.9 p. 205 in [2]. Thus using the $p^{\omega+1}$ -pure exact sequence $0 \to B \to P \to Zp^{\infty} \to 0$ obtained in Lemma 3.3 we derive that $Tor(M, P) \simeq Tor(M, B) \bigoplus M$. Now Tor(B, M) is \bigoplus_c , a copy of which can be found in N and thus a copy of Tor(M, P) exists in $M \bigoplus N \subset G$, clearly $Tor(M, P) \neq \bigoplus_c$.

References

- [1] Benabdallah, K. and Irwin, J. M.; Pure N-high subgroups, P-adic Topology and direct sums of cyclic groups, 1974, Can. J. Math. Vol. XXVI, pp. 322-327.
- [2] BENABDALLAH, K., IRWIN, J. and RAFIQ, M.; On a core class for abelian p-groups, Symposia Mathematica, Vol. XIII (1974), p. 195 á 206.
- [3] Fuchs, L.; Abelian groups, Publ. House Hungar, Acad. Sci., Budapest, 1958.
- [4] Fuchs, L.; Infinite abelian groups, Vols. I and II (1970), Academic Press.
- [5] NUNKE, R.; Purity and subfunctors of the identity, Topics in Abelian Groups, Proc. Sympos., New Mexico State University (1962), pp. 121-171, Scott. Foresman and Co., Chicago, Illinois, 1963.
- [6] NUNKE, R.; On the structure of Tor, II, Pacific J. Math. 22 (1967), 453-464.

Wayne State University Detroit, Mich. U.S.A.

Université de Montréal Montréal, Qué, Canada