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- The purpose of this paper is to prove the derived rules announced
in [8].Y Our tool proving the derived rules is a sort of locally
formalized normal form theorem. This method gives unified proofs
of various derived rules. We prove also an extended Church’s rule by
this method. Roughly speaking our normal form theorem maintains
existence of an operation which transforms each finitary derivation to
its infinitary recursive normal form.» The normal form theorem is
proved easily by the fact that normalization trees, which are modified
versions of “normaization” of [12], are well-founded. Note that in this
paper “well-foundness” means that principle of induction on the tree
is valid. So the essential part of the proof is a proof of the well-found-
ness of the trees. We carry out this by the method of [13], [14].
Since we employ the existential quantifier as a primitive symbol, a
complication arises, however, there is no essential new technique in
our proof. We indicate only how to modify the proof of [14]. The
reader will find our proof is very simplified by restricting the language
and may ask why we dare extend the language. Indeed there is no
nessecity of the addition of the logical symbols for the proofs of
derived rules. The reasons why we extends the language are (i) it
simplifies the proofs of derived rules if once the normal form theorem
is proved, (ii) as was shown in [1], the normal form theorem supplies
a general method proving independence of arithmetical sentences in
intuitionistic formal systems, however, it seems there is no published
proof of the theorem (see 2.7.2).

In §1 we give syntax. In §2 we prove the locally formalized
normal form theorem. In §8 we prove the derived rules. In an appendix
we extend our results to some closely related systems including the
intuitionistic higher order arithmetic with the axioms of extensionality.

D In [2], [8] M. Beeson has given more general forms of [8]. His methods are quite
different from ours. [2] was obtained before [8], however, our work is independent from
him. [3] was obtained after a sight of [8].

2 It is very easy to extend the normal form theorem to arbitrary infinitary proofs.
The resulting normal form is recursive in the original infinitary proof. If the original
proof is extremly restricted, then the resulting form is also (ef. [11]).
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§1. Syntax

1.1. Second order arithmetic S

We now define a formal system S which is a varient of HAS of
[17].

1.1.1. Language of S

As logical symbols we employ “A”, “v°”, “3°” (¢ is a type of first
or second order), “&”, “—” and “\”. Individual constants and function
constants are only 0 (zero) and S (succesor) respectively. Terms and
formulae are constructed in the usual way. We adopt s, ¢, u, t, -
as metanotations for terms. We use a notation St as follows:

S’t=t
S*tit=S(S"t) .
For predicate constants we employ a binary predicate constant = (equal)
and the constants F, of 1.8.6 of [17]. '
1.1.2. Axioms and rules of S

1.1.2.1. Non-logical axioms and rules
Axioms and inferences for equality and S are as follows:

t=t % (equality rule)
S™t=S8"t (m=m) St=Su )
A t=u

Axioms and inferences for F), are the same as 1.3.6 of [17], however,
there is a luck in [17]. We must add the following rule:

Fktl"'tns Fkt1'°'tnt
s=t )

As induction rule we use the the following form:
[A(a)]
Xa

A0) A(Sa) (induction rule) .
VaA(x)
As usual the inferences except the equality rule and the induction rule
are called atomic rules.
1.1.2.2. Logical rules
Logical rules are usual ones of natural deductions of intuitionistic
second order logic, including rules for “\”. ‘
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1.2. Infinitary second order arithmetic IS

1.2.1. Language of IS

Language of IS are the same as S except that there is no free
variables of type zero.

1.2.2. Axioms and rules of IS

1.2.2.1. Non-logical axioms and rules

Non-logical axioms and rules of IS are exactly the closed instances
of the axioms and atomic rules of S. Note that the axiom of equality
(l.e. VOX(Va'y Xz & x=y .—. Xy))) is a theorem of IS.

1.2.2.2. Logical rules

Logical rules are the same as S except that instead of the rules
vl and 3°E of S we use the followings:

A0) A(S0)
z ) vee

0 Z1 b )] Z1
AO) AS) ey 3zA@ € C
V' A(x) \ C

(I'E) .

1.2.2.3. A preproof of IS is a well-founded, recursive tree whose
node is labelled recursively by a non-empty finite sequence of formulae
(F +--, F,> and a name of an inference rule of IS. (Cf. 3.2.9.) If a
node is labelled by <(F, F,, ---, F,), it is intended that F, is derived
under the assumptions F,, ---, F,, i.e., the possible forms of assump-
tions which are open at the node are at most F,, ---, F,. A preproof
is called a proof if at each node of the tree the labelled sequence is
related to the sequences labelled to the predecessors of the node by
the labelled rule. We may identify the proofs of IS with appropriate
recursive functions as in [11] or elements of an inductively defined set
of numbers as in [16].

1.3. Terms and formulae are called numerical closed if they have
no free variables of type zero. Derivations are called numercal closed
if they have no free variables of type zero except eigen variables.
From now on we assume terms, formulae and derivations are numer-
cal closed as far as without provisory clauses.

14. Con(X) is the formula F, and Asp(Z) is the sequence
(Fy +++, F,», where (F, ---, F,> is labelled to { ) of the =. We
sometimes identify {F,, .-, F,)> with {F,, ---, F,}. Rule (2) is the name
of the last inference of X.

§2. Normal form theorem

2.1. Reduction

A formula is called @ cut when it is the major premiss of an
elimination rule and the conclusion of a non-elimination rule. Main
cut and main branch are defined as in [12]. A formula is called
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sem1 cut when it is the conclusion of a 3°E-rule and the major premiss
of an elimination rule. We say X is reductble when it has the main
cut or a semi cut in the main branch.

For reducible X we define its reduct form Red(Z) as follows:
(1) If £ has the main cut, we reduce it by the proper reductions of
4.1.3 of [17] or the reductions according to the following contractions:

2,
. Z,(0)
(i) Aa) :
Z,  Zya) 2,(S0)
———A(O) A(sa) contr.
Va'Ax 2,(8"10)
A(S"0) A(S"0)
(ii) %, 3, IR NID I ——
A(S™0) S™0=S"0 B
A(S0) Z, contr. Zy
B —————
A——-——-——(S”%) Z, if m#=mn
(iii) %,
A %,
A 2, contr. g (3, may be void.)

Remark. In (i), (i), (iii), the cuts are Va'Ax, A(S"0), A respectively.
(2) If 2 has no main cut but a semi cut in the main branch, Red (Z)
is the derivation gained by an application of the permutative reduc-
tion (see (C) of 4.1.3 of [17]) at the uppermost semi cut in the main
branch.

2.2. Twig

Let Rule(X) be an elimination rule, ¥ be not reducible and
s 2 '

A
(1) If1IIis a minor deduction (see 3.3 of [12]) of an inference in the
main branch of X, then II is a twig of X.
(2) If Rule(Z) is not I°E, then X, is a twig of 2.

B(a) B(S"0)

(8) If Rule(Z) is I’E and Zzziz(a), then Ef(S”O) is a twig of X for

A twig of T is a derivation gained by one of the following:

each n.

2.3. Predecessor

For each derivation ¥ which does not consist solely of one formula
we define its predecessors as follows:
Case 1. Rule () e {—1, &I, v’ I(c#0), 3°I, AI, atomic rules, A-rule}. II is
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a predecessor of X iff it is a derivation of a premiss of last inference
of Z.
Case 2. Rule (Z) € {induction rule, V°I}.

Let
Aa)
LAl Ao, o
VatA(x) Va'A(x)
IT is a predecessor of X iff it is one of the followings:
Z,
%,(S°0)
T8°710) or X,(S0).
A(S"0)

Case 3. Rule () is an elimination and ¥ is reducible. II is a predeces-
sor of T iff II is Red (2).
Case 4. Rule (Z) is an elimination and X is not reducible. II is a
predecessor of X iff IT is a twig of X.
Case 5. Rule (2) is an equality rule.
Z, 2,
A(S™0) S™0=S"0
A(S"0) '
or m#mn and II=2X,.
2.4. Normalization tree
For each derivation of § we assign a tree which is labelled with
proofs of S and is called the mormalization tree of the derivation.
Normalization tree is a modification of “normalization” of Martin-Lof
[12]. A mormalization tree is a function which satisfies the following
conditions:
(1) {x: f(x)+0} is a tree, i.e. f(x * m)=0—f(x)=0.
(2) If flx)+0, then f(x) is an index of a derivation.
(8) Let f(x)+#0 and f(x)=2X.
Case 1. f(z) does not consist solely of one formula.
Let 11, ---, I, --+ (*<a=<=w) is an enumeration of the predecessors
without repetitions, then

Let Z= IT is a predecessor of X iff m=n and II=2,,

. I, i<ea
@« )= 0 otherwise.
Case 2. f(x) consist solely of one formula.
Sf(x = (i))=0 for each ¢

A normalization tree f is called a normalization tree of ¥ provided
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AL »)=2Z. All of normalization trees of a derivation are extensionally
equal when the differences of enumerations of predecessors are ignored.
We assume that for each derivation of S a recursive normalization
tree of it is assigned in a definite way. We call it “the normalization
tree of the derivation”.

2.5. Normalizability

2.5.1. A derivation of S is said to be mormalizable if f is the
normalization tree of it and the tree {x: f(x)+0} is well founded. We
can prove that derivations of S are normalizable. We carry out this
by the same way as in [13], [14]. We indicate how the definitions of
computability predicates and @, (@) are modified. We state a lemma
which corresponds to 4.1.6 of [17]. It is not so difficult (but tedious)
to prove the normalizability of S from these as in [13], [14]. The
details will be left to readers.

2.5.2. Computability predicates and @, ()

In @,w(@) u(x) need not be numerical closed but u(t) must be
numercal closed. We explain how the notions of [14] are modified, since
[12] is a particular case of [14].

2.5.2.1. 5 of [14] is modified as follows:

(1) Terms, formulae and derivations are numerical closed. (Note
that computability predicates of type zero are the numerals.)

(2) 5.2.2 of [14] is replaced by the following: A derivation X which
ends with an elimination and is reducible satisfies «; iff Red (Z) satisfies
Ap.

(3) b5.2.3 of [14] is replaced by the following: A derivation X which
ends with an elimination except I°E-rules and is not reducible satisfies
a, iff the twigs of X are normalizable.

(4) The following clauses are added.

5.2.5. A derivation ¥ which ends with an 3°E-rule and is not reducible
satisfies a, iff the twigs of ¥ are normalizable and the twigs obtained
by the clauses (2), (3) of 2.2 satisfy aj.

5.2.6. A derivation which ends with A-rule or an atomic rule satisfies
o, iff it is normalizable.

5.2.7. A derivation which ends with the equality rule, say

Z, %,
F(S™0) S™0=S"0
F ’

satisfies a, iff m=mn and I, satisfies a;, or m=mn and Z, is normalizable.
2.5.2.2. 6 of [14] is modified as follows:

(1) 6.1-6.3, 6.4.4, 6.5.4 for higher order quantifiers and 6.6 are leaved

as they are. (A is ranked as a zero place predicate constant.)

(2) We now define a list of clauses (¥) which is used in the following
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definitions.
#)
Case 1. X consists solely of one formula.
If Z=u(x), then X e @,(@).
Case 2. Rule (2)= A-rule. If X is normalizable and Con (Z)=uwu(t), then
2 € @, (@).
2, 2,

Case 3. Rule (Z)=equality rule. Let 5 —F(8"0) 8"0=8"0 . 4 F(S*0)=
F(S™0)
u(t).

Subcase 1. If m=n and %, € ¢, (@), then ¢ @, (a).

Subcase 2. If m#n and I, is normalizable, then I € ¢, (a).

Case 4. Rule (Z) is an elimination rule. Let Con (Z)=u(t).

Subcase 1. If X is reducible and Red () € @, (@), then € g, ().
Subcase 2. If X is not reducible, Rule (£)#3°E-rule and all of the tW1gs
of it are normalizable, then then I € ¢, (a.).

Subcase 3. If X is not reducible, Rule (£)=3E-rule, all of the twigs
are normalizable and the twigs obtained by the cluses (2), (3) of 2.2
satisfy @,w(@), then I e @,y (a.).

(8) 6.4.1-6.4.3, 6.5.1-6.5.3 are replaced by (%).

(4) 6.5.4 for the type zero is replaced by the following:

If Con (Z)=u(t), Rule (XZ)e{v'I, induction rule} and for each natural
number » the deduction which is the predecessor with the conclusion
F(S"0) satisfies @p(,,x(S"0, a;), then T € @, (@,).

(5) The following clauses are added as 6.7, 6.8, 6.9.

6.7. u(x)={N\yF(x, y)lu(x)

6.7.1. (%).

6.7.2. If Rule (Z)=\I-rule and the premiss of X satisfies the predicate
?F(x,y)(at, @u(x)(at))’ then Z’ e@u(x)(at)°

6.8. u(x)=F(x)&G(x)

6.8.1. (%)
6.8.2. If 3=2 gz, Rule (2)=&I, 3, €g@pu@) and %,e g (@), then
2 € @ Q).

6.9. u(x)=3x°F(z, x)

6.9.1. (%)

6.9.2. If

z,
_ F@,t)

30 Fx, t)
Rule (£)=3"T-rule and 3.(2, € Pp(,x (Ao, A;), then I €,y ().

2.5.3. LEMMA 1. Assume
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Zy(x) ++ - Z(x)
Z(X):ul(x) 7;(');)%(11) ,

Rule (Z) is an elimination rule, T, is the major premiss and all of
the free variables of X occur in x. Then Z(t) € p,x (@) provided that
the following conditions are fulfilled.

(a) Vi(Z(t) € Pu, ().

(b) If Rule (X)=3E-rule and

F(a, x)
2, 2y(a, X)
Z(X)zax"F(ociu )(:)){) w(X) ,

I
then VaftaVH(’l:f Il e @F(a,x)(at”, at), then Zz(to, t) S @u(x)(at)>.

Proof. By an induction over the generalized inductive definition
used in the definition of Z,(t) €@, w(@). The details are left for
readers.

2.5.4. THEOREM 1. Ewvery proof figure of S is mormalizable.
Proof. Similarly to 9.1 of [14]. Details are left for readers.

2.5.5. Let T" be the set of the terms and formulae which have
logical symbols at most n. (We adomit the formulae and terms are
not numerical closed.) Let T®™ be the set of formulae and terms
which are obtained by repeated mutual substitutions from the elements
of the set T* (cf. 4.5.6 of [17]). Pf*(X) [IPf" (X)] means that X is a
derivation of S [IS] and X has only terms and formulae of T". Note
that the X is numerical closed, however, formulae and terms of X may
contain eigen variables. For each m» we can define a formula @.i,(@)
of S so that S vu(t){u(t) e T™ — @\"(a;) satisfies the clauses 6.1-6.9
of 2.5.2.2}. (The equality between computability predicates are ex-
pressed by the extensional equality.) Such a formula is define as Sat™
of 4.5.6 of [17], i.e., we firstly define as formula @} (@) which satisfies
the 6.1-6.9 for the elements of T”, and @\, (a) is defined by repeated
mutual substitutions from @2 (a;). Since in the proof of Theorem 1 we
need only the clauses 6.1-6.9 and the definition of computability predi-
cates, we can show that for each natural number n the formula
VE{Pf" () — X is normarizable} is a theorem of S. Namely we have
obtained the following lemma.

LEMMA 2. Vu[SHVE{P{® (Z)— X is normalizable}].

2.6. Normal form
2.6.1. A proof figure is said to be mormal if it has no cut and -
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no semi cut. X, is said to be a normal form of ¥ if X, is normal,
Asp (£,)SAsp (2) and Con (Z,)=Con (T).

LEMMA 3. SH{Pf"(Z) & X is mormalizable — there is a derivation
2, which is a normal form of T and satisfies IPf" (I,)}.

Proof. Let f be the normalization tree of . By the method of
§30 of [16], we can find a Godel number of a normal form of ¥ from
a Godel number of f. Note that if the (Rep) is added as an inference
rule to IS, a primitive recursive function representing a normal form
of X is defined naturally from f (ef. [11]).

2.6.2. THEOREM 2 (Locally Formalized Normal Form Theorem).
Vu[SH{Pf" (Z) — there is a derivation T, which is a normal form of %
and satisfies TP (,)}].

Proof. It is evident from Lemma 2 and Lemma 3.

2.7. We finish this section with two remarks on the normalization
trees.

2.7.1. Remark 1. Although we prove the derived rules by the
infinitary normal forms in §3, we can prove those only by the well-
foundness of the normalization trees. However, such proofs are some-
what complicated and essentially same to the proofs of §3.

2.7.2. Remark 2. Let X, %, --- be a primitive recursive enu-
meration of the proofs of S and f; be the normalization tree of X,.
Since M\ix.f(x) is primitive recursive, we can construct a primitive
recursive tree T={a: Jix(a=1+x & f{x)#0)}. We define a primitive
recursive g so that g(n) is the n-th member of T in the order of natural
numbers. We define < so that a<b—g(a) is smaller than g(b) in the
Kleene-Brouwer ordering. Obviously < is a primitive recursive well-
ordering on the natural numbers. Let a be the order type of <. Then
the following proposition is hold (we adopt the terminologies of [16]).

PrOPOSITION 1. (i) FEach segment of < is a provable well-ordering
of 8. (i) The order types of provable well-orderings of S are less
than a. (iii) FEvery provably recursive function of S is < -recusive.
(iv) @ 1s the supremum of the ranks of the trees {x: fi(x)#0}. (v) For
any F which is a formule of HA and a theorem of S we can find a
segment <- of < so that F is a theorem of HA+TI(<-).

§3. Derived rules

3.1. In this section we prove the derived rules. We use the ex-
plicit definability property (EP) of S repeatedly. It has been known EP
of S cannot be proved in S. Hence some proofs of this section cannot
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be formalized in 8. However, there are several methods avoiding the
uses of EP in the metalevel. Actually we can prove our theorems in
HA.» We will explain the formalizability breifly in Appendix 2.
Note that we do not use the full effect of Theorem 2 in this section.
In the proofs of this section we need only the following version of
Theorem 2, i.e., if ¥ is a proof of S and its formulae belong to T",
then SH{Z has a normal sorm X, which satisfies IPf" (,)}.

For simplicity we restrict our derived rules to be closed. The
restriction is not essential. It is easy to extend our proofs to the
cases with parameters.

3.2. We list here the notations and terminologies which are used
in this section. In a theorem we must define the real numbers in S.
Since S has no principle of selection we define the real numbers as
Cauchy sequences of rational numbers with modulus of convergence.
This way is essentially same approach which is adopted in [4]. Since
the approach of [4] seems to be accepted widely, there will be no
objections to our definition.

3.2.1. Strict positive parts (s.p.p.) of a formula A (cf. [19]).

3.2.1.1. A is a s.p.p. of A.

3.2.1.2. If C—B, Va*Bx, B&C, C&B is a s.p.p. of A, then B is a
s.p.p. of A (¢ is an arbitrary type).

3.2.1.3. {AxBx}t is a s.p.p. of A, then Bt is a s.p.p. of A.

3.2.2. Aec® if and only if A4 has no s.p.p. which is the form
3xBx(B is not a predicate constant) or Xt (X is a bound variable).

3.2.3. NPf (Z)=4.IPf (Z) & X is normal.

NPf” () =g4.: IPf* (X) & X is normal.
NPV (A)= ¢ 3%(Asp (2)=2 & Con (Z)=4 & NPf" ().
Pv*(A)=4.: 3Z(PL"* (Z) & Con (Z)=A & Asp ()= ).
3.2.4. WF, 2°, Y)=qor Flx, ) & V2°(F(x, 2)—y=2).
B(EF) = gor V2" IYUF, 2, ¥).
C(F) = gor {(FF)}U{AF, S™0, S*0): m, n are natural numbers}.

3.2.5. We say F is a function provided F(F) is true. We use
f, g, h, -+ as variables for functions. The formulae which contain the
function variables are considered as abbreviations in the sence of §74 of
[11]. VFA(S), IFA(S), 31FA(S) mean VE(F(F)—A(F)), IFFF) & A(F)),
IF(GF(F)&YG(F R &A(G))—Vry(G(z, y)—F(x, ¥))) respectively. Although
these explanations are not so exact, the readers will find that he can
use the function vaviables and quantifiers with the axiom schema
va 3l y* Az, y)—3fVa Az, fx).

® In suitable formulations the derived rures will be formalizable in the quantifier
free primitive recursive arithmetic. It seems that there is no essential difficulity. How-
ever, the full details of proofs of such theorems will be too long and tedious to be actually
carried out.
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3.2.6. We assume the variables are enumerated in a definite way.
In the rest of the paper F, G are the first and second free variables
of type (0,0) in the enumeration. We often ignore the difference
between free and bound variables, e.g. we use F as follows:
VE(F(F)—A(F)).

3.2.7. Definition of Sat™.

3.2.7.1. Sat™ (X; A) denotes Sat™ (X, TAT) of 4.5.6 of [17].

3.2.7.2. Sat™ (f, g; A(F, G)) denotes Sat™ (\z{3z(z=73(4(2, 1), <z,
Ja))Vz=3(4(2, 2), {x, gx)))}; A(F, G)). Namely Sat™ (f, g; A) means the
interpretation of A, where F, G are interpreted by fr=y, gx=vy re-
spectively. Sat™(f; A(F)) is defined in the same manner.

3.2.8. We identify a finite sequence of natural numbers with a
natural number as 1.3.9 of [17]. The notations of 1.3.9 of [17], e.g.
Ith(z), (%, +*+, Z,), (X); -+, are used in the same manner as in [17].
Note that in the present section we use < in the sence of 1.8.9 of
[17]. It does not mean the ordering of the end of §2.

We introduce two notations for finite sequences as follows:

{seg(x, 0)=< >
seg(x, n+1)=seg(x, n)*(®), ,

{60=< >
0,+,=0,%0.

3.2.9. A treeis a set of finite sequences of natural numbers with
the following conditions:

(1) FxeTvye T(x=y) (existence of the root),

(2) If x is the root of T,2eT and x=<y=z, then yeT (the
tree condition).

We assume that the root of the tree of a proof figure of IS is
<D

3.2.10. X, II, --- are used to denote the proof figures of IS. X,
means the subproof figure of X determined by z, e.g. X ,=3, Z,,=1IT’,
where

T2 - - -
== -

The notations X, %,, --- which are used in the above sections do not
mean this notation. Note that the proof figure X, has the root ( )
even if x is not { ).

By x€X we mean z is an element of the tree of the proof figure
2. Hence VI >eZX).

3.2.11. The notation # means S"0.

3.2.12.

z
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x5
n if Rule (£)=3T and 2X= An
@1(2):} x°Ax
0 otherwise.
x4
0
n if Rule(Z)=V’E and X= Vac{l
Py(Z) = An
0 otherwise.
X
0,0
the index of t*® if Rule (Z)=3""T and s=_4t%"
Py(Z)= 30 A
0 otherwise.

(n if Rule (Z) € {atomic rules, & I}, Con (X) is a quantifier
. free formula without free variables except F' and
PUE)= Sat® (f; Con (Z)) is false.

{0 otherwise,
where n=pi{Sat® (f; Con (Z))}.

Note that Sat®(f; Con (X)), Sat® (f; Con (X)) are decidable in the above
definition by the condition on Con (), and the formulae Con (Z), Con ()
belong to Fm® (cf. 4.5.6 of [17]).

3.2.13. We assume rational numbers are embedded in natural
numbers in a definite way in S.

R denotes the formula with free variable F' such that [F(F) &
vaay{F(x, y) & (y), is an index of a rational number} & Vz3y{F(z, y) &
V2,2, (1), (Fuu(F(z, w) & F(z, us) & d((4)o (o), 2)}], Where d((u,)o,
(4,),, ) means that|p—q|<l/x provided (u,), (u.), are the index of the
rational numbers p, ¢ respectively.

We call an element of R a real number. Namely a real number
is a function f which may be seen as a pair of functions fo, fi such
that Va(fi(z)=(fz),) (1=0,1) and f, is a Cauchy sequence of rational
numbers with the modulus of continuity f,, i.e. Vavy,y,>fi(@)(|f(y,) —
foy)1<1/x). (Cf. p. 60 of [4]). ’

The identity between the real numbers are defined in the usual
way. (See 2.2.1 of [9]). Note that in [9] the real numbers are the
equivalence classes of real number-generators. So our real numbers
are rather real number-generators than real numbers if we agree to
[9]. We sometimes call a real number a real number-generater in
order to refer the results of [9].

3.2.14. Let = be the formula which express the identity on the
real numbers. A formula A is called a function from R to R in S,
when S—Vfe Rig e R(A(f, 9) & Yh € R(A(f,h)— g=h) & Vfghk € R(A(f, 9)
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& f=h & g=k .—. A(h, k)). If a,b are provably real numbers in S, i.e.
S-aeR, S-be R, then functions from [a, b] to R in S are defined in
the same way.

3.2.15. We omit the indication of type of variables, if the types
of the variables are determined by the contexts.

In the contrary to this the omittion of types of rules of quantifiers,
e.g. 3E-rule, VE-rule, means the types of the rules are not specified.
Hence if one says a rule is not 3E-rule, he means the rule does not
belong to the set {3°E: ¢ is an arbitrary type}.

8.2.16. (f0=ge:{ >
0 +1) = gor <O, -+ -, fm) .
(h] F)(@) =Y = gor Mz + f(min, [A(z+f2)>0])~1=y .
J(9)=Y = e f(g(min, [f(g2)>0])~1=y .
1A(9) = aee A2(f(g)=2) .
LR f)=aer YEIY((R] ) (@)= y) .
F<g=er Vx(fxggoc) .
[2](%) = ger (2);

3.2.17. We assume the major premiss of an elimination rule of

IS place at the left end, e.g. t}f—A

3.3. THEOREM 3 (An Extended Church’s Rule). If A belongs to
® and S+ Va(Ax—3AyB(x, ¥)), then S+3AeVa(Ax—3y(T(e, x, y) & B(x, Uy)),
where T and U are the ones of Theorem IX of [10].

Proof. If B is a predicate constant, then we can take ¢ so that
tyB(x, y)= U(pnyT(e, %, y)). Hence without loss of generality we may
assume B is not a predicate constant. Since ® is primitive recursive,
we see S-Ac® by the assumption of the theorem. By Theorem 2
and the assumption of the theorem we can find a natural number =
so that S {3Z(Npf*(2) & Con (2)=Vz(Az—3yB(z, y)) & Asp X)=@}. It
is provable in S that if Ae® and IZ(NPf" (X) & Con (Z)=Ax—1yB(z, ¥))
& Asp ()= ), then evae(Ax—3y(T(e, x, y) & B(x, y))). Thence we obtain
the theorem. We indicate the proof only informally, however, it is
not difficult to see the formalizability of it.

Let Z be a normal proof of Vx(Ax—3yB(x, y)). We assume 3
satisfies Pf” (X). Since X is normal I has the following form:

pX) % ce
> A0—3yB(0, y) A(S0)—3yB(S0, ¥)
Ve(Ax—3yB(x, y))
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AZ

25
S WB@& y)
" Ax—3yB®, y)

From now on Rule(x) and Con(x) denotes Rule(Z,) and Con (Z,)
respectively. We define a subtree of T, for each X: so that

T,={%* 0+2:2¢€ 24 & Vy<z(Rule (%= 6*y): I°E) & vi<lth(z)((2),>0)} .

T, is well-founded, since X is well-founded. Assume meT, and
Rule (m)=3"E-rule. Then the major premiss of the inference is the
form 3yPy, where P is a prime formula and IyPy is closed. We
prove this by a course of values induction on the length of m. Assume
the statement is true for » (n<m). Then abviously the major premiss
2, has no open assumption except AZ and closed prime formulae.
Since X, is normal there is no 3E-rule in the main branch of I,.
Since the top formula of the main branch is AZ, the major premiss
of the last inference of X, must be a s.p.p. of AZ. For AT c®, the
major premiss has the form 3yPy, where P is a prime formula and
Iy Py is closed. This completes the proof of the statement. Assume
m € T,, Rule (m)#3°E. Then we see that Rule (m) is 3°I-rule or A-rule.
Assume it is not true. Then Rule(m) is an elimination except the
1°E-rule. Hence the top formula of the main branch of X, has 3yB(Z, y)
or a formula whose outermost logical symbol is 3 (z#0) as a s.p.p..
However, the top formula is A% and Ax ¢ ®. This is a contradiction.
Hence Rule (m) is 3°I-rule or A-rule.
We define a partial recursive function g so that

9(0, z)={z, 0)

g(a, x)+{pyTr(Con (g(a, x)x0), y)+1) .
g(a+1, )~ if vi<a(Rule (¢(¢, z))=3°E)
0 otherwise,

where Tr(z, y) denotes the recursive predicate which is true if and
only if « is an index of the form 3IyPy and Py is a true closed prime
formula. We define two partial recursive fundtions f and h so that
Jr=py(g(y, x)=0) and hx~¢,(fx). Assume A%, then ¢ is a totally
defined function. We prove this by an induction on a. Firstly ¢(0, ) is
defined. Let g(a, x) be defined and equals to zero. Then 3 <a(Rule (g(3,
%))#3°E). Then g(a+1, n) is defined and zero. Assume g(a, n) is defined
and not zero. Then we see Vi<a(Rule (¢(¢, ))=3°E) is true from the
definition of ¢g. By the above analyses of X the assumptions of
3, (2=g¢g(a, x)) are closed prime formulae or AZ.- By induction on the
length of z, we can prove all of the assumptions of X, (¢=<g¢(a, x)) are
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true. Since IPf" (3,,,.), we see Sat™ (@; Con (g(a, z))) by the partial
reflection principle. Let Con (g(a, )) be 3yPy. Since Sat™ (@; 3yPy),
there is a natural number y, which satisfies Py,. Hence by the defini-
tion of g we conclude g(a+1, x) is defined. Hence g is totally defined.
Note that g(a, x) is a node of X. Since X is well-founded, there is the
least number m (+#0) that satisfies g(m—1, x)¥g(m, ). From the
definition of g, it is evident that g(m, x)=0. Hence we now see if Az,
then fx and hx is defined. Moreover by the analyses of the struc-
ture of X, Rule (g(m, x)) is the 3°I-rule or the A-rule. However, the
A-rule is impossible, for all assumptions of Z%,... are true. Hence
Rule (g(m, x)) is the 3°I-rule. It is evident that Con (g(m, x) *t)):B(aE, ).
Since all assumptions of X, ..; are true, B(Z, hx) is true. Let e be
an index of . Then we get the desired conclusion.

3.4. The following lemma is probable in S. In the proofs of the
remaining theorems we use this lemma in S.

LEMMA 4. If Npf(2), Asp(Z)=@, Con(X)=VfIr'A(f,z) and
IA(F, x) does mot belong to the set {IYUF, m, y):m is a natural
number}, then the followings are true.

(1) X has the following form:

BE)
x5,
ATA(F, x)
FF)—IvA(F, x)
ViazA(f, )

and Asp (Z;,) S {F(F)}.
(2) Let T indicate X, If acll, then a satisfies the following
properties:
Case 1. If vb=a(Rule (II,)=3E), then for all 11, whose b satisfies b=a
are the following forms:
A(F, m, n

T A

AYyA(F, m, y) A2 A(F, x)

(I'E) ,
3w A(F, x) (E)

a’nd ASp (Ha*<n+1>)g@(F)'
Case 2. If 3b=a(Rule (II,)#3'E) and py(Rule (L, )= E)=m, then
Meogia,m ts one of the following forms:

(i) (ii) (iii)
Hseg(a,mhﬁ Hseg(a,m)*ﬁ

A(F, t) SEF)
V2 A(F, ) IwA(F, x) IYAUF, 7, y) '
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In cases (i), (i) Hagam 8 @ minor premiss of an application of I1°E-
rule or o equals to { >, and Asp (gw,md) SEF). In the case (iii)
a#{ > and g, 18 the major premiss of an application of I'E-
rule.

Proof. (1) is evident, since ¥ is normal and Asp (X)=@. Assume
the condition of Case 1 of (2). We prove Case 1 by a course-of-
values induction on the length of b. Let the statement of Case 1 be
true for the finite sequences b'<b. By the induction hypothesis we
see the open assumptions of the major deduction of the application of
IE-rule at b belong to €(F). The top formula of the main branch of
1, must be an open assumption, hence it belongs to C(F). The major
premiss of the last inference of II, must be a s.p.p. of the top formula,
since the main branch has no application of 3E-rule. Hence the possi-
ble top formula is only R(¥) and the possible main branch is only the
sequence F(F), YA(F, m, y) (m is a natural number). Hence II, has
the form of the figure of Case 1. Now we prove Case 2. Assume
the condition of Case 2. By Case 1, ASp (Il izia,m) is a subset of C(F).
Hence if Rule (IL.yw,.») is an elimination, then the top formula of the
main branch of Il belongs to €(F). By similar argument of the
proofs of Case 1 we can see Il qm has the form of (iii). If
Rule (Iseg(q,m)) is DOt an elimination, then Il ., iS obviously one of the
forms (i), (ii). In the cases (i), (i) Mieg,m 1S DOt @ major premiss of
an elimination rule, since I is normal. Hence it must be a minor
premiss of I"E-rule or a=¢ 5. In the case (iii) @ is not { ), since
IyU(F, @, y)#=3IxA(F, ©). Hence it is a premiss of an application of
J'E-rule whose conclusion is 3vA(F, ). Hence it is the major premiss;
otherwise dzA(F, x) equals to IYyA(F, i, ¥).

3.5. THEOREM 4 (Bar Induction Rule). Let H1, H2 and H3 be the
Jformulae
VIn[A(f, n)—Af, n+1)]
VIn[A(f, n)—Q(f(n))]
and
ve[(VyQ(w + §)—Qz] ,
respectively. If SHVfAnA(Sf, n), then SFVQRU[{H1 & H2 & H3}—
vaQ(x)].
Proof. If anA(F, n) is a form 3y*A(F, m, y), then the theorem is
evident. So we may assume the form V/fanA(f, n) satisfies the condition
of Lemma 4. Assume Pv* (VfinA(f, n)). Then S+ NPvH VS anA(f, n)).

It is sufficient to prove VzQx from H1-H3 and NPv" (vfinA(f, n)) in
S. Note that we can prove the condition of Lemma 4 in S.
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Assume NPf" (Z), Asp ()= and Con (Z)=VfInA(f, n). Rule (a),
Con (a), Asp (a), p(a) and p,(a) mean Rule (Z,), Con (Z,), Asp (Z,), o.(Z,)
and @,(Z,) respectively. We define a subtree T of ¥ so that aeT if
and only if ¢ € Z, 1th(a)>2, Vi(2<i<lth(e)-~1—Rule (seg(a, 1))=3°E) and
Rule (a) e {3°E, A-rule, 3°I}. Note that T is well-founded, since X is
well-founded. For each element o of T we assign a finite set &(a) of
pairs of numbers as follows:

&(@) =qe: {{Ps(seg(a, 3)%0), (@);~1): Rule (seg(a, 1))=3E and
2<i<lth(a)=1} .
be*®(a) and fe*G(a) mean the followings respectively:

Vo € &(a)(0)i,= (%)) and Ve &(a)((x),<1th(d)) ,
Vx e @’(a)(f((x)o) = (x)l) .

Note that in the above definitions {(x),, (),>)=x. We show the follow-
ing proposition (P) by the induction over T:

(P)  VeeT(Vye*G@)Qy)) .

We can deduce VzQ(z) from (P), since 0,¢ T and G(0,)=@. Hence our
proof is completed when (P) is proved. It is sufficent to prove that
Vi € T(Vi(xx Te T—E(x *f))ﬁE(w)), where E(x) means Vy €*&(x)Q(y). We
prove this proposition by cases.

Case 1. Rule(a)=3I. Then by Lemma 4 and the definition of T

Asp (Z,4) S{FEF)} U{AF, 7y, 1)z (nyy 1) € &(a)}
and
Con (a+0)=A(F, p,(a)) .

If fe*®(a) and Be Asp (¢+0), then Sat™ (f; B). Hence by the partial
reflection principles if fe*®(a), then Sat™ (f; Con (a+0)). We now see
if fe*®(a), then A(f, p,(a)). Assume be*G(a). We show Q(b) from
this.

Subcase 1. @,(a)<Ith(b). Assume bec*®(a). Then A([], p.(a)),
since [b]e*®(a). By H1 and the assumption of Subcase 1 we see
A([b], 1th(d)). By H2, Q(b) is true.

Subcase 2. ¢, (@)>1th(b). Similarly to Subcase 1 we can see that
if be*®(a), then va(lth(z)=¢p,(a)—1th(d)—Q®b+2x)). By an induction on
@,(a)—1th(d) with use of H3, we can conclude Q(b).

Case 2. Rule(a)= A-rule. Then by the same argument as Case 1
if fe*®(a), then Sat™ (f; A). Hence there is no f such that fe*®(a).
If be*®(a), then [b] €*®(a). Hence there is no b such that b e*®(a).
Namely E(a) is vacuously true. So the desired proposition is valid.

Case 3. Rule(a)=3E. Then by Lemma 4 and the definition of



94 S. HAvYASHI

T we see the major premlss Con (a*O) is the formula 3yA(F, @2((7,*0), Y,
Con (a)=3nA(F, n), Asp(ax(i+1)) C{FF), UF, p(ax0), D)} U{AF, 7, 7,):
{n, n,y € &a)} and ax{i+1>eT. Since Vi(ax{t+1)e T), it is sufficent
to prove Vb €*®(a)Q(b) from Vivb €*&(a = (t+1>)Q(b). We prove this by
two subecases.

Subecase 1. Iz ®&(a)(x),= <p2(a*0)) Assume zc®(a) and (x),=
%(a*()). Then &(ax* (%), +1))=&(a). Since Vivde*&(ax(i+1))Q(b),
we conclude Vb e*®(a)Q(b).

Subcase 2. Vo e ®a)(x),~pi(ax0)). Assume be*®(a).

Subcase 2a. lth(b)>q)2(a*6) Then b e*®(a * {(b)g, ..y +1)). Since
Vivb e*® e(b* (t+1))Q(b), we see Vb e*S(a)Q(b).

Subcase 2b. lth(b)ggvz(a*O). Then every ¢ whose length is
Po(a* 6)+ 1—1th(d), satisfies b+ c €*&(a* {(b*¢)py,by+1)). By the assump-
tion Vive e*®(a*{1+1>)Q(x), we see Q(b=xc) for all ¢ whose length is
@y(@+0)+1—1th(b). By an induction on @,(a*0)+1—1th(b) with uses of
H3, we can conclude Q(b).

The possible cases are only above three. Hence we now complete
the proof.

3.6. COROLLARY 1 (Transfinite Induction Rule). Let 0 be a term

of type (0,0), WF(p) and I(0) be the formulas
vian7 (f(n)pf(n+1))
and
vQ[Va{Yy(roy—Qy)—Qu}—VrQu] ,

respectively. If S—WF(p), then S—I1(p).

Proof. We follow the proof of Theorem 5A of [7]. Let A(f, n)
be the following formula:

7 (Ym<n-=1(fmpf(m+1)) .

The S+—WF(o) implies S+V/fanA(f,n). By Theorem 4 we see

S-VQO[{HL & H2 & H3}—vzQx]. Let Qu be the formula (x=0, &

VyXy)v(xvéﬁo & (Bx—VY(@)ims 09— XY))), where X is a free variable
of type (0) and Bz is the formula Vm <Ith(x)~1((x),0(%)ns). It is easy
to verify S—{H1 & H2}. Hence S+ [Vx{(VyQ(zx «9))—Qx}—VxQx]. This
implies SHI(p).

3.7. LEMMA 5. If SHVfIX"9A(f, X), then there is a mnatural
number_n such that S=IRVI[I1(f) & h(f) is an index of a term which

belongs to T™ and has type (0, 0) & A(f, MeySat™ (f; {R(F}Z, 7)), where
{h(f)} means the term whose index is h(f).

Proof. Assume Pv*(VfaXA(f, X)). Then S+—NPv* (VfIXA(S, X)).
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The following considerations are formalizable in S.

Since NPv" (Vf1XA(f, X)), we find a derivation T so that NPf* (3),
Asp (2)=@ and Con (X)=VfiIXA(f, X). Rule (a), Con (a), --- are defined
as in 3.5. We can define a partial recursive function ¥ so that

Ps(b)+1 if Rule (b)=131
x(b, %)= {x(b * {@)p ety +1), @) if Rule (b)=3E & lth(z)>p,(b* 6)
0 otherwise .

It is easy to verify yx is totally defined by the well-foundness of X.
Let 2 be the function %(<0, 0, x). Now we show & is the desired
as function.

We define a primitive recursive functional (in the sence of [10])
as follows:

(0, f)=<0, 0) A
41, F)= y(n, ) {f@alypr(n, f)*0))+1) if Rulf? (¥(n, f))=3E
0 otherwise .

By the well-foundness of X, we see Vfan(y(n, f)=0). Let a be the
number Y (uy(y(y, f/)=0)=1, f). Rule(a) is 3T or A-rule, and
Asp (a+0)S{F(F) U{A(F, @, fn): m is a natural number]. Hence if
BeAsp(a=0), then Sat™ (f; B). Hence by the partial reflection
principle we see Sat™ (f; Con (a*ﬁ)). Hence Rule (@) is 3“I-rule and
Con (a*f))zA(F, t®), By the definition of h, A(f) is an index of t.
Hence we see Sat™ (f, nxy Sat™ (f; {¢}(Z, 9)); A(F, G)). By 4.5.7 of [17]
we conclude A(f, Mey Sat™ (f; {(h(f)}z, ¥))).

3.8. THEOREM 5 (Continuity Rule). If S+VfigA(f, g), then S+3h{h
18 primitive recursive & YI(1(h|f) & A(S, (b))}

Proof. If S—VfigA(f,n), then by Lemma 5 and EP we see
there is a formula B(F, G) such that S—{vf3lgB(f, 9) & Vfg(B(f, g)—
A(f, 9))}. By Theorem 2 there is a natural number = such that
SE=NPv” (Vav /Iyl s(z, f, ¥)), where T'y(x, F, y) means IG(FG) & B(F, G)
& G(x, y)). The following proof is formalizable in S.

Assume NPf" (Z), Asp (Z)=© and Con (2)=VaVSfIyl,(z, f, ¥). The
functional ) is defined as in the proof of Lemma 5 except that ¢, is
replaced by o,. Let h’ be the function ¥({(x), 0, 0>, tl(z)). Then by a
similar proof to Lemma 5 we see Vf(I(h'|f) & Valy(z, f, (B'| f)(x))).
Namely Vf(1(h'|f) & Vaag(B(f, 9) & g(x)=(h'| f)(x))). Since VfalgB(f, g),
we see Vfg(B(f, 9)=g=(h'| )). Hence we see Vf(I(h'|f) & A(f, (W|1))),
since Vfg(B(f, 9)—A(f, g)). Since b’ is a recursive function, there is a
number e such that h'(x)=U(uyT(e, x, y)). Let R(xz,y) be T(e, z, y).
We define a primitive recursive function % so that
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(U(py <lth(x)@z=2(R(z, y) & Uy+0)))
h(z)= if y<lth(zx)az=x(R(z, ¥) & Uy+0)

0 otherwise .
Since (B'(2)>0 & x=y)—h'(x)=h'(y), we see V(I(h|f) & A(S, (h|S))).

3.9. THEOREM 6 (Fan Rule). If S—VfanA(f, n), then S—If[f is
primitive recursive & Vg{1f(9) & Yh<ganvk(h(f(9)=k(f(g))—A(k, n))}].

Proof. By Theorem 5 it is sufficent to prove that if S+ VfInA(f, n),
then S+ Vgam{VS<ganvk(G(m)=k(m)—A(k, n))}. Without loss of gener-
ality we may assume VfinA(f, n) satisfies the condition of Lemma 4.
Let NPv®(vfanA(f, n)) be provable in S. The following proof is
formalizable in S. ‘

Assume NPf* (X), Asp )= and Con (Z)=VfInA(f, n). Rule(a), ---
are the same as in the proof of Theorem 4. Note that the assumption
is the same as in the proof of Theorem 4. So we use the same def-
initions as in the proof of Theorem 4.

For each function g we assign a tree T, as follows:

T,={a:aecT & Vi2<i<lth(a)=1—(a),~1<g(p,(seg(a, 1) * f))))} .
Let P(a, m) be the following predicate:
vyyeT, & axy .—. Yee&y)(x),<m)) .

We prove Ve T,AmP(x, m) by the induction of T,. Assume acT,
and Va(axz € T,—~ImP(ax%, m)). We must show P(a, m) from this.

Case 1. Rule (a)e{A-rule, I}, If a=<b and beT,, then b is a
itself. Hence we may take max {(x),: x € &(a)} as m.

Case 2. Rule(a)=3E. IfbeT, and a=<b, then ()i <g(@ax0)).
From the induction hypothesis for each ¢ which satisfies isg(%(a*@))
we can find m, so that P(axt,m,). We take max {m,.:i_<_g(q)2(a*f)))}
as.m.

We define a functional +» by the same definition as in the case
Lemma 5. Then Vfan(y(n, f)=0). Let 6(f) be the following number:

W(py(i(y, )=0)=1, 1) .

Then Asp (8(f)) S{FEF)} U{U(F, @y, 71): {0y Ny € SO(f)) & f(n)=mn,} and
Con (6(f)) e {A(F, m): » is a natural number}.

Fix a function g. Let m be a number which satisfies P(éz, m).
Since f)z is the root of the tree T,, we see Vae T, ,Vx € ®&(a)(x),<m).
Assume f<g. Then 6(f)eT,. Let Con (d(f)) be the formula A(F, #@,).
Assume f(m)=Fk(m). If B is an element of Asp (6(f)), then Sat™ (k; B).
Hence by the partial reflection principle and 4.5.7 of [17] we see
A(k, n,). Namely we have shown that V/<gan(h(m)=k(m)—Ak, n)).
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3.10. COROLLARY 2. (i) IfS{A is a function from [0, 1] to R},
then S{A 1is uniformly continuous on [0, 1]}, (i) If SH{A4 is a
Sunction from R to R}, them Sr{A is continuous on R}.

Proof. (i) By a formalization of Theorem 1 of 3.4.3 of [9] we
can see that there is a formula S such that S—{S is a finitary spread
and S consides with the interval [0, 1]}. In this formalization we must
show that for every real number there is a canonical number-generater
which equals to the real number. In [9] this is proved by the use of
the axiom of choice. However, we need not the axiom of choice,
because in our definition real numbers have their modulus of con-
vergence. Note that a fan is represented by a function (see [18]).
There is a formula I' such that S—{vfalgT'(f, ¢9) & VigT(f, 9)—gelS) &
Vf(fe8)—T(f, f)}, where ge S means ¢ is an element of the spread S
(see 2.1 of [18]). By a formalization of the first half of the proof of
Theorem 1 of 3.4.5 of [9] we see S VaVfe SanB(z, f, n), where B is
the formula 3y € R{A(r(f), y¥) & there is a canonical number-generater
{7.27"} which equals to y and 7,=n} and r(f) denotes the real number
which is represented in S by f. Thence S vV andg(Twef(x+1), g) &
B(f(0), g, n)). By the fan rule we see SE=VvfamVg<fanvh{g(m)=h(m)—
k(T vah(x+1), k) & BH(0), k, n))}. It is easy to see SVzidfvge
S({x)+g<f)), where (x)x*g is the function which satisfies x> = g)(0)=2x
and ({xp+g)(n+1)=g(n). Hence we can see S VzamVf e Sanvg e S(f(m)=
g(m)—B(x, g, n)). Hence by the same way as the second half of Theorem
1 of 8.4.5 of [9] we see S—{A is uniformly continuous on [0, 1]}.

(ii) Assume S+{A4 is a function R to R}. Then S+ Vz{A(p(f, x), 9)
represents a function from [0, 1] to R}, where p(f, #) means the addi-
tion of the real number f and the rational number which is represented
by x. Similarly to (i) we see Si-Va{A(p(f, x), 9) is uniformly continu-
ous on [0, 1]}. Since S+-Vf e Rixdg e [1/3, 2/3] (f=n(g, x)), we see SH{A
is continuous on R}.

3.11. LEMMA 6. If SFVf7 73nazT(e, fn, f(Sn), 2), then
S+VvfanazT(e, fn, f(Sn), 2) ,
where T is the comstant corresponding to the Kleene’s T-predicate.

Proof. Note that Vf7 73nzT(e, fn, f(Sn), z) is an abbrebiation. Its
original form is equivalent to the following form:

VEF(F)—(Qryy2Z(F, %, Y, ¥ 2))— A)—A)) ,
where I(F, @, y,, ¥, 2) denotes (F(x, y,) & F(Sx, v,) & T(€, 4., ¥,, z). For
simplicity we abbreviate the above form to &1. Assume Pv® (&1). By

Theorem 2 we see S-NPv" (&1). The following proof can be formalized
in 8.
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Assume NPf* (Z), Asp (Z)= and Con (2)=©1. Let &2 denote the
form ((Azyy2(F, x, ¥, Yo 2))—A)—A. X has the following form:

JUF)—&2
VF((F)—82)

Let II be the Z;. Rule(a), Con(a), --- mean Rule (II,), Con (II,), - -+
respectively. Let &3 be (xy,4.23(F, x, ¥, Y 2))— A.
Fix a function f. We define sets of formulae as follows:

B={F(F)}U{U(F, @, b): fa=b} U (S8},
D,={A: A is a numerical closed subformulae of Ixyy,2Z(F, z,
Y, Ysy 2) and A is not quantifier free},
D,={false closed prime formulae}U{A: A is F(@, b) or F(@, b)&
F(Sa@,¢), and A is false if XaxyF(x,y) is interpreted by

rey(fr=y)}, ~
={(F(a, b)&F(Sa, ¢))&T(e, b, ¢, z): a, b, ¢, z are natural num-

bers}.
p=U D.
We define function g as follows:
g0=_ >
g1 {f(p(gn +0))+1) if (1.1)
gn+0 it (1.2)
gn+0 it (2)& (3.1)
1 = A
g tl)=y .4 it (2)&3.3)
gnx={p,(gn, I)) if (2)&(8.2)&(4)
an otherwise ,

where (1.1)-(4) indicate the following conditions:
(1.1) Rule (gn)=3'E, (1.2) Rule (n)=—1, (2) Asp (gn)> &3,
(8.1) Rule (gn) € { A-rule, 3T}, (8.2) Rule (gn) € {atomic rules, &I},
(3.3) Rule (gn)=—E, (4) Con(gn)e D,UD,, and if Con(gn)e D, and
zeyF(z, y) is interpreted by aey(fx=y) then Con (gn) is false.

By induction on n we can easily see that if n is greater then zero,
then gn e II, Asp (gn) B and Con (gn) € D, e.g., if Rule (gn)=—E, then

I1,, is one of the following forms
A(F, @, b)
Vo(F(@, 2)—b=2)  II,,; 0,5
F(a@, e)—~b=¢ F(a,?c) S8 320y, y2TUF, %, Yy 5 Yoy 2)
b=¢ ’ A ’
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by the induction hypothesis we see g(n+1), i.e. II,,s, satisfies the con-
dition. By the well-foundness of II, we see there is a natural number
n such that gn=g(n+1). Set n,=pn(gn=g(n+1)). Note that n,>0.

We now show InzT(e, fn, f(n+1),z). Assume gn, does not satisfy
(2). Then by Asp(gn,)CB we see all of the open assumptions of
I1,,, are true. Hence Con (gn,) is true. Hence InzT(e, fn, f(n+1), 2).
Assume gn, satisfies (2). Then by the definition of g and #, we see
Con (gn,) € D, and Con (¢gn,) is true provided xyF(z, y) is interpreted
by Mey(fr=y). Hence we see InzT(e, fn, f(n+1), 2).

3.12. THEOREM 7. If SrVay(oyV 7zoy) and S°+—WF(p), then
S+1I(p), where 8° is the system obtained from S by adjoining the axiom
VX(77X .—. X), and WF(0) and 1(0) have the same meaning as in
3.6.

Proof. Note that (xoyV 7 2oy) is the formula 32(z=0—20y .&. 2
0—7xpy). By the Church’s rule and the assumption of the theorem,
we see S+ 3eVay{I2T(e, x, y, 2)&I2(T(e, 2, y, 2)&(U(2)=0—7 2p0y)&(U(z) =
0—wpy))}. By the formalized version of Theorem IV of §57 of [10],
we see Sr3evay(IzT(e, z, y, 2)=7x0y). By EP there is a natural
number ¢ such that SrVay(3z21(e, z, y, 2)=720y). By the assumption
of the theorem, we see S°+VfinzT(e, fn, f(n+1),2). By the transla-
tion of 1.10.2 of [17], we see S+Vf7 7InzT(e, fn, f(n+1), 2).» By the
above lemma and the transfinite induction rule we see SI(p).

3.13. COROLLARY 3 (Markov’s Rule of Type 1). If S Vrfg(A(f, g)V
7A(f, 9) and S°—VfIgA(f, g), then S—VfAgA(f, g), where S° has the
same meaning as in Theorem 1.

Proof. 1In this proof j, j,, j, are the functions of (B) of 1.3.9‘ of
[17]. Since S+ Vfgan{(n=0—A(f, 9)&n=0—7 A(f, g))}, we see
SEarvfg{lh(\a . j(fx, ge)&(h(\e . j(fx, gx))=0=A(f, ))}

by the Continuity Rule. By EP there is a formla &(z’, °) such that
SH[FM&Vfo{1 (e . (fz, gx)&(h(Ne .j(fr, gx))=0=A(f, 9))}]. Let Pa
be the formula 3z <Ith(a){lth(a)>1th(z) & Vi <lth(z)(a),= 7.((2),)) & h(z)=1
& vy<x(h(y)=0)}. Since S°-VfIgA(S, g), we see S’V InP(f(n)). Let
20y be the formula (x<y & 732<yPz). Then we see

8- VfIn7 (fapfin+1))

(cf. Theorem 5C of [7]). Since S+ Vay(xoy\ 7xpy), we deduce
SEVfin7 (frof(n+1)) by the above theorem. Since

® It is an easy exercise to verify the translation of vfinzT(e, fn, Sfn+1), 2) is equiv-
alent to Vf7 7anzT(, fn, f(n+1), 2) in S.
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S Vfan[ 7 frof(n+1) .—. 32< f(n+ 1)z <1th(z){lth(z) >1th(x)
& vi<lth(@)(fi=j.((x),) & h(x)=1 & Vy<z(h(y)=0)}1 ,

we see Sk VfAz{vi<lth(x)(5,((x),)=/1) & h(x)=1 & Vy<z(h(y)=0)} . This
implies S Vf3zA(f, [x]). Finally we conclude S+ VfagA(f, g).

Appendix 1

Let S¢ be the higher order intuitionistic arithmetic with the axioms
of extensionality. Our derived rules hold also for S°. The proofs
of the present paper can be applied to S® without modifications except
treatments on the class ® and the axioms of extensionality.

In the proof of Theorem 3 we used the property of @ that if
Ac®, then S-Ac®. This is evident if the all of s.p.p. of A are
finite. The finiteness of s.p.p.s is trivially proved for S, however, it
is not so for S*. However, the finiteness of s.p.p.s can be proved by
the method of 2.4 of [15].” ~

If the axioms of extentionality are assumptions of the normal proofs,
then the analyses of the proofs do not work as in §3. We eliminate
the axioms of extensionality by the usual relativization (see [5]). Note
that the relativation of the second order variables are not necessary,
since we have the rule of equality. If a proof of S* is relativized,
the additional assumptions, which have the form EXT (X*) (see [5]),
may occur. However, EXT (X*) has no s.p.p. which is the form A’ Ax
or Xt (X is a bound variable). Hence the method of the section 3
holds good for the relativized proof figures (cf. [6]). Since a formula
is equivalent to its relativized form under the axioms of extensionality,
we can see the theorems of §3 hold for S¢.

Let TI(e) be the formula

vayazT(e, x, ¥, 2) & TIay(U(pzT(e, =, ¥, 2))=0)) .

Then it is easy to see S+TI(e)3X(IPfi(Z) & Asp (2)=g & Con (X)=
TI(¢)). Hence if S+TI(e)A, then In(S+TI(e)-NPv" (TI(e))) by the
footnote 2. Hence we can extend the results of the present paper to
S-+TI(e), S°+TI(e).

Remark. TI(e) may be a false proposition.

Appendix 2.

In this appendix we present a sketch of a proof of the provability
of Theorem 5 in HA. It is not so difficult to prove the other derived

® Schiitte used the Konig’s lemma, however, the use is not essential. Actually the
finiteness of the subexpressions can be proved in HA provided a formula is called regular,
if and only if all of all of the subexpressions of the formula are finite.
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rules of the present paper in HA by similar ways, though some of
them need more refined treatments.”

It is not so difficult to see that Theorem 2 is provable in HA.
Hence we can see

(1) HARVn{S-VAPV" (A)—NPv” (4))},

(ii) HARVn{SHVAPV" (JzdAx)—3t NPv® (AL))}.
By the formalized version of 4.5.8 of [17] and somewhat refined proofs
of Lemma 5 and Theorem 5, we can see

(ili) HA~VRA[SH{NPv® (VfIXVA(f, X))——»EIth(Yh(f) & h(f) is an
index of a term belonging to T™ and has type (0, 0)

&A(S, Moy Sat™(f; (h(HWE, I,

(iv) HA-VnVA[S-VB{NPv (VaVfayl 4(x,f,y)&Sat™ (2;V,31 gB(f,9)
& BC A).—. 3n(h is primitive recursive & Vf(I(h|f) & Sat™ (f, (R S);
A(F, G,
where BC A denotes Vfg(B(f, 9)—A(f, g)).

We now prove Theorem 5 in HA by the following steps.
1. HAH{(S-VfIgA(f, 9))—@n(S+—Pv (VS IgA(f, 9))))}.
2. By (i) and (iii), we see

HA-VA[SHVfIgA(S, 9)—an{S+3anvf(I1A(f) & (h(f)
is an index of term belonging to 7' and has type (0, 0))

& A(S, My Sat™ (£ (R(OIE, 1)) & FOvay Sat™ (f; {h(f)}, »)))] -

3. Bi(f, g) is the formula (1h(f) & Vay(g(x)=y=Sat™ (f; {h(f)}z, ¥))).
HARVA{(SHVfIgA(f, 9))—an(S+3n(VSA! gBi(f, 9) & Bi S A))}.
4. HA-VA[(SHVSfIgA(f, 9))—In{S+Pv" (A(Y2V S IYTpn(z, f, ) &
Vfa19Bi(f, 9) & By S A)}.
5. By (ii) we see
HAVA[(S+VfAgA(f, 9))—An{S+IBNPv* (VaV Iyl ,(, f, ¥)
& vfalgB(f,9) & BCA))}] .

6. By formalizing 4.5.8 and 4.5.9 of [17] we see
HARVA[S-VfIgA(S, 9))—an{S+IBNPv" (VavfIyl ,(z, £, N &
Sat™ (@; VfalgB(f, g) & BCA))}] .

7. By (iv) and the formalized partial reflection principles we see
HARVA[(SHVf3IgA(f, 9))—8+3h{h is primitive recursive & Vf(1(h|f) &
AL, (RIOINY.

This is the desired conclusion.

® For example we use the locally formalized EP for S, i.e. HARVR{S-VA(PV® (3wAz) >
3t Pv® (Az))}. This can be proved by formalizing Lemma 2 in HA.
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Appendix 3.

The purpose of this appendix to correct a slight error in the proof
of [17] for the partial reflection principles. The point to be corrected
is the proof of 4.5.8. If we acceede the method in [17], we obtain only a
weak form of 4.5.8, e.g. VuVA(S+ Sat™ (X,IveAx1)=Vzx Sat™™ (X,[ Ax)).
However, we need the strong form, e.g.

Vn(S—VYA e Fm™ (Sat™ (X, "vaAxT)=vx Sat™ (X, TAZ))) .

In order to prove the strong form we introduce the concept of forma-
tions of a formula A (AeFm™). A formation of A (AeFm™) is a
sequence {{ay, by, Co topy +**y {Amy Oy Cmy twyy such that t,=A, ¢, eT™
and if @,,, <%, then ¢, is obtained by the substitution of ¢,  for the
variables whose indexes are equal to b,., in the term that belongs to
Fm” and has the index ¢;.,. Namely a formation represents the way
of interated substitutions by which a formula A is constructed from
the elements of T*. We use f, g, --- as variables for formations.
Naturally we can define a relation Sat{” (X, TA7) which means the
results of the interated substitutions of Sat® according to the way of
the substitutions represented by f. Then we can prove the following
form of 4.5.8:

LEMMA A. In S we can prove

(i) VEVABeFm™iaghvX(Sati™ (X, FAeBl)=Saty" (X, FTAT)o
Sat® (X, TB1)) for o=—, &, V.

(ii) VEfVvAeFm™ 3gvX(Sati” (X, FQu,A(v,) )=
(Qv) Saty” (X, TA(,))) for @=V,, 3.

(iii) Similar to (ii) for the second order quantifiers.

By Lemma A we can prove the following lemma:

LEMMA B. In S we can prove VXVAVEg (if f, g are formations of
A, then Sat™ (X, TAT)=Sat™ (X, TBM)).

Since Sat™ (X, TAT) is equivalent to 3f Sat{” (X, TAl) in S, we
obtain the strong form of 4.5.8 by Lemma A and Lemma B.
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Added in proof (August 5, 1977). The auther wishes to correct
errors of his paper [8].
(1) p. 110, footnote 1. “the Bar Induction Rule” is changed to

“the Rule of Bar Recursion of type 0 and 1”.

(2) p.110. In the definitions of the symbols, “1A9) = ey (flg) =)

is changed to “1f(9)=q.3y(f(g)=y)".

(3) p. 111. In the second to last line, “(cf. [4]) is changed to

“(cf. [3])".



