Abelian p-groups of not limit length

by

L. Fuchs and L. Salce*

(Received January 11, 1977)

In this note we consider additively written abelian p-groups. p-groups A of lengths $\lambda+n$ (where λ is a limit ordinal and n a positive integer) are best understood if they are considered as elongations of p^n -bounded groups p^2A by p-groups A/p^2A of limit lengths (we use the term "elongation" in the sense of Nunke [8]). Our principal aim is to point out that these groups can also be viewed from the opposite angle, viz. as quotients of p-groups T of lengths λ modulo p^n -bounded subgroups U (see Theorem 1). In several important cases, T can be chosen from the same class of p-groups to which A/p^2A belongs. Moreover, we show that it is always possible to find $A \cong T/U$ such that U is dense in $T[p^n]$ in the generalized p-adic topology; here $T[p^n] = \{a \in T \mid p^n a = 0\}$.

As an application of our results, we prove a theorem on totally injective p-groups of lengths $\omega + n$. We show that they are uniquely determined, up to isomorphism, by their p^* -socles regarded as abelian groups furnished with the height function as valuation (Theorem 5). This result generalizes a theorem by Richman [9].

We follow the notations and terminology of [3]. In particular, $p^{\sigma}A$ is defined for all ordinals σ inductively by $p^{\sigma+1}A = \{pa \mid a \in p^{\sigma}A\}$ and $p^{\sigma}A = \bigcap_{\sigma < \rho} p^{\sigma}A$ for limit ordinals ρ . The smallest λ with $p^{\lambda+1}A = p^{\lambda}A$ is the length of A; $p^{\lambda}A = 0$ whenever A is reduced.

- 1. Let λ be a limit ordinal, and \mathcal{C}_{λ} a non-empty class of reduced p-groups. It will be called a p^{λ} -class if it satisfies
 - P1. $X \in \mathscr{C}_{\lambda}$ and $Y \cong X$ imply $Y \in \mathscr{C}_{\lambda}$;
 - P2. $p^{\lambda}X=0$ for all $X \in \mathcal{C}_{\lambda}$;
 - P3. $X \oplus Y \in \mathcal{C}_{\lambda}$ if and only if $X, Y \in \mathcal{C}_{\lambda}$;
 - P4. $X \in \mathcal{C}_{\lambda}$ if and only if $pX \in \mathcal{C}_{\lambda}$.

We call \mathcal{C}_{λ} a full p^{λ} -class if, in addition, the following holds:

P5. if $p^{\lambda}X=0$ and if $X/P \in \mathcal{C}_{\lambda}$ for some $P \leq X[p]$, then $X \in \mathcal{C}_{\lambda}$. Examples for such classes are abundant.

^{*} This paper was written while the first author held a National Science Foundation grant, number 66072, and the second author held a N.A.T.O. fellowship from Italian C.N.R. at Tulane University, New Orleans.

- E1. The class of all reduced p-groups of lengths $\leq \lambda$ is a full p^{λ} -class.
- E2. The class of direct sums of cyclic p-groups is a p^{ω} -class. It is not a full p^{ω} -class, since a proper $p^{\omega+1}$ -projective separable p-group is not in this class, though it contains a subsocle P satisfying the hypotheses of P5 (see [5]).
- E3. The class of torsion-complete p-groups is a full p^{ω} -class. Note that if X, P are as in P5, then from the exact sequence

$$0 \longrightarrow \operatorname{Ext} \left(\mathbf{Z}(p^{\infty}), \ P \right) \stackrel{\alpha}{\longrightarrow} \operatorname{Ext} \left(\mathbf{Z}(p^{\infty}), \ X \right) \longrightarrow \operatorname{Ext} \left(\mathbf{Z}(p^{\infty}), \ X/P \right) \longrightarrow 0$$

we obtain p^{ω} Ext $(\mathbf{Z}(p^{\infty}), X) \leq \text{Im } \alpha$ (since X/P torsion-complete means p^{ω} Ext $(\mathbf{Z}(p^{\infty}), X/P)$ vanishes [3, 68.5]). In this inclusion, the smaller group is torsion-free (because of $p^{\omega}X=0$ and [3, 56.3]), while the second group is p-bounded. Thus the first group vanishes, and X is torsion-complete.

E4. The class \mathscr{D}_{λ} of p^{λ} -high injective (reduced) p-groups (Megibben [7] defined them as p-groups of lengths $\leq \lambda$ which are direct summands of every p-group containing them as p^{λ} -high subgroups; for an alternative characterization, see Dubois [2]) is a full p^{λ} -class. This follows easily from the fact that a p-group A is p^{λ} -high injective if and only if p^{λ} Ext $(\mathbf{Z}(p^{\infty}), A) = 0$.

E5. The smallest (full) p^{ω} -class is readily seen to coincide with the class of all bounded p-groups. In fact, by P3, 0 is contained in every class, and by P4 the same holds for all bounded p-groups.

Let \mathcal{C}_{λ} be a p^{λ} -class and n a positive integer. We define a new class to consist of "elongations" of p^{n} -bounded groups by groups in \mathcal{C}_{λ} , i.e.

$$\mathscr{C}_{\lambda}(n) = \{A \mid p^{\lambda+n}A = 0 \text{ and } A/p^{\lambda}A \in \mathscr{C}_{\lambda}\}$$
.

E6. In view of Proposition 1 in [7], a p-group A of length $\leq \lambda + n$ is $p^{\lambda+n}$ -high injective exactly if $A/p^{\lambda}A$ is p^{λ} -high injective. Hence $\mathscr{D}_{\lambda}(n)$ is the class of $p^{\lambda+n}$ -high injectives.

Our next objective is to show that for full p^2 -classes \mathscr{C}_{λ} , the class $\mathscr{C}_{\lambda}(n)$ is the same as the class of all quotients of groups in \mathscr{C}_{λ} modulo p^* -bounded subgrops. We phrase our theorem in a slightly more general form, so as to include the so-called Switch Lemma [1] as a special case.

THEOREM 1. For a reduced p-group A, integer n and a p^{λ} -class \mathcal{C}_{λ} , the following conditions are equivalent;

- (a) there is a subgroup $P \leq A[p^n]$ such that $A/P \in \mathcal{C}_{\lambda}$;
- (b) there exist a group $T \in \mathscr{C}_{\lambda}$ and a subgroup U of $T[p^n]$ such that $T/U \cong A$.

Both are consequences of the following condition:

(c) $A \in \mathcal{C}_{\lambda}(n)$.

All three conditions are equivalent for a full p^{λ} -class \mathscr{C}_{λ} .

(a) \Rightarrow (b). There is no difficulty in constructing an exact sequence $0 \rightarrow X[p^n] \rightarrow X \xrightarrow{\pi} A/P \rightarrow 0$ where π is multiplication by p^n , i.e. $\pi(x) = p^n x$ $(x \in X)$. By induction on n, P4 implies $X \in \mathscr{C}_{\lambda}$. Starting with the bottom row and the last column, we can get a commutative diagram

$$X[p^n] = X[p^n]$$
 $X[p^n] = X[p^n]$ $X[p^n] = X[p^n]$

The map $\operatorname{Ext}(A/P, P) \xrightarrow{\pi^*} \operatorname{Ext}(X, P)$ induced by π is likewise a multiplication by p^* [3, 52.1]. From $E_1 = \pi^*(E_2) = p^*E_2$ and $p^* \operatorname{Ext}(A/P, P) = 0$ we infer that E_1 is splitting. Thus $P, X \in \mathscr{C}_{\lambda}$ implies $T \in \mathscr{C}_{\lambda}$, proving (b). (U is the image of $X[p^*]$ in T.)

(b) \Rightarrow (a). In view of P4, $T \in \mathcal{C}_{\lambda}$ implies $T/T[p^n] \in \mathcal{C}_{\lambda}$. The choice $T = T[p^n]/U$ proves the assertion.

(c) \Rightarrow (a) is clear, since $p^{\lambda}A \leq A[p^n]$ whenever $p^{\lambda+n}A = 0$.

Assuming P5, (a) \Rightarrow (c). $A/P \in \mathcal{C}_{\lambda}$ implies $p^{\lambda}(A/P) = 0$, thus $p^{\lambda}A \leq P$, and $P/p^{\lambda}A \leq (A/p^{\lambda}A)[p^n]$. By induction on n, P5 leads to (c).

Consequently, the p-groups of lengths $\lambda+n$ are quotients of p-groups of lengths λ mod p^n -bounded subgroups.

2. In order to improve on theorem 1, we want to show that U can be chosen in some special way. We consider a topology which is essentially a generalized p-adic topology.

Given the limit ordinal λ , consider the linear topology of A where $\{p^{\sigma}A\}_{\sigma<\lambda}$ is a base of neighborhoods of 0. We follow Megibben [7] in referring to this topology as the λ -topology of A.

If T is a p-group of limit length λ , the λ -topology of T induces a topology on $T[p^n]$. When we say a subgroup of $T[p^n]$ is *closed* or *dense*, we always refer to this induced topology.

The following lemma is easily verified.

LEMMA 1. If T is a p-group and $U \le T[p^n]$, then for every $a \in T$, $h_{T/U}(a+U) \le \sup_{u \in T} [h_T(a+u)+1] + n - 1$

where the index indicates the group where the heights are computed.

First, assume $U \leq T[p]$. We induct on $\rho = h_{T/U}(a+U)$. If $\rho = 0$,

there is nothing to prove. Let $\rho \ge 1$, and observe that by the definition of height and induction hypothesis,

$$\rho = \sup_{pb \in a+U} \left[h_{T/U}(b+U) + 1 \right] \leq \sup_{pb \in a+U} \left\{ \sup_{u \in U} \left[h_{T}(b+u) + 1 \right] + 1 \right\}.$$

Here $h_T(b+u)+1 \le h_T(pb+pu)=h_T(pb)$ whence the assertion follows at once for n=1. Next assume that $n\ge 2$ and that lemma has been established for n-1. Set $U'=U\cap T[p^{n-1}]$; then U/U' is contained in the socle of T/U'. By induction hypothesis,

$$h_{T/U'}(a+U') = \sup_{u' \in U'} [h_T(a+u')+1] + (n-2)$$

for each $a \in T$. Thus, by what has been proved we infer that for every $a \in T$,

$$\begin{split} h_{T/U}(a+U) &= h_{(T/U')/(U/U')}(a+u) \! \leq \! \sup_{u \in U} \left[h_{T/U'}(a+u+U') \! + \! 1 \right] \\ &\leq \! \sup_{u \in U} \left\{ \! \sup_{u' \in U'} \left[h_{T}(a+u+u') \! + \! 1 \right] \! + \! n \! - \! 1 \right\} \\ &\leq \! \sup_{u \in U} \left[h_{T}(a+u) \! + \! 1 \right] \! + \! n \! - \! 1 \; . \end{split}$$

We shall require the following simple lemma.

LEMMA 2. Let T be a p-group of limit length λ , and U a subgroup of $T[p^n]$ for some integer n. Then T/U is at most of length $\lambda+n$. If U is closed, then T/U has length exactly λ .

The first assertion follows at once from Theorem 1. Evidently, T/U has length $\geq \lambda$. Let a+U (for some $a \in T$) be of height λ in T/U. In view of the preceding lemma, there exists an increasing chain of ordinals $\{\sigma_i\}_{i \in I}$ with $\sup \sigma_i = \lambda$, together with elements $u_i \in U$ $(i \in I)$, such that $h_T(a-u_i) = \sigma_i$ (where h_T denotes height in T). Since

$$p^{\lambda}(T/T[p^n])\!\cong\!p^{\lambda}(p^nT)\!=\!p^{\lambda}T\!=\!0$$
 ,

from $T/T[p^n]\cong (T/U)/(T[p^n]/U)$ we deduce $p^i(T/U) \leq T[p^n]/U$ whence $a \in T[p^n]$ follows. Thus a is the limit in $T[p^n]$ of elements in U. If U is closed, then $a \in U$, and consequently, $p^i(T/U) = 0$.

3. Let T be a p-group whose length is a limit ordinal λ , and let U be a subgroup of $T[p^n]$. We are mainly interested in the case when U is dense in $T[p^n]$. For the sake of brevity, we then say that T/U is a dense representation of the group A = T/U.

From Lemma 2 we know that the length of A is then at most $\lambda+n$. A more precise information is given by

LEMMA 3. If T and U are as above, and if A = T/U is a dense representation of A, then $p^{\lambda}A = T[p^n]/U$.

From $p^{\lambda}(T/T[p^n]) \cong p^{\lambda}(p^nT) = p^{\lambda}T = 0$ we obtain $p^{\lambda}A \leq T[p^n]/U$. On the

other hand, by the density of U, for each ordinal $\sigma < \lambda$, every $t \in T[p^n]$ can be written in the form $t = t_{\sigma} + u_{\sigma}$ with $t_{\sigma} \in p^{\sigma}T[p^n]$, $u_{\sigma} \in U$. Hence $t + U = t_{\sigma} + U \in (p^{\sigma}T[p^n] + U)/A \leq p^{\sigma}A$, and the assertion follows.

The following lemma is of technical character.

LEMMA 4. If A has a dense representation T/U with p^* -bounded U, then it has also one where T does not contain any p^* -bounded summand $\neq 0$.

In fact, A=T/U is any dense representation with $U \subseteq T[p^n]$, then select a maximal p^n -bounded direct summand V of T that is contained in U. Thus $T=V \oplus T'$ and $U=V \oplus (T'\cap U)$, so that $A \cong T'/(T'\cap U)$ will be a dense representation of A. Suppose that $T'=\langle a \rangle \oplus T''$ where $\langle a \rangle$ is of order $p^m(m \le n)$. By the density of $T'\cap U$ in $T'[p^n]$, we can write a=u+b with $u \in T'\cap U$ and $b \in (pT')[p^n]$. Manifestly, neither u nor b vanishes, and $h_T(p^na)=h_T(p^na)$ for all $r \ge 0$. But then $\langle u \rangle$ is likewise a summand of T', a contradiction to the choice of V. Hence T' does not have p^n -bounded summands $\ne 0$.

Next we establish one of our main results: the existence of dense representations.

THEOREM 2. Let \mathscr{C}_{λ} be a p^{λ} -class of p-groups and $A \in \mathscr{C}_{\lambda}(n)$. Then A has a dense representation T^*/U^* with $U^* \subseteq T^*[p^n]$.

Here $T^* \in \mathcal{C}_1$ can be chosen whenever \mathcal{C}_1 is a full p^{λ} -class.

By Theorem 1, $A \cong T/U$ for some $T \in \mathscr{C}_{\lambda}$ and subgroup U of $T[p^n]$. Let T' be a p-group satisfying $p^nT'=T$; then by P4, also $T' \in \mathscr{C}_{\lambda}$. Let \bar{U} be the closure of U, and let $U'=p^{-n}U \leq T'$. Then clearly, $\bar{U} \leq T'[p^n] \leq U'$, and we can define

$$T^*\!=\!T'/ar{U}$$
 and $U^*\!=\!U'/ar{U}$.

The λ -topology of T coincides with the topology induced on T by the λ -topology of T', so \overline{U} is closed in T', too. From Lemma 2 we infer that T^* is of length λ . If \mathscr{C}_{λ} is a full p^{λ} -class, then T^* has a p^* -bounded subgroup $T'[p^*]/\overline{U}$ modulo which the quotient is $T'/T'[p^*] \cong T$, thus $T^* \in \mathscr{C}_{\lambda}$. In view of $T^*/U^* \cong T'/U' \cong T/U \cong A$, only the density of U^* in $T^*[p^*]$ remains to be verified, i.e. that

$$T^*[p^n] = U^* + p^\sigma T^*[p^n]$$
 for all $\sigma < \lambda$.

Since $p^{\sigma}(T'/\bar{U})[p^n] \ge ((p^{\sigma}T'+\bar{U})/\bar{U})[p^n]$, it suffices to establish the inclusion

$$p^{-n}ar{U}\! \le\! p^{-n}U\! +\! [(p^{\sigma}T'\!+ar{U})\cap p^{-n}ar{U}]$$
 .

The last group is equal to $(p^{-n}U+p^{\sigma}T')\cap p^{-n}\bar{U}$, so the proof can be completed by showing that $p^{-n}\bar{U} \leq p^{-n}U+p^{\sigma}T'$ for all $\sigma < \lambda$. If $t \in p^{-n}\bar{U}$, then $p^nt \in \bar{U}$, so there are $u \in U$ and $s \in p^{n+\sigma}T=p^{\sigma}T'$ such that $p^nt=p^nT'$

 $u+p^ns$. Hence $t-s \in p^{-n}U$ and $t=(t-s)+s \in p^{-n}U+p^\sigma T'$ completes the proof.

Consequently, every p-group A of length $\lambda+n$ (λ a limit ordinal) can be written as A=T/U where T is of length λ and U is a p-bounded dense subgroup of T.

4. As an application of our theorem on the existence of dense representations, we show how isomorphisms of p-groups of lengths $\lambda + n$ can be related to isomorphisms of p-groups of lengths λ .

Theorem 3. Two p-groups, A and A', of lengths $\lambda+n$ are isomorphic if and only if there is an isomorphism

$$\phi: A/p^{\lambda}A \longrightarrow A'/p^{\lambda}A'$$

such that $\phi(A[p^n]/p^{\lambda}A) = A'[p^n]/p^{\lambda}A'$.

Necessity is clear. To verify sufficiency, we appeal to Theorem 2 and start with dense representations A = T/U and A' = T'/U'. By Lemma 4, without loss of generality, we may assume that neither T nor T' contains p^* -bounded summands. From Lemma 3 we obtain

$$A/p^{\lambda}A = (T/U)/(T[p^n]/U) \cong T/T[p^n] \cong p^nT$$
 .

Under the obvious isomorphisms, $A[p^n]/p^{\lambda}A$ maps upon $U \cap p^nT$. Arguing analogously for A', we can establish from the given ϕ an isomorphism $\psi \colon p^nT \to p^nT'$ such that $\psi(U \cap p^nT) = U' \cap p^nT'$. Hence

$$p^{n}A \cong (p^{n}T+U)/U \cong p^{n}T/(U \cap p^{n}T) \cong p^{n}T'/(U' \cap p^{n}T')$$
$$\cong (p^{n}T'+U')/U' \cong p^{n}A'.$$

From [10] it follows that apart from p^n -bounded direct summands, A and A' are isomorphic. It suffices to note that ϕ induces an isomorphism between the maximal p^n -bounded summands of A and A' in order to conclude that $A \cong A'$, in fact.

In the special case when n=1, Theorem 3 reduces to Lemma 2 of [9].

The next result states that in certain cases the p^n -socles of groups in $\mathcal{C}_{\lambda}(n)$ determine the groups up to isomorphism. Here we use the term "isometry" to mean height-preserving isomorphism (cf. e.g. [4]).

THEOREM 4. Let \mathscr{C}_{λ} be a full p^{λ} -class and n>0 an integer such that if $T, T' \in \mathscr{C}_{\lambda}$ and if U, U' are isometric dense subgroups of $T[p^n]$ and $T'[p^n]$, respectively, then there is an isomorphism $T \to T'$ carrying U onto U'.

Then two groups, A and A', in $\mathcal{C}_{\lambda}(n)$ are isomorphic if and only if there is an isometry

$$\phi$$
: $A[p^n] \rightarrow A'[p^n]$.

Assume ϕ is an isometry for A, $A' \in \mathcal{C}_{\lambda}(n)$. Let T, $T' \in \mathcal{C}_{\lambda}$, and let T/U=A, T'/U'=A' be dense representations where neither T nor T' contains p^n -bounded summands. From Lemma 3 we infer $A/p^{\lambda}A \cong T/T[p^n] \cong p^nT$ and $A'/p^{\lambda}A' \cong p^nT'$ where both p^nT and p^nT' belong to \mathcal{C}_{λ} . Manifestly, the map $A[p^n]/p^{\lambda}A \to A'[p^n]/p^{\lambda}A'$ induced by ϕ is an isometry between dense subgroups of the p^n -socles of $A/p^{\lambda}A$ and $A'/p^{\lambda}A'$. From hypothesis we conclude that there is an isomorphism $A/p^{\lambda}A \to A'/p^{\lambda}A'$ mapping $A[p^n]/p^{\lambda}A$ onto $A'[p^n]/p^{\lambda}A'$. A simple appeal to Theorem 3 completes the proof.

5. We now specialize $\mathscr{C}_{\lambda} = \mathscr{D}_{\omega}$, the class of torsion-complete p-groups which is in view of E3, a full p^{ω} -class. In order to show that the class \mathscr{D}_{ω} satisfies the hypotheses of Theorem 4 for every n, note that a dense subgroup U of $T[p^n](T \in \mathscr{D}_{\omega})$ necessarily contains $B[p^n]$ for some basic subgroup B of T. Therefore, every isometry between dense subgroups $\psi \colon U \to U' \leqq T'[p^n](T' \in \mathscr{D}_{\omega})$ induces an isomorphism $B \to B'$ between basic subgroups of T and T'. By torsion-completeness, this extends uniquely to an isomorphism $\phi \colon T \to T'$. It is easy to check that $\phi \mid U = \psi$, since they are identical on a dense subgroup $U \cap B$ of U. Hence, by virtue of Theorem 4, we obtain:

THEOREM 5. Two groups in $\mathscr{D}_{\omega}(n)$ are isomorphic if and only if there is an isometry between their p^n -socles.

From Theorem 1 we know that the class $\mathscr{D}_{\omega}(n)$ is exactly the class of p-groups A such that $A/p^{\omega}A$ is torsion-complete and $p^{\omega}A$ is p^n -bounded. These groups are the totally injective p-groups of lengths $\leq \omega + n$ (see [6]). For n=1, these groups were discussed by Richman [9]; he proved that they are uniquely determined, up to isomorphism, by their socles as valued vector spaces. Our Theorem 5 is a generalization of Richman's result for arbitrary n.

We wish to give an alternative proof of Theorem 5. This is a direct approach based on immediate generalizations of Richman's ideas. For the proof we need the following lemma.

LEMMA 5. Let $A_i(i=1,2)$ be p-groups, B_i pure and dense subgroups of A_i , and P_i subgroups of $A_i[p^n]$. Suppose there exist isomorphisms $\beta\colon B_1\to B_2$ and $\gamma\colon A_1/P_1\to A_2/P_2$ with the following properties:

- (i) $\gamma(A_1[p^n]/P_1) = A_2[p^n]/P_2$,
- (ii) the diagram

$$egin{array}{cccc} B_1 & \stackrel{eta}{\longrightarrow} & B_2 \ & & & \downarrow \ A_1/P_1 & \stackrel{\gamma}{\longrightarrow} & A_2/P_2 \end{array}$$

commutes where the vertical maps are the injections followed by the canonical maps.

Then there exists an isomorphism $\alpha: A_1 \longrightarrow A_2$ such that $\alpha | B_1 = \beta$ and the following square commutes:

$$egin{array}{cccc} A_1 & \stackrel{lpha}{\longrightarrow} & A_2 \ & & & \downarrow \ & & \downarrow \ & A_1/P_1 & \stackrel{\gamma}{\longrightarrow} & A_2/P_2 \end{array}$$

(the vertical maps are the canonical maps).

First we define α on p^*A_1 as follows. Given $a_1 \in p^*A_1$, choose $c_1 \in A_1$ so as to satisfy $p^*c_1 = a_1$. If $\gamma : c_1 + P_1 \mapsto c_2 + P_2(c_2 \in A_2)$, then we let $\alpha : a_1 \mapsto a_2 = p^*c_2$. If we select $c_1 + x_1(x_1 \in A[p^*])$ rather than c_1 , then because of (i), $\gamma(x_1 + P_1) \in A_2[p^*]/P_1$, so a_2 will be independent of the selections of c_1 and c_2 . That α is a homomorphism on p^*A_1 is quite clear. Now, if $a_1 \in B_1 \cap p^*A = p^*B_1$, then to this a_1 we can choose $c_1 \in B_1$ and $c_2 \in B_2$, thus $\alpha(a_1) = \beta(a_1)$ which shows that the homomorphisms $\beta : B_1 \mapsto B_2$ and $\alpha : p^*A_1 \mapsto p^*A_2$ agree on the intersection of their domains. Hence they can be uniquely extended to a homomorphism $\alpha : B_1 + p^*A = A_1 \mapsto A_2$. In the same way, an inverse $A_2 \mapsto A_1$ can be constructed showing that α is an isomorphism. The commutativity of the square above follows at once from (ii) and the definitions.

We can now verify the sufficiency statement of Theorem 5. Suppose A_1 and A_2 are in $\mathscr{D}_{\omega}(n)$ and $\phi: A_1[p^n] \to A_2[p^n]$ is an isometry.

We set $P_i = p^{\omega} A_i (i=1,2)$ and notice that $P_i \leqq A_i [p^n]$. Pick a basic subgroup B_1 of A_1 , $B_1 = \bigoplus_{i \in I} \langle b_{1i} \rangle$ where, say, b_{1i} is of order p^{n_i} . For $n_i \leqq n$, set $b_{2i} = \phi b_{1i}$, and for $n_i > n$, let $b_{2i} \in A_2$ satisfy $p^{n_i - n} b_{2i} = \phi (p^{n_i - n} b_{1i})$; since ϕ is height-preserving, such b_{2i} 's exist. As in p-groups, direct sums, purity and density can be recognized in the socles, it is clear that $B_2 = \bigoplus_{i \in I} \langle b_{2i} \rangle$ will be a basic subgroup of A_2 . The map $\phi \mid B_1[p^n]$ can be extended via $b_{1i} \mapsto b_{2i}$ to an isomorphism $\beta \colon B_1 \to B_2$. From $B_i \cap P_i = 0$ (i = 1, 2) we infer that β induces an isomorphism $\beta_0 \colon (B_1 + P_1)/P_1 \to (B_2 + P_2)/P_2$ between basic subgroups of A_1/P_1 and A_2/P_2 . The latter groups are torsion-complete, thus β_0 can be extended to an isomorphism $\gamma \colon A_1/P_1 \to A_2/P_2$.

The isomorphism ϕ induces an isomorphism $A_1[p^n]/P_1 \rightarrow A_2[p^n]/P_2$ which must act as γ . In fact, given $a_1 \in A_1[p^n]$, for every m > 0 there is a $b_m \in B_1$ such that $h(a_1 - b_m) \ge m$; it is easy to check that $b_m \in B_1[p^n]$ can be assumed without loss of generality. Application of ϕ yields $h(\phi a_1 - \phi b_m) \ge m$. Hence $\phi b_m(m = 1, 2, \cdots)$ is a bounded Cauchy sequence in A_2 , and $\phi b_m + P_2(m = 1, 2, \cdots)$ is one in A_2/P_2 ; clearly, $\phi a_1 + P_2$ is its limit. But ϕ and β are identical on $B_1[p^n]$, and $\gamma(a_1 + P_1)$ is precisely

the limit of $\beta b_m + P_2(m=1, 2, \cdots)$.

Thus we have constructed isomorphisms β and γ , satisfying the hypotheses of Lemma 5. This completes the second proof of Theorem 5.

References

- [1] BENABDALLAH, K. IRWIN, J. M., and RAFIQ, M.; A core class of abelian p-groups, Symposia Math., 13 (1974), 195-206.
- [2] Dubois, D. F.; Generally p^{α} -torsion-complete abelian groups, Trans. Amer. Math. Soc., 159 (1971), 245-255.
- [3] FUCHS, L.; Infinite Abelian Groups, Vol. 1 and 2, Academic Press (New York, 1970 and 1973).
- [4] Fuchs, L.; Vector spaces with valuations, J. Algebra, 35 (1975), 23-38.
- [5] Fuchs, L. and Irwin, J. M.; On $p^{\omega+1}$ -projective p-groups, Proc. London Math. Soc., **30** (1975), 459-470.
- [6] FUCHS, L., and SALCE, L.; Almost totally injective p-groups, Quaestions Math., 1 (1967), 225-234.
- [7] MEGIBBEN, C.; On p^{α} -high injectives, Math. Z., 122 (1971), 104-110.
- [8] NUNKE, R. J.; Uniquely elongating modules, Symposia Math., 13 (1974), 315-330.
- [9] RICHMAN, F.; Extensions of p-bounded groups, Archiv. d. Math., 21 (1970), 449-454.
- [10] WALKER, E. A.,; On n-extensions of abelian groups, Annales Univ. Sci. Budapest, 8 (1965), 71-74.

Tulane University, New Orleans, La. USA Universita di Padova Padova, Italy