Comment. Math.
Univ. St. Pauli.
XXVI—1. 1977

Abelian p-groups of not limit length

by
L. FucHs and L. SALCE*

(Received January 11, 1977)

In this note we consider additively written abelian p-groups. p-
groups A of lengths A+n (where \ is a limit ordinal and » a positive
integer) are best understood if they are considered as elongations of
p™bounded groups p*A by p-groups A/p*’A of limit lengths (we use
the term “elongation” in the sense of Nunke [8]). Our principal aim
is to point out that these groups can also be viewed from the opposite
angle, viz. as quotients of p-groups T of lengths A modulo p*-bounded
subgroups U (see Theorem 1). In several important cases, T can be
chosen from the same class of p-groups to which A/p?A belongs.
Moreover, we show that it is always possible to find A=T/U such
that U is dense in T[p"] in the generalized p-adic topology; here
T[p"1={a e T|p"a=0}.

As an application of our results, we prove a theorem on totally
injective p-groups of lengths w+mn. We show that they are uniquely
determined, up to isomorphism, by their p"-socles regarded as abelian
groups furnished with the height function as valuation (Theorem 5).
This result generalizes a theorem by Richman [9].

We follow the notations and terminology of [3]. In particular,
p°A is defined for all ordinals ¢ inductively by p""'A={pa|ac p°A}
and p*A=N,, p°A for limit ordinals p. The smallest v with p*"A=
p*A is the length of A; p’A=0 whenever A is reduced.

1. Let )\ be a limit ordinal, and &, a non-empty class of reduced
p-groups. It will be called a p*-class if it satisfies

Pl. Xe%; and Y=X imply Ye%&;

P2. p’X=0 for all Xe%&;

P3. XPYez, if and only if X, Ye&;

P4. Xe%, if and only if pXeZ&,.
We call &; a full p*-class if, in addition, the following holds:

P5. if p’X=0 and if X/Pe %, for some P<X][p], then Xe &,

Examples for such classes are abundant.

* This paper was written while the first author held a National Science Foundation
grant, number 66072, and the second author held a N.A.T.O. fellowship from Italian C.N.R.
at Tulane University, New Orleans.
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El. The class of all reduced p-groups of lengths<x is a full -
class.

E2. The class of direct sums of cyclic p-groups is a p-class. It
is not a full p°-class, since a proper p“'-projective separable p-group
is not in this class, though it contains a subsocle P satisfying the
hypotheses of P5 (see [5]).

E3. The class of torsion-complete p-groups is a full p°-class.
Note that if X, P are as in P5, then from the exact sequence

0—Ext (Z(p~), P)>Ext (Z(p*), X)—Ext (Z(p=), X/P)—0

we obtain p° Ext (Z(p~), X)<Im a (since X/P torsion-complete means
p° Ext (Z(p~), X/P) vanishes [3, 68.5]). In this inclusion, the smaller
group is torsion-free (because of p*X=0 and [3, 56.3]), while the second
group is p-bounded. Thus the first group vanishes, and X is torsion-
complete. : , :

E4. The class =; of p*-high injective (reduced) p-groups (Megibben
[7] defined them as p-groups of lengths<)\ which are direct summands
of every p-group containing them as p*-high subgroups; for an alterna-
tive characterization, see Dubois [2]) is a full p*class. This follows
easily from the fact that a p-group A is p*high injective if and only
if p* Ext (Z(p~), A)=0.

E5. The smallest (full) p“-class is readily seen to coincide with
the class of all bounded p-groups. In fact, by P38, 0 is contained in
every class, and by P4 the same holds for all bounded p-groups.

Let &, be a p’-class and » a positive integer. We define a new
class to consist of “elongations” of p"-bounded groups by groups in
&, i.e.

Zi(n)={A|p""A=0 and A/p’AecZ)} .

E6. In view of Proposition 1 in [7], a p-group A of length<\-+n
is p**"-high injective exactly if A/p’A is p*-high injective. Hence g (n)
is the class of p*™"-high injectives.

Our next objective is to show that for full p*-classes &, the class
&)(n) is the same as the class of all quotients of groups in 2%, modulo
p"-bounded subgrops. We phrase our theorem in a slightly more
general form, so as to include the so-called Switch Lemma [1] as a
special case. '

THEOREM 1. For a reduced p-group A, integer n and a ’-class
&, the following conditions are equivalent;

(a) there is a subgroup P<A[p"] such that A/Pe &

(b) there exist a group Te %, and a subgroup U of T[p"] such
that TIU=A.
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Both are consequences of the following condition:
(¢) AeE(n).
All three conditions are equivalent for a full p’-class &.

(a)=(b). There is no difficulty in constructing an exact sequence
O—-—»X[p”]-—+X1>A/P——>O where 7 is multiplication by p", i.e. w(x)=p"x
(xe X). By induction on n, P4 implies Xe<&’. Starting with the
bottom row and the last column, we can get a commutative diagram

X[p"] == X[p"]

[

E: P— T — X

[ T

E: P»— A —» A/P

The map Ext (A/P, P)—"i» Ext (X, P) induced by = is likewise a multipli-
cation by »" [3, 52.1]. From E,=r*(E,)=p"E, and p" Ext (4/P, P)=0
we infer that E, is splitting. Thus P, X € &, implies T € ¥, proving
(b). (U is the image of X[p"] in T.)

(b)=(a). In view of P4, T e %, implies T/T[p"] € ;. The choice
T=T[p"]/U proves the assertion.

(¢)=(a) is clear, since p’A=<A[p"] whenever p**"A=0.

Assuming P5, (a)=(c). A/Pe %, implies p*(4/P)=0, thus p’A=P,
and P/p*A<(A/p*A)[p"]. By induction on n, P5 leads to (c).

Consequently, the p-groups of lengths \+mn are quotients of p-
groups of lengths A mod p"-bounded subgroups.

2. In order to improve on theorem 1, we want to show that U
can be chosen in some special way. We consider a topology which is
essentially a generalized p-adic topology.

Given the limit ordinal X\, consider the linear topology of A where
{p°A},., is a base of neighborhoods of 0. We follow Megibben [7] in
referring to this topology as the \-topology of A.

If T is a p-group of limit length A\, the A\-topology of T induces
a topology on T[p"]. When we say a subgroup of T[p"] is closed or
dense, we always refer to this induced topology.

The following lemma is easily verified.

LEMMA 1. If T is a p-group and UZT[p"], then for every acT,
I U)gsul? [Arla+uw)+1]+n—1
where the index indicates the group where the heights are computed.

First, assume UZT[p]. We induct on p=h,,,(a+U). If p=0,
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there is nothing to prove. Let p=1, and observe that by the defini-
tion of height and induction hypothesis,
0= f,uEU[hT,U(b—I— U)+1]< sup {sulxl) [Ar(b+u)+1]+1} .
pbea ue

pbeatU

Here h,(b+u)+1=h,(pb+pu)=nh,(pb) whence the assertion follows at
once for m=1. Next assume that n=>2 and that lemma has been
established for n—1. Set U'=UNT[p"*']; then U/U’ is contained in
the socle of T/U’. By induction hypothesis,

hrjol@+U")= $up [ho(a-+u) +1]+ (n—2)

for each acT. Thus, by what has been proved we infer that for
every acT,

by o+ U):h(T/U')/(U/U')(a—l_u)_S_%gg [hr/p(@+u+U')+1]
gsué) {S,“%?, [hr(e+u+u")+1]+n—1}
=sup [h(a+u)+1]+n—1.
el

We shall require the following simple lemma.

LEMMA 2. Let T be a p-group of limit length N, and U a \subgq"oup

of T[p"] for some integer n. Then T/U is at most of length n+n. If
U is closed, then T/U has length exactly .

The first assertion follows at once from Theorem 1. Evidently,
T/U has length=\. Let a+ U (for some aeT) be of height )\ in 7T/U.
In view of the preceding lemma, there exists an increasing chain of
ordinals {¢;};.; with supo,=\, together with elements u,c U (ieI),
such that h,(a—w,)=0, (where h, denotes height in T). Since

p(T/T[p")=p*(p"T)=p*T=0,

from T/T[p"|=(T/U)/(T[p"]/U) we deduce pXT/U)<T[p"]/U whence
a € T[p"] follows. Thus a is the limit in T[p"] of elements in U. If
U is closed, then a € U, and consequently, p*(T/U)=0.

3. Let T be a p-group whose length is a limit ordinal A\, and let
U be a subgroup of T[p"]. We are mainly interested in the case when
U is dense in T[p"]. For the sake of brevity, we then say that T/U
is a dense representation of the group A=T/U.

From Lemma 2 we know that the length of A is then at most
M+mn. A more precise information is given by

LEMMA 3. If T and U are as above, and if A=T/U is a dense
representation of A, then p*A=T[p"]/U.

From p*(T/T[p"])=p*(p"T)=p*T=0 we obtain p’ A< T[p"]/U. On the
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other hand, by the density of U, for each ordinal o<\, every te T[p"]
can be written in the form ¢=¢,+u, with ¢, € p°T[p"], u,€ U. Hence
t+U=t,+Ue@T[p*"|+U)/A<p°A, and the assertion follows.

The following lemma is of technical character.

LEMMA 4. If A has a dense representation T/U with p*-bounded
U, then it has also one where T does mot contain any p"-bounded
summand 0.

In fact, A=T/U is any dense representation with U=T[p"], then
select a maximal p~-bounded direct summand V of T that is contained
in U. Thus T=V@T' and U=VH(T'NU), so that A=T'/(T'NT) will
be a dense representation of A. Suppose that T'=<{a)>PT" where {a)
is of order p™(m=mn). By the density of TN U in T'[p"], we can write
a=u+b with ueT'NU and be (pT")[p*]. Manifestly, neither w nor b
vanishes, and h,(p"a)=h,(p"w) for all »=0. But then (u) is likewise
a summand of 7", a contradiction to the choice of V. Hence T' does
not have p"-bounded summands=£0.

Next we establish one of our main results: the existence of dense
representations.

THEOREM 2. Let &, be a p*class of p-groups and Ae&(n).
Then A has a dense representation T*/U* with U*<T*[p"].
Here T* € &; can be chosen whenever %, is a full p*-class.

By Theorem 1, A=T/U for some T e %, and subgroup U of T[p"].
Let T' be a p-group satisfying p"T'=T; then by P4, also T'e&.
Let U be the closure of U, and let U'=p"U<T'. Then clearly,
U<T[p"]<U’, and we can define

T*=T/U and U*=U'/U.

The A-topology of T coincides with the topology induced on T by the
A-topology of T7, so U is closed in 7", too. From Lemma 2 we infer
that T* is of length ». If &, is a full p’-class, then T* has a p"-
bounded subgroup T'[p"]/U modulo which the quotient is 7"/T"[p"*]=T,
thus T* € &;. In view of T*/U*=T'/U'=T/U=A, only the density of
U* in T*[p"] remains to be verified, i.e. that

T*[p"]=U*+p°T*[p"] for all o<\.
Since p°(T"/D)[p"1= ((p°T" + U)/ U)[p"], it suffices to establish the inclusion
pU=p"U+[(p T+ 0)np"T].

The last group is equal to (p"U+p"T")Np™" U, so the proof can lcle
completed by showing that p™U<pU+p°T" forallo<n. If tep™U,
then p"te U, so there are we U and sep ™ T=p"T" such that p"t=
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u+p"s. Hence t—sep™"U and t=(t—s)+sep "U+p°T’" completes the
proof.

Consequently, every p-group A of length n+n (L a limit ordinal)
can be written as A=T/U where T is of length N and U is a p"-
bounded dense subgroup of T.

4. As an application of our theorem on the existence of dense
representations, we show how isomorphisms of p-groups of lengths
M+n can be related to isomorphisms of p-groups of lengths \.

THEOREM 3. Two p-groups, A and A’, of lengths N+mn are
isomorphic if and only if there is an isomorphism

o AjpPA— A'[p*A’
such that ¢(A[p"]/p*A)=A[p"]/p*A".

Necessity is clear. To verify sufficiency, we appeal to Theorem 2
and start with dense representations A=T/U and A'=T'/U’. By
Lemma 4, without loss of generality, we may assume that neither T
nor T’ contains p"-bounded summands. From Lemma 3 we obtain

Alp'A=(T/D)[(T[p")/U)=T/T[p"|=p"T .

Under the obvious isomorphisms, A[p"]/»’A maps upon UNp*T.
Arguing analogously for A’, we can establish from the given ¢ an
isomorphism q: p"T— p™T" such that w(UNp"T)=U'Np"T". Hence
p"A=(@"T+U)/U=p"T/(UNp"T)=p"T"/(U' N p"T")
=T+ U U =p A’ .

From [10] it follows that apart from p”-bounded direct summands, A4
and A’ are isomorphic. It suffices to note that ¢ induces an isomorphism
between the maximal p"-bounded summands of A and A’ in order to
conclude that A=A4’, in fact.

In the special case when n=1, Theorem 3 reduces to Lemma 2 of
[9].

The next result states that in certain cases the p*-socles of groups
in €3(n) determine the groups up to isomorphism. Here we use the
term “isometry” to mean height-preserving isomorphism (cf. e.g. [4]).

THEOREM 4. Let &, be a full p’-class and n>0 an integer such
that if T, T'e &, and iof U, U are isometric dense subgroups of T[p"]
and T'[p"], respectively, then there is an isomorphism T—T' carrying
U onto U'.

Then two groups, A and A’, in &(n) are isomorphic if and only
of there is an isometry

¢: A[p"]—A'[p"] .
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Assume ¢ is an isometry for A4, A'ez3(n). Let T, T'e%,, and
let T/U=A, T'/U'=A" be dense representations where neither T nor
T’ contains p"-bounded summands. From Lemma 3 we infer A/p*A=
T/T[p"]=p"T and A'/p*A’'=p"T" where both p"T and p"T" belong to
©%;. Manifestly, the map A[p"]/p*'A— A'[p"]/p*A’ induced by ¢ is an
isometry between dense subgroups of the p"-socles of A/p*A and
A'[p’A’. From hypothesis we conclude that there is an isomorphism
AP’ A—A'[p’A’ mapping A[p"]/p*A onto A'[p"]/p*A’. A simple appeal
to Theorem 3 completes the proof.

5. We now specialize &=, the class of torsion-complete p-
groups which is in view of E8, a full p“-class. In order to show that
the class 7, satisfies the hypotheses of Theorem 4 for every =, note
that a dense subgroup U of T[p"|(T € .=,) necessarily contains B[p"]
for some basic subgroup B of T. Therefore, every isometry between
dense subgroups «: U—U'ZT[p"|(T" € <=,) induces an isomorphism
B— B’ between basic subgroups of T and 7’. By torsion-completeness,
this extends uniquely to an isomorphism ¢: T—T". It is easy to check
that ¢| U=+, since they are identical on a dense subgroup UNB of U.
Hence, by virtue of Theorem 4, we obtain: '

THEOREM 5. Two groups in Z,(n) are isomorphic if and only if
there is an isometry between their p*-socles.

From Theorem 1 we know that the class Z,(n) is exactly the
class of p-groups A such that A/p“A is torsion-complete and p°A is
p"-bounded. These groups are the totally injective p-groups of lengths<
®+n (see [6]). For n=1, these groups were discussed by Richman
[9]; he proved that they are uniquely determined, up to isomorphism,
by their socles as valued vector spaces. Our Theorem 5 is a generali-
zation of Richman’s result for arbitrary n.

We wish to give an alternative proof of Theorem 5. This is a
direct approach based on immediate generalizations of Richman’s ideas.
For the proof we need the following lemma.

LEMMA 5. Let A,(i=1,2) be p-groups, B, pure and dense sub-
groups of A,, and P, subgroups of A,[p"]. Suppose there exist iso-
morphisms B: B,— B, and 7: A,/P,— A,/ P, with the following properties:

(1) 7(A1[p”]/P1):Az[p”]/P2’

(ii) the diagram

B -2 B

L

AP, — A,/P,
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commutes where the vertical maps are the injections followed by the
canonical maps.

Then there ewists an isomorphism a: A — A, such that a|B,=pB
and the following square commutes:

a

A — A,

L

.
Al/Pl — Az/Pz
(the vertical maps are the canonical maps).

First we define a on p*4, as follows. Given a,cp"4,, choose
c,€A, so as to satisfy p"c,=a,. If 7:ie,+P,—c,+Pyc,e4,), then we
let a:a,—>a,=p"c,. If we select c¢,+x,(z, € A[p"]) rather than ¢, then
because of (i), 7(x,+ P, e A[p"]/P,, so a, will be independent of the
selections of ¢, and ¢,. That a« is a homomorphism on p"A4, is quite
clear. Now, if a,e B,Np"A=p"B,, then to this @, we can choose ¢, € B,
and c¢,€ B,, thus «a(a,)=p8(a,) which shows that the homomorphisms
B: B—B, and a: p"A,—p A, agree on the intersection of their domains.
Hence they can be uniquely extended to a homomorphism a: B,+p"A=
A —A, In the same way, an inverse A,—A, can be constructed
showing that « is an isomorphism. The commutativity of the square
above follows at once from (ii) and the definitions.

We can now verify the sufficiency statement of Theorem 5.
Suppose A, and A, are in Z,(n) and ¢: A, [p"]— A,[p"] is an isometry.

We set P,=p"A,(t=1, 2) and notice that P,<A,[p"]. Pick a basic
subgroup B, of A, B,=@,.; <b,;> where, say, b,; is of order p". For
n,<mn, set b,;=¢b,;, and for n,>n, let b, € A, satisfy p" "b,;=¢(p™ "b,,);
since ¢ is height-preserving, such b,’s exist. As in p-groups, direct
sums, purity and density can be recognized in the socles, it is clear
that B,=@P,.; (b,;y will be a basic subgroup of 4,., The map ¢|B[p"]
can be extended via b,—b,, to an isomorphism pB: B,—B,. From
B,NP,=0 (t=1,2) we infer that B induces an isomorphism
B (B,+P,)/P,—(B,+ P,)/P, between basic subgroups of A/P, and
A,/P,. The latter groups are torsion-complete, thus B, can be extended
to an isomorphism v: A,/P,— A,/P,.

The isomorphism ¢ induces an isomorphism A, [p"]/P,— A,[p"]/P,
which must act as 7. In fact, given a, € A,[p"], for every m>0 there
is a b, € B, such that h(a,—b,)=m; it is easy to check that b, € B,[p"]
can be assumed without loss of generality. Application of ¢ yields
h(¢a,—¢b,)=m. Hence ¢b,(m=1,2, ---) is a bounded Cauchy sequence
in A,, and ¢b,+ P,(m=1, 2, ---) is one in A,/P,; clearly, ¢a,+ P, is its
limit. But ¢ and B are identical on B][p"], and Y(a,+P,) is precisely
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the limit of Bb,+ P(m=1, 2, ---).

Thus we have constructed isomorphisms B and 7, satisfying the

hypotheses of Lemma 5. This completes the second proof of Theorem

5.
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