Comment. Math. Univ. St. Pauli XXVI-2, 1977

Orlicz sequence spaces of a nonabsolute type

by

NG Peng Nung and LEE Peng Yee

(Received November 7, 1977)

The well-known l_r and Orlicz spaces are of absolute type in the sense that given a sequence $x=\{x_k\}$ the norm of $|x|=\{|x_k|\}$ is equal to that of x. However, there are sequence spaces which are of non-absolute type, for example, the space H of all sequences $x=\{x_k\}$ such that the series $\sum x_k$ is conditionally convergent with norm given by

$$||x|| = \sup \left\{ \left| \sum_{k=1}^n x_k \right|; n \ge 1 \right\}.$$

Similarly, if we consider the convergence field of many a summability method as a normed linear space, we again obtain a sequence space of nonabsolute type. In this note we shall give some examples of such sequence spaces, find their associate spaces in the sense of Köthe, and prove a necessary and sufficient condition for matrix transformations mapping from the spaces into a given space.

Let $A=(a_{nk})$ be a lower semi-matrix with non-zero diagonal, i.e. $a_{nk}=0$ for k>n and $a_{nk}\neq 0$ for k=n. Then the inverse of A always exists and is again a lower semi-matrix with non-zero diagonal ([1] p. 22). For convenience, we shall denote in what follows by B the inverse of A and by B' the transpose of B. Therefore when s=Ax, we have x=Bs. Further we shall assume throughout that B is a band matrix, i.e., $b_{nk}=0$ for n>k+p and some fixed p.

Next let φ be an Orlicz function, i.e. φ is continuous and convex on $[0, \infty)$ with $\varphi(0)=0$, $\varphi(x)>0$ whenever x>0, and $\varphi(|x|)=\varphi(x)$. Then Orlicz sequence space l_{φ} is the linear hull of all sequences $x=\{x_k\}$ such that

$$\sum_{k=1}^{\infty} \varphi(x_k) < \infty$$
 .

The complementary function ψ of φ is defined as follows:

$$\psi(y) = \sup\{|xy| - \varphi(x); x > 0\}$$
.

For simplicity, we shall assume that ψ is also an Orlicz function.

Now we define X_{φ} to be the space of all sequences $x=\{x_k\}$ such that $Ax \in l_{\varphi}$ where A is given as above. Given a sequence space X, the associate space of X, denoted by X', is defined to be the space of all sequences $y=\{y_k\}$ such that whenever $x=\{x_k\} \in X$ we have

$$\sum_{k=1}^{\infty} x_k y_k < \infty$$
 .

It is known that the associate space of l_{φ} is l_{ψ} where ψ is the conplementary function of φ . Also, the associate space of H (the space of all convergent series) is the space consisting of all sequences $y = \{y_k\}$ such that

$$\sum_{k=1}^{\infty}|y_k\!-\!y_{k+1}|\!<\!\infty$$
 .

The following theorem describes the assoicate space of X_{φ} .

THEOREM 1. Let A be a matrix given as above and $B=(b_{nk})$ the inverse of A satisfying

(i)
$$\sup \left\{ \sum_{n=k}^{k+p} |b_{nk}|; n \geq 1 \right\} < \infty;$$

- (ii) $(-1)^k b_{nk} > 0$ for $n=1, 2, \cdots$ and $k=n-p, \cdots, n$;
- (iii) $|b_{nn}| \ge \alpha > 0$ for some α and all n.

Then the associate space X'_{φ} of X_{φ} is the space of all bounded sequences $y = \{y_k\}$ such that $B'y \in l_{\psi}$ where B' is the transpose of B and ψ is the complementary function of φ .

Proof. We write s=Ax and t=By. We recall that B is a band matrix. Therefore x=Bs and

$$\begin{split} \sum_{n=1}^{m} x_{n} y_{n} &= \sum_{n=1}^{m} \left(\sum_{k=n-p}^{n} b_{nk} s_{k} \right) y_{n} \\ &= \sum_{k=1}^{m} s_{k} \sum_{n=k}^{k+p} b_{nk} y_{n} - \sum_{k=m-p+1}^{m} s_{k} \sum_{n=m+1}^{k+p} b_{nk} y_{n} \\ &= \sum_{k=1}^{m} s_{k} t_{k} - \sum_{k=m-p+1}^{m} s_{k} \sum_{n=m+1}^{k+p} b_{nk} y_{n} \end{split}$$

Suppose that $x \in X_{\varphi}$ and y is a bounded sequence such that $t = B'y \in l_{\psi}$. Since $s \in l_{\varphi}$, s is a null sequence. In view of condition (i), the last term in the above equation tends to 0. Then there exist $\alpha > 0$ and $\beta > 0$ such that

$$egin{aligned} \left|\sum_{n=1}^{\infty}x_ny_n
ight| &= \left|\sum_{k=1}^{\infty}s_kt_k
ight| \ &\leq (lphaeta)^{-1}igg[\sum_{k=1}^{\infty}arphi(lpha s_k) + \sum_{k=1}^{\infty}\psi(eta t_k)igg] < \infty \;. \end{aligned}$$

Hence $y \in X'_{\varphi}$.

Conversely, suppose that $y \in X'_{\varphi}$, i.e.,

$$\sum_{n=1}^{\infty} x_n y_n < \infty$$
 for every $x \in X_{\varphi}$.

Then $x_n y_n \rightarrow 0$ as $n \rightarrow \infty$, or

$$y_n \sum_{k=n-p}^n b_{nk} s_k \longrightarrow 0$$
 as $n \longrightarrow \infty$.

We may replace $\{s_k\}$ above by $\{(-1)^k|s_k|\}$ which still belongs to l_{φ} . In view of conditions (ii) and (iii), it follows that $y_ns_n \to 0$ as $n \to \infty$. We claim that y is bounded. If not, choose a subsequence $\{y_{n(i)}\}$ of $y = \{y_k\}$ such that

$$\sum\limits_{i=1}^{\infty}arphi(1/y_{n(i)})\!<\!\infty$$
 .

Put $s_{n(i)}=1/y_{n(i)}$ and 0 elsewhere. Thus $s=\{s_n\}\in l_{\varphi}$ and with $x=Bs\in X_{\varphi}$ and yet s_ny_n does not tend to 0 as $n\longrightarrow \infty$. In view of condition (i) again, we have

$$\sum_{n=1}^{\infty} x_n y_n = \sum_{k=1}^{\infty} s_k t_k < \infty$$
 .

where t=B'y. Hence $B'y \in l_{\psi}$ and the proof is complete.

We note that conditions (ii) and (iii) were not required in the first half of the proof. As an example, we may take A to be σ^r where r is a positive integer, $\sigma^r x = \sigma(\sigma^{r-1}x)$, and

$$(\sigma x)_n = \sum_{k=1}^n x_k$$
.

Then the inverse of A is Δ^r where $\Delta^r x = \Delta(\Delta^{r-1}x)$ and

$$(\Delta x)_n = x_n - x_{n-1} .$$

We note that conditions (i), (ii) and (iii) in Theorem 1 are satisfied. If we define H(r, p) to be the space of all sequences $x = \{x_k\}$ such that $\sigma^r x \in l_p$ for $1 \le p \le \infty$, then the following is a corollary of Theorem 1.

THEOREM 2. The associate space of H(r, p) for $1 is the set of all bounded sequences <math>y = \{y_k\}$ such that $\Delta^r y \in l_q$ where 1/p + 1/q = 1.

In fact, it is not difficult to verify that Theorem 2 also holds for p=1 and $p=\infty$. It is interesting to note that sequence spaces of nonabsolute type do not necessarily include the class of all finite sequences and that the so-called associate norm of a given norm defined in the usual way is not necessarily a norm. For example, the sequence $(1,0,0,\cdots)$ does not belong to H(1,2) and given

$$||y||' = \sup \left\{ \left| \sum_{n=1}^{\infty} x_n y_n \right| : ||x|| \le 1 \right\}$$

where $x \in H(1, 2)$ and

$$||x|| = \left(\sum_{n=1}^{\infty} \left|\sum_{k=1}^{n} x_{k}\right|^{2}\right)^{1/2}$$
 ,

if we take $y_k=1$ for all k, then ||y||'=0 and yet $y\neq 0$. However, if a sequence space X does include the class of all finite sequences, then it is a standard procedure ([4] p. 473) to show that $y\in X'$ if and only if $||y||'<\infty$ and that ||y||' is a bona fide norm.

A norm in Orlicz sequence space may be defined as follows:

$$||x||_{arphi}\!=\!\inf\left\{ \!arepsilon\!>\!0;\sum_{k=1}^{\infty}arphi(x_{k}\!/\!arepsilon)\!\leq\!1
ight\}$$
 .

The following is easy.

THEOREM 3. The spaces X_{φ} and X'_{φ} are complete under respectively the following norms

$$||x||_{X(\varphi)} = ||Ax||_{\varphi}$$
 , $||y||_{X'(\varphi)} = \sum_{n=1}^{p} |y_n| + ||B'y||_{\Psi}$,

where ψ is the complementary function of φ .

Naturally, we may define

$$||y||'_{\mathcal{X}(\varphi)} = \sup \left\{ \left| \sum_{n=1}^{\infty} x_n y_n \right|; ||x||_{\mathcal{X}(\varphi)} \leq 1 \right\}.$$

However we have only $||y||'_{X(\varphi)} \leq ||y||_{X'(\varphi)}$. In fact, $||y||'_{X(\varphi)}$ is equivalent to $||B'y||_{\psi}$.

Let $C=(c_{nk})$ be a lower semi-matrix with non-zero diagonal. We define Y to be the space of all sequences $y=\{y_k\}$ such that

$$||y||_{Y} = \sup \left\{ \left| \sum_{k=1}^{n} c_{nk} y_{k} \right|; n \geq 1 \right\} < \infty$$
.

It is easy to show that Y is a Banach space.

THEOREM 4. In order that $T=(t_{nk})$ be a matrix transformation from X_{φ} into Y, it is necessary and sufficient that

$$\sup\left\{\left\|\left\{\sum_{k=1}^n c_{nk}t_{ki}
ight\}_{i\geqq 1}
ight\|_{X(arphi)};\, n\geqq 1
ight\}<\infty$$
 .

Proof. Suppose T maps X_{φ} into Y. Then T in continuous ([5] p. 29) and for some N>0

$$||Tx||_Y \leq N||x||_{X(\varphi)}$$
.

It follows that whenever $||x||_{X(\varphi)} \leq 1$ we have

$$\left|\sum_{i=1}^{\infty}\left(\sum_{k=1}^{n}c_{nk}t_{ki}\right)x_{i}\right|\leq N$$
 .

Hence

$$\left\|\left\{\sum_{k=1}^n c_{nk}t_{ki}
ight\}_{i\geq 1}
ight\|_{X(arphi)}^\prime\!\leq\! N$$
 ,

and the condition holds.

Conversely, if the condition holds, then

$$egin{aligned} \left|\sum_{k=1}^n c_{nk} \sum_{i=1}^\infty t_{ki} x_i
ight| &= \left|\sum_{i=1}^\infty \left(\sum_{k=1}^n c_{nk} t_{ki}
ight) x_i
ight| \ &\leq \left\| \left\{\sum_{k=1}^n c_{nk} t_{ki}
ight\}_{i \geqq 1} \right\|_{X(arphi)}' ||x||_{X(arphi)} \;. \end{aligned}$$

Consequently, $Tx \in Y$ for $x \in X_{\varphi}$.

We remark that

$$\sup\left\{\left\|\left\{\sum_{k=1}^n c_{nk}t_{ki}\right\}_{i\geq 1}\right\|_{X'(\varphi)};\ n\geq 1\right\}<\infty$$

is sufficient but not necessary for T mapping X_{φ} into Y. For example, let X_{φ} be the space H(1,2), and Y the space l_{∞} of all bounded sequences, i.e., C being an identity matrix. Now put $T=(t_{nk})$ with $t_{nk}=n$ for all k. Then

$$\sup \left\{ ||\{t_{nk}\}_{k\geq 1}||'_{H(1,2)}; \ n\geq 1 \right\} = \sup \left\{ \left(\sum_{k=1}^{\infty} |t_{nk} - t_{n,k+1}|^2 \right)^{1/2}; \ n\geq 1 \right\} = 0 \ ,$$

$$\sup \left\{ ||\{t_{nk}\}_{k\geq 1}||_{H'(1,2)}; \ n\geq 1 \right\} = \sup \left\{ |t_{n1}|; \ n\geq 1 \right\} = \infty \ .$$

It is easy to verify that T maps an element in H(1,2) into the zero element in l_{∞} .

References

- [1] COOKE, R. G.; Infinite matrices and sequence spaces, Macmillan 1950.
- [2] Krasnosel'skii M. A. and Rutickii, Ya B.; Convex function and Orlicz spaces, English edition 1961.
- [3] LEE PENG-YEE; Matrix transformations in sequence spaces, Lee Kong Chian Institute of Mathematics and Computer Science Research Report No. 2 (1975).
- [4] ZAANEN, A. C.; Integration, Amsterdam 1967.
- [5] ZELLER, KARL; Theorie der Limitierungsverfahren, Berlin 1958.

Nanyang University, Singapore