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For the H-function of several complex variables, which was
introduced and studied systematically in a series of recent papers by
H. M. Srivastava and R. Panda (c¢f. [5], [6] and [7]), the present
authors derive a new class of expansions in series of Gegenbauer (or
ultraspherical) polynomials. The main results (1.12) and (1.13) below,
as well as their variations (1.17) and (1.18), do not seem to follow
easily from the general expansions for the multivariable H-function
in series of hypergeometric polynomials [6, p. 132, Eq. (3.1); p. 137,
Eq. (4.6)]; indeed, on specializing the various parameters involved,
.these new expansion formulas will yield a number of known results
including, for example, the Fourier sine and cosine series for the
multivariable H-function (contained in Theorem 8 on page 179 of the
earlier paper [7, Part II)).

1. Introduction and the main results

Throughout the present paper we shall make use of the various
notations explained fairly fully in the earlier works [6] and [7], and
let
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denote the H-function of » complex variables z,, ---, 2z, (see also [5],
p. 271, Eq. (4.1) et seq.). Suppose, as usual, that the parameters
a;, j=1, *t A; b;'i)’ j:]-’ Ct B(i);
Cjy .7=1y %y C; d;-i),‘j——“l, M) D(i); vVie {1’ ct ’}"} ’
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are complex numbers, and the associated coefficients
(1.3) {0}'),.7':1, cee Ay g0, =1, ++-, B,
"l"g-i), =1, --+, G 5§i)’ j=1, ---, D% vi el «e, 7},

are positive real numbers such that

A ) B3) c ) pd)
(L4 M= 300+ 3 60— B - 3 0 <0
j=1 j=1 =1 =1
and
P 4 G Bl
(L.5) A=300— 3 00+ S 60— S ¢P
J=1 j=a+1 j=1 G=p ()4
4 2(d) ) pld) )
—S S - 3 a0,
3=t 9=l J=pt41

Vie{l, <=+, 1},
where the integers a, g, v, A, B®, C and D are constrained by
the inequalities 0=SA<A4, 0=Zp9<D®, C=0, and 0=V <B®, Vie
{]_’ cee, /r}.
Then it is known that the multiple Mellin-Barnes contour integral
(¢f., e.g., [6], p. 130, Eq. (1.3)) representing the H-function (1.1) con-
verges absolutely when

(1.6) larg <zi>|<-§—/1m o Vie{l, e, 7},

the points z,=0, ¢=1,--., r, and various exceptional parameter values,
being tacitly excluded. Furthermore, we recall here the known asymp-
totic expansions [6, p. 181, Eq. (1.9)] in the following convenient form:

1
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O, n: (ﬂ', p'); coes (#(1‘), v('f)) i

. H .
(1 7) A, C: [BI’ DI]; cees [B(r), D(r)] zo

_ {0(|z11"‘- 2y, max{zl, -, [2[}—0,
O(lz,|Pr++lz, 1), A=0,  min{fz], ++-, [z} >,
where, with =1, ---, 7,
a,=min {Re (d{)/6{"} , 1, ..., p0,
{Bir—max {Re (b’ —1)/g5"},  J=1, -++,v9,
provided that each of the inequalities in (1.4), (1.5) and (1.6) holds.

Expansions for the multivariable H-function (1.1) in series of the
Gegenbauer (or ultraspherical) polynomials [8, p. 81, Eq. (4.7.6)]

n+2v—1 —m, 204+m; 1—x |
. 7(:/) = F1 ’ 20,
.9 B ( n ) [ b1z 2 ] "

<,
Il

(1.8)
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can, of course, be deduced as obvious special cases of certain classes
of expansions {given, for example, by Theorem 1 (p. 133) and Theorem
3 (p. 187) of the recent work [6]} in series of generalized hypergeo-
metric polynomials of the type

=Ny VN, gy =00y Ay
by < v+, bs;

In the present paper, however, we aim at giving a class of ultra-
spherical series expansions for the multivariable H-function (1.1),
which do not seem to follow easily from the aforementioned general
classes of known expansions. Indeed, we first state our main results
contained in the following

(1.10) H;f><x>=4+zFB[ x} , 0.

THEOREM. Let each of the inequalities in (1.4), (1.5) and (1.6)
hold. Also let 0,>0, Vie{l, ---, r}, and suppose that
DO NS (V) e (i, 1)
A+3 C+8:[B,D; -- ,[B"’, D]
[u—v:0, -+, 0], [L—v-1/2:0, ---, 0,],[-v—(1-1)/2: 0} -+, 0,],
([(0)2 Py ooy ), [L=vi 0y, <00, 0], [—”*n*k Oy vy 04,
[(@): e, 071 [): T -+ o5 [0 6] z)

(1'11) Fn[zv M zr]

[t—v+nioy, -+, 0,1 [(d): 8'; - - -5 [(d7): 7];

Then

o201\ 20)! (et 20+ D (+n+1) e o 1P
(L12) 3~ 1>( o et D -, 21P(c0s )

_V'T (esc )" 2" (cos6—1)* ;7 O n+2 W, V) oo es (e, 07)
() = kl(l—k)!  A+2,C+2:[B, DY;--+; [B”, D"
[1—”—(k+l)/2 Oy e, 61’]7 [—”_(k+l—1)/2' (JTRRRT 0',.], [(a): 0’7 M) 0(”]:
( [(0): '\b‘l’ ) "l"(r)]v [1_”: Oy * %y 0r]9 [1/2'—”_1‘; (STIRAR 0',,.]:
[@):¢'T; -« =5 [(07): 67];
[(d): &' - - -5 [(d7): 0]

or equivalently

z,(sin 6)*1, « - ., 2z,(sin 0)2”7) R

200\ 2n)! (p+2n+ D (pe+n+1
113 (=D ( )('n,!) . F(2ﬂ—l)-2§f+l) 4
_ VT (esc 07 & cos 1—2k)0 O M2 (2, )5+ o5 (17, 07)
() k= KI(I—k)! A+2,C+2:[B, D']; ---; [B", D]
([l—y—k.0, -, 0], [1-v+k—1:0, -+, 0], [(@): 6, ---, 0"]:
( [): 'y eee, ], [L—v: 0y -+, 0,), [L—v:0y, -+, 0,]:

F,lz, -+, 2,] P& (cos 6)
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[(0): g']; <=5 [(B7): 67];
[(@):7T; -+ [(d7): 07
provided that 0<0<x, and

2,(sin )1, «+ ., z,(sin ﬁ)z”r) ,

1.14) Re (4—20)<1+2 X 0., ,

@, ++-, a, being given by (1.8).

Remark 1. A number of interesting variations of the orthogonal
expansions (1.12) and (1.13) can be given in a rather straightforward
manner. For example, if we define G,[z, ---, 2,] by

0, n+1: (2, V); -« -5 (7, v™)
(1.15) Gz, -, zr]:HA+3, C+3:[B, D']; -+-;[B™, D]
[1—-p+yv—mnioy, -+, 0l [(a): 0, -, 67] [vio, -+, q,],
<[(c): "l",’ ] "l"m]’ [1_#"_”: gy 0y O',], [”+l/2: (JTIARS ar]’
PAntltlioy oo ol (@) gL o5 [0 07 >
+A+1)/2: 0, +oe, 01 [(@): 8 -5 [@): 5% 7 7%
and assume that, for some 7, +--, 7,,

2

)

=0(z"+ |2,/ ,  A=£0,  min{fz, «-, 2/} >0,

0’ Al ,y ' Yty (r)’ o
116) H (¢, v) (", )
A, C:[B, D'; --+; [B™, D]

which evidently would complement the second part of the asymptotic
expansions in (1.7), we shall readily obtain the expansion formula

& (2nA D\ @) (e2n+ D)4+ 1) A pu
19 %%y % " 0
(L.17) z( : ) L B DA 06 -, 2P o8 )
_Vm (ese )™ i (L—cos )" o 0, (¢, V)« o5 (™, ¥7)

2T = kIU—k)!  A+2, C+2:[B, D']; ---; [B", D]

( [(a): 0’» ) 0(”]: [DZ Oy *0 0y 0',.], [D+IG+1/2. Oy 0y or]:

[(C): "#’, M) "al’\(”L [”+(k+l)/2 Oy =y 0',.], [”+(k+l+l)/2 Oy **°y 0',.]:
[®):¢'T; « -5 [(07): ] oy o,

[(d’): 6,]; v [(d(,)): 5(,.)]; ZI(CSC 0) ’ ’ Z,.(CSC 0) > ’

or equivalently

& (2n+0\2n)! (t+20+ D (+n+1) "
(1.18) ,Zs ( l ) n! F(2#+2n+l) Ty zu . » zr]P2n+l(coS 0)

:V?(csca)w-”icos(l—zk,)ﬁH 0, M+1: (¢, V)5 o5 (147, ™)
2¢70(p)  E= kI(I-K)!  A+3,C+3:[B, D']; - +; [B", D™]
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< [”: Tyt oy ar]y [(a): 0" %y 0(r)]’ [”; (JTRRRD 0.1']7 [”+1/2° Oy 0',.]2
[(6): "F”’ * %y "/"(r)]’ [”+k: (TR ar]’ [”—k+l: (TR 0',.], [”+1/2: [ZTRARN or]:
[(0): ¢']; - - =5 [(0): 615
[(@): 8; + -3 [(@): 8
provided that 0<0<m, 0,>0, \<0, 4,>40,, |arg (z,)|<n(4,—40,)/2,
vie(l, «--, 7}, and

z,(csc )%, ««., z.(csSC 0)2"r> ,

(1.19) Re (u—2)<1—23 0,7, ,
=1

where \,;, 4; and 7, are given by (1.4), (1.5) and (1.16), respectively.

Remark 2. The confluent cases of the orthogonal expansions (1.12),
(1.13), (1.17) and (1.18), when 0,]0, Vj+4, will obviously lead to ex-
pansion formulas in which the parameters corresponding only to the
H-function variable z,, 1<¢<7, are affected, and we omit the details.

2. Proof of the theorem

In order to establish the expansion formula (1.12) or (1.13) as a
Jormal identity, we begin by replacing F,[z, ---, z,] on their left-hand
sides by its Mellin-Barnes contour integral derivable from the defini-
tion of the multivariable H-function involved (¢f., e.g., [6], p. 130, Eq.
(1.3)), change the order of integration and summation (which can easily
be justified when the integral and the series are absolutely convergent),
and simplify the resulting summand by applying Legendre’s duplica-
tion formula: '

(2.1) V' rI'(22)=2""T"'(2)[(2+1/2) .

Denoting the first member of the expansion formula (1.12) or (1.13)
by 2(6), we thus find that

1 Cle s oplr
reerd IR I SRR N S N STRES
VT rr(l—;z+v+4)r(2v+24+l)i(_l),, 2n+1\(2n)!
2zy+24+l—1L r(v+ A) =0 A n!
% (420 +0I(p+n+1)
ree+2n+0)ry+4+n+1+10)rA—p+y+4—m)

2.2)  20)=

X Py’ (cos 0)}%1- --dg, ,

where w=1v"-1, 0,,), ©=1, ---,r, and ¥, ---,{,) are defined by
Equations (1.4) and (1.5) on page 130 in the Srivastava-Panda paper
[6], and, for convenience,

(2.3) 4d=0l,++--+0,, .
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Now the series on the right-hand side of (2.2) can be summed by
appealing to Askey’s formula [2, p: 1192, Eq. (6)]

(2.4) P (cos 0)=(2 sin g)*# I'(rad—p+v)l'Cv+1)

')
% Z‘.( 1) 2n+l (2n)! (t+2n+DI(pe+n+1)
nl T@p+2n+DIE+n+1+ DI (1—p+v—n)

P{y(cos 0) ,

where, for convergence, 0<f<m and Re (#—2v)<1, and the resulting
ultraspherical polynomial P{**4(cos f) can be expressed as a finite sum
by using either the definition (1.9) or the known result (cf. [8], p. 95,
Eq. (4.9.19); see also [1], p. 776, Eq. (22.3.12));

v+k— 1><v+n—k—1
k n—k
v=+0, -1, -2, -.-).

On inverting the order of the (finite) summation and integration in
either case, if we interpret the multiple Mellin-Barnes contour integral
thus obtained as an H-function, we shall arrive at the identity (1.12)
or (1.13) as the case may be.

So far we have only shown that the expansion formula (1.12) or
(1.18) is a formal identity. We now proceed to demonstrate that (1.12)
and (1.18) are indeed valid under the hypotheses of the theorem.

First of all we notice that, since 0<0<7 and ¢,>0, Vie{l, ---, 7},
the inequalities in (1.4), (1.5) and (1.6) are sufficient to insure that the
H functions occurring on both sides of (1.12) and (1.13) are well
defined. On the other hand, the precise condition of convergence of
the infinite series in (1.12) or (1.13) may be determined by considering
the asymptotic behaviours of the ultraspherical polynomial P ,;(cos 6)
and the function F,[z, ---, 2,] defined by (1.11) for large » and fixed
I, 6, |y, v, and |2, ---, |2,|. The asymptotic estimate of the former
is well known, and it is easily verlﬁed from (1.7), (1.11), and the
familiar result

(2.5) P(cos 0)= Z < > cos (n—2k)0 ,

I'n+a) -1
2.6 —7 2 = *[14+0(n s n— oo,
(2.6) gy =L+ 00 )]
that, for fixed |2, « -, |2.],
(2.7) F,n[zl, e, Z,.]Nn'z(01a1+---+a,.a,-) R n—>co ,

where, as before, «,, -+, @, are given by (1.8).

These considerations will readily yield the hypothesis (1.14), and
the proof of our Theorem is evidently completed.

We remark in passing that the above method of derivation of the
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orthogonal expansions (1.12) and (1.13) would apply mutatis mutandis
to their variations (1.17) and (1.18), respectively. Indeed, Askey’s
formula (2.4) is used in its alternative (but essentially equivalent)
form: ‘

(2.8)  P#(cos 6)= (2 sin gL (O @v+1)

I'(p—v)I"(v)
2 [(2n+1\(2n)! ¢+2n+ DI (pe+n+DI(—v+n) .,
Xé( 1 ) nl Ir@e+2n+0Dry+n+i+1) Fiu(eos ),

where, as before, 0<6<7 and Re (#—2v)<1, and the hypothesis (1.19)
stems, among other things already indicated, from the readily verifi-
able fact that, for fixed |z, - - -, |2,|,

(2.9) G”[z“ cee, zr]~n2(017’1+'~+u7.n) R n— oo,

where G,[z, ---, 2,] is defined by (1.15), and 7, ---, 7, are given by
(1.16). We omit the details involved.

Remark 3. In the asymptotic estimate (2.9), and hence also in
the convergence condition (1.19), 7, can be replaced by the B, defined
by (1.8), =1, ---, », provided that =0 in each of the orthogonal
expansions (1.17) and (1.18).

3. Some interesting deductions

The expansion formulas (1.12), (1.13), (1.17) and (1.18) are quite
general in character. Indeed, these and their variations (indicated,
for example, by Remark 2) can be suitably applied to derive various
classes of (known or new) orthogonal expansions in series of ultra-
spherical polynomials (or their such special cases as Legendre poly-
nomials P,(x), the Tchebycheff polynomials T.x) and U,(x), the
trigonometric polynomials sinzx and cos nx, and so on) for a remark-
ably wide variety of useful functions (or products of several such
functions), which are expressible in terms of the E, F, G or H func-
tions of one or more variables. We do not find it worthwhile to give
the details of the analysis involved in deriving all of these special or
confluent cases of our results. For convenience of the interested reader,
however, we record here the following well-known relationships which
would enable one to deduce the aforementioned expansion formulas
(¢f. [1], pp. TT7-779):

@.1)  P(@)=Pi""(x), Tn(w)=—;—nPL°’(x) v U(@)=PP(@) ;

(3.2) P(eos )=S0+ D)8 = o o .
sin 0

and
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3.3)  P9(cos o):% cosnd, m=1238, -+ POcos)=1,
where, by definition,
(3.4) P(z)>=lim {P(2)/t4} ,
#0
or equivalently,
(3.5) lim (I'(#)PY"(cos )} =2 cos nf , n=1,2,8, -+~ .
p—0 n

For 1=0, the series on the right-hand side of each of our expan-

sion formulas (1.12), (1.13), (1.17) and (1.18) would obviously reduce to

its first term given by k=0, and we shall be led immediately to the
following simpler expansions:

A S. 6)21
(3.6) V' (ese ) H 0, n: (¢, V); -+ (7, ') ( H:l )
. 221 (1) A, C:[B', D']; --+;[B™, D] E
z,(sin 6)%r
=3 (-1 (in')! (w; ?;21;% M) e, -+, 2,)PL(cos 6)
and
@mn YElseH g 0, h: (¢, V)5 -+ (127, 1)

¢ () A+2,C+2:[B, D']; --+;[B7, D]
([(a)l 0,7 ) 0(”]3 [”: Oyt O',.], [”+1/2: Oy * 0y or]:
[(c): "/’\'7 M ’\b‘(r)]’ [UZ Oy Gr]’ [”+1/2: (TR 0',.]:
[®): ¢'1; - =5 [07): 6715
[(@): 87T -5 [@7): 8
-5 (2n)! (p+2m)[(Y+1) x Ve P 6
%2;5 n! 1_,(2#_{_2%) Jn[zu ’ zr] on (COS ) ’
where, for convenience,
F:[zu 0y zr]an[zn Ty zr]ll=0
G;f[zu Tty zr]:: Gn[zu ttty z'r]ll=0
F.lz, -+, 2] and G,[z, -+, 2] being defined by (1.11) and (1.15),
respectively.

Formulas (3.6) and (3.7) are valid under the same hypotheses as
those of their parent formulas (1.12) and (1.17), or (1.13) and (1.18),
respectively. {See also Remark 3 of the preceding section.} As a
matter of fact, such expansions as (3.6) and (3.7) can also be obtained

directly by applying the familiar orthogonality property of the ultra-
spherical polynomials in conjunction with Lemma 1 on page 171 of the

z(cse 6, « - -, z,(csC 0)2‘")

(3.8)
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earlier work [7, Part II], without using Askey’s result (2.4) or (2.8).

Two further consequences of (3.6) and (3.7) are worthy of mention
here. For example, if we multiply both sides of (3.6) by I'(p), set
v=0/2, replace 6 by 6/2, and proceed to the limit as #£—0 using (3.3)
and (3.5), we shall obtain the elegant result

2, sin 6 >201
1

2
0\ 1 O he (f,V); +e e (), w7

3.9) (Sln3> HA, C: [B', D']; -~ -; [B™, D] : g
2 (sin2)
1 g Ol () (1 v‘”)([(l——p)/Z: Oy o0+, 0n,
1/71' A—I—l, C+12 [B', D']; cees [B('), D(r)] [(C): "l",r cen, ,]l,\(r)]’
(@20, ooy 070 [0): 9T -5 (67067
[—p/2:04 -, 0] [(d): 015 « - -5 [(d): 6]; ™ ° 7"
(=17 [2y <=+, 2,] cosnb , 0<o<2r ,

iMs

2
Y

where
0, M2 (8, 0); o (17, p)
@10 e e ml=H, o oy [B', D']; - +; [B™, D]
([—P/Zi Oy +e2, 0., [(A=p)2:0, -++,0,],  [(@):6, -+, 0"]:
[©): 4’y e ooy 4], [-n—p[2: 0, + -+, 0], [0—p/2: 0, +++, 5,]:
[(): 65 =« 5 [(07): 6] o
[(@): 0]y - <5 [(d"): 6]; ™

and, for convergence of the infinite series in (3.9),

° % zr) ’ ngl,

3.11) Re (0)>—1-23, o,

a, -+, a, being defined by (1.8).

On the other hand, if in (3.6) we set x=1 and v=1+4¢/2, and
appeal to the known relationship (38.2), we shall get the interesting
formula

2,(sin 6)*
. O, A (#’, D’); cees (#(7’), ”(1')) .
3.12 Oy H .
( ) (sin.6) A, C:[B, D;---;[B™, D(r)]( )

z,(sin §)¥-

=1/i?2(—1)”[';"[z1, oo, z]sin@n+1)8,  0<d<r,

where, for convergence,
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(3.13) Re (0)> —2(1+§ aiai) ,
and

« 0, M2 (4, V)5 - e e (7, 07)
(3.14) 'z, - -, zr]=HA+2, Ct2: (B, D']; - -; [B™, D]
( [—o/2:0, +--,0,], [1—0)2:0, --+,0,] [(a): 6, -+, 0]
[e): 9y < ooy 7], [-n—(0+1)/2: 0, - -+, 0,], [n—(0—1)/2: 0} - -+, 0,]:
[@):6'T; « =5 [(07): 675 .
[(@): 8'F; + -+ [(@™): 8]; ™

Similar consequences of the orthogonal expansion (3.7) can be derived
in a similar manner, and we leave the details as an exercise to the
interested reader.

The trigonometrical Fourier series (3.9) and (3.12) for multivariable
H functions were given earlier by Srivastava and Panda [7, Part II,
p. 179, Theorem 3], who indeed considered the general problem of
orthogonal expansions for the H-function (1.1). {See also [6], p. 137,
Theorem 3; p. 188, Theorem 4; p. 140, Eq. (5.2).} Other known special
cases* of our main results in this paper include the expansion formula
[3, p. 527, Eq. (2.1)], which follows readily from (1.17) when =2 and
v=1, and its alternative (but essentially equivalent) form [4, p. A40,
Eq. (2.1)], whose corrected version (without any redundant parameters)
is substantially the same as our formula (1.18) with, of course, r=2
and yv=1.

Finally, we should like to remark that, with each of the coefficients
listed in (1.8) equated to 1, and with o,=N, Vie{l, ---, r}, where N
is an arbitrary positive integer, our main expansion formulas as well
as their various special or confluent cases discussed in this paper can
be reduced to the corresponding results for the relatively more familiar
G-function of several complex variables.

---,zr>, n=0.
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