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§0. Introduction

As is well known, E. Noether recognized the importance of the
concept of representation module and restated the classical representa-
tion theory by G. Frobenius and W. Burnside module-theoretically.

Usually we consider representations over a field, and many fertile
theorems can be obtained from this direction. On the contrary, the
so-called integral representation isc complicated by the fact that the
useful theorems no longer hold. It is well-known that the Krull-
Schmidt theorem does not hold for finitely generated modules over a
Dedekind ring. By Berman-Gudivok [8]**, the ecancellation theorem
need not be true for Z[G]-modules, where G is a cyclic group of order
P»* (p: an odd prime). Furthermore, by results of R. Swan [7], the
cancellation theorem is not necessarily true for the category of projec-
tive Z[G]-lattices, where G is a generalized quaternion group of order
32. In this aspect of the cancellation theorem, H. Jacobinski [1] ob-
tained the extremely remarkable results.

The Section 1 of this note consists of the presentation of notations
and definitions concerning abelian categories with decomposition theory.
We need the supplementary hypothesis on abelian category for the
later discussion. In the Section 2, we shall give an example of the
Grothendieck group associated with a decomposition theory in cate-
gorical formulation. The Proposition 2.3, which is essentially related
to cancellation, will be proved without difficulty. The Section 3, the
origin of this note, is the main part of our cancellation theory. In
this section, we introduce some new concepts and investigate the
cancellation theorem for certain categories. The concepts of Section 3
are applied in the Section 4 to modules which are finitely generated
torsion-free over a ring of algebraic integers.

Our main Theorem 4.1 gives a certain characterization of linkable
pairs using the class number of algebraic number field.

* The author is grateful to Prof. Kin-ya Honda for reading the manuscript of this
note and for his many suggestions for its improvements.
**  Numbers in brackets refer to the references at the end of this note.
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Throughout this note, in order to generalize the propositions as
possible as we can, we resort to categorical notations. We use the
terminology “property” instead of “proposition”, when it is a im-
mediate consequence of the preceeding definitions. Therefore, the
proofs of properties are omitted.

§1. Preliminaries of notations

It is clear that if the Krull-Schmidt theorem holds, then so does
the cancellation theorem. Of course, the Krull-Schmidt theorem for
modules over a ring asserts under suitable conditions the existence
and uniqueness of indecomposable factors up to operator isomorphisms.
However we say the Krull-Schmidt theorem holds with respect to a
given module M, when this module M can be uniquely decomposable
into indecomposable submodules up to operator isomorphisms. In a
category €, if the Krull-Schnidt theorem holds for every object in €,
then we say that the Krull-Schmidt theorem holds for €.

On the other hand, we say that M eOB(€) is cancellative in a
category €, if every relation MPX=NPX with X, NeOB (€) implies
M=N. Furthermor, if every object in € is cancellative, we say that
the cancellation theorem holds for €. One of our purposes is to in-
vestigate the conditions under which the cancellation theorem holds
for a given category. For the sake of this, we introduce some ter-
minologies and use the sheaf-theoretical ideas.

We recall briefly the definitions and elementary properties of abelian
categories, but for full details we refer to A. Grothendieck [6].

Definition 1.1. A decomposition of an object M=MP---PM, is
called a Remak decomposition of M, if each M, is indecomposable and
non-zero.

Definition 1.2. An abelian category € is called AB3)-finite, if
there exists in € the direct sum of any finite number of objects in €.

Definition 1.3. A bi-chain of a category € is a sequence of
triples {A4,, ., p,} with the following properties.

(i) A,eO0B(€) (n=0);

(ii) 4,: A,—A,_, is a monomorphism (n=1);

(iii) p,: A,,— A, is an epimorphism (n=1).

Definition 1.4. A bi-chain {A4,, %,, »,} is said to terminate if there
exists an integer m such that, for all n=m, p,i,=id,, and i,p,=id,, ..

Definition 1.5. The bi-chain condition holds in € if every bi-chain

of € terminates.
There is the following well-known fact, which is found in N.

Popescu [9].
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PROPOSITION 1.6. If the bi-chain condition holds im an abelian
category €, then any object of € admits a unique Remak decomposition.

Therefore, in Section 3, we are going to discuss the cancellation
theorem for a special type of abelian categories which does not neces-
sarily satisfy the bi-chain condition.

§2. An example of the Grothendieck group

From now on, unless otherwise specified, the symbol € denotes
AB3)-finite category and any object of € admits a Remak decomposition.

Let _#(€) be the subcategory of € whose objects are all the in-
decomposable objects in €. And let _#[€] be the isomorphism classes
in _#(€). We can define the canonical identical correspondence

. F—C,

where &% denotes the free monoid whose generators are objects in
Z€].

Choose N={€;};., (a family of subcategories of €) satisfying the
next three conditions.

(i) each €, has at most finite isomorphism classes;

(ii) every object of € is an object of €; for some \ € 4;

(iii) €;, €,ell implies €,+C,ell, where we define the sum of two
subcategories to be the subcategory whose objects are M, PM, with
M; € OB (€,;) and M, OB (€,).

Remark. For instance, let € be the full set of lattices over an
order in a semi-simple algebra over an algebraic number field which
is the quotient field of a Dedekind domain. Then the family of genera
of € preserves our three conditions (See H. Jacobinski [1]).

Now, for two correspondences
0; 7 €— FHA,

we define the equality o,=7, if it holds M, =M., after a suitable re-
ordering of the suffixes 1=<¢=<r for all M OB (€,), where » depends
on M,

GX(M)ZMal@' ° '@Mar ’
T(M)=M.D--- DM, .

Let I'(€, &%) denote the family of all the correspondences o;:
€,— % such that wo,(M)=M for all MeOB (€)).

Definition 2.1. For o0,e€I'(€,, &%) and o,e'(€, &%), we define
addition 0,40, by

(0:+0,)(M;DM,)=0,(M)Do,.(M,)
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with each M;cOB(€;) and M,c OB (€,).

Then this addition is well-defined, and o,+0,¢I'(€,+€,, .%%). By
the condition (iii) on U={€}},.,, we can make I'(1l, .%)={I(€,, s en
to be a monoid. Hence we can define a kind of Grothendieck groups.

Definition 2.2. Let G(I'(1,.%)) be a commutative group generated
by symbols [0,] (¢6; € I'(€, %), €, €, \ € 4) with relations [a,]+[c.]=][0.],
where €, +€,=€, el, \, g, ve .

PROPOSITION 2.3. The canonical map

7: I'Q, HA)— G, %)) 1s injective.

Proof. It is sufficient to show that the cancellation theorem holds
in I'W, .4). (For the reason, see S. Lang [4], p. 43-44.) Suppose that
0,+0,=7;+0, i.e., 0,(M)Po(M,)=1,(M)Po.(M,) for all M,cOB (C)
and all M,c0B(€,).

We can put

al(Ml):Mql@' ° '@Mol'r ’
aﬂ(Mﬂ):Mou@' : '@Ma‘us ’
TZ(MZ):Mql@' ° .@Mrp' ’
where M,,;, M, ;, M., € Z[€] 1=i=r, 1<j<s, 1Sk<7).
Then there exists a bijection
P: §D,ca:{]l[nu ) Ma;r’ Ma'uv cee, M, s}

u
——>§IRT={M,.21, ) MT/I"’ Ma,,l; ) Maﬂs}
such that M=@(M) for all MecIM,.

If there exists an indecomposable M, in OB (€,), then ¢.M,)=
Ma/ll € f[@]y and ED’ea:'{]l[nu ) an Mo‘ul}’ .EIR,.Z{MQI, ) Mrlr’ Malul}
(i.e., s=1). Let M, ={M, -+, Mi}={Me M,,IM;Mayl}:{Me M\M=M, .}
and E)R;:EIR,,\{M%}, ED?;zilR,\{M,,#l}. In both M. and M., there exist
(k—1)’s indecomposable M; which are isomorphic to Mayl. On the other
hand, we have a bijection

s EDQ;\EIR‘,F—ﬁR;\ED%,,# .
which is a restriction map of ¢:IM,~M.. Therefore we have
M@ @M, , =M. B DM, for all M,cOB ).
In general, we cannot deduce that there exists an indecomposable
M, in OB (€,). But the same discussion is available. For s>1, without
losing the generality, we can assume that

MaylgMong .......... EMV,M
_,c;MvwilH; .......... ;Mvﬂ,i1+'lg
;Mﬂy’iﬁizﬂg .......... EMoﬂ,i1+i2+i3
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Apply the former discussion for each M, ; (j=1, 4,+1, 4, +%,+1, ---,
s—1,—1). Then we get a bijection
P M—M,
where E);R;:wea \ {Ma,‘u Tty Mu#s}, EIR::EIRT \ {Moﬂv °t Ma#s}'
Hence M, ,®---OM,,=M.,D---DM,,. for all M,c0B(E)), i.e.,
0,=1;. This proves the proposition.

§3. The cancellation theorem

We keep here the notations explained in the preceding sections.
For any fixed M<cOB(€), let w~*(M) denote all the decompositions
D(e &%) of M into indecomposable factors. We shall give some ele-
mentary properties of the following concepts.

Definition 3.1. Let D,, D;e w (M) be decomposition M,D---P
M,,, M;®D---@M;, respectively, where each M, M;,c ~[€] ALILy,
1<m=s). A pair [D,, D;] will be called a redundant pair, if

M.®D-- - OM,, =M;D---DM;,
Mi,r1+1@' : '@Mirg j,s1+1®' ° 'EBMjs

for some », 1=<7r,<7) and some s, (1=<s,<s) after a suitable reordering
of the suffixes. Otherwise, [D,, D;] will be called a irredundant pair.

Definition 3.2. Let # (M) be all the irredundant pairs [D,, D,]
about M. The family of all &# (M) (M OB (€)\ _#(€)) will be called
the relational data of the decomposition theory of €, and we denote
it by & (€). By the decomposition data of €, we understand the
pair {#[€], #(€)}.

PrOPERTY 3.3. If the Krull-Schmidt theorem holds for €, then
F (M)=@ for all McOB(€)\ _~(€).

Definition 3.4. Let M, N;e #(€) (1<:<1,1<5<m). We say
that the decompositions M,@P---@PM, and NP---PN,, are relatively
prime, if and only if M;% N; for every 7 (1<1=<!) and every 7 1< j<m).
Then we write (M,P---BM,, NH---PN,)=1.

PROPERTY 3.5. Suppose that the cancellation theorem holds for
C. If # M)+, then for every pair [D, D;le & (M), we get
(Dyy Dj)=1.

Put #(€)={[D,, D;]e & (€)|(D,, D;)=1}, then we can restate the
above property 3.5 as the following statement.

PROPERTY 3.6. If the cancellation theorem holds for €, then
F(€)=F(€).

Definition 3.7. Write n(M)=min{r;e N\M,D--- DM, c w (M)},
and we call it the minimal indecomposable number of Me OB (€).
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PROPOSITION 3.8. Suppose that 7,(€)=7 (€). Then MPHX=NPX
implies M=N.

Proof. In order to prove our proposition, we have only to prove
the following statement;

* If Xe #@) and MPX=NPX, then M=N.

Admitting this, we get MPX' = NPX' for some X’ ¢ OB (€), where
X=X'pX, and X,€ “[€]. To show that M=N, we note that -there
exists a Remak decomposition of X, by the assumption of € in the
beginning of §2. Thus our propostion is valid by the induction on
n(X).

It remains to prove (*). We shall use the induction on r=n(M).
If r=1, then (*) is obvious. Thus we assume that r=n(M)>1 and
s=n(N)>1. Let M=M@ - --PM, and N=ND---PN,, where M,, ---,
M, N, ---, N,e Z[€]. Then [M,D---OM,DX, ND---DON,PX] must
be a redundant pair, because of the assumption % (€)=.# (€). There-
fore we have the following two cases:

(a) M®D---DOM, =ND---DN,,
M”H@ e EBM,@XE N31+1@ te EBNsEBX
for some r(1=7,<7) and for some s,(1<s,<s) after a suitable
renumbering of the suffixes.
(b) Ml@' * '@M¢12N31+1@' ° '@NS@X
M. ©---OMPX=ND---DN,,
for some 7,(1=7,<7) and for some s,(1<s,<s) after a suitable
renumbering of the suffixes.
In case (a), we get M, @D---PM,=N, ,,P---@DN, by the inductive

hypothesis on n(M, .. D - PM,)<r—r,<r. It follows immediately
that M=N. In case (b), we deduce that

M=(N, @ - ONOXDM, .- OM,
= 31+1@ e @Ns@(Mr1+1® e @MT@X)
=N.

This completes the proof of (*). Hence our proposition has been proved.

Definition 3.9. Let D, D;e w™*(M) be two decompositions of M.
A pair [D, D;] will be called linkable if and only if there exist
Du ] Dk € W—I(M) such that [Du Dl]! [Du Dz]’ [Dzy Ds]’ ] [Dk—n Dk]’
[D,, D;] are redundant pairs.

Definition 3.10. Let 22°(M) be all the non-linkable pairs [D,, D;]
of # (M). The family of all 22 (M) (MeOB(€)\ _~(€)), which is
trivially contained in & (€), will be denoted by S#(€).
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ProPERTY 3.11. If [D,, D,] is a redundant pair, them it is of
course linkable, i.e. non-linkable= irredundant.

§4. Application to algebraic number fields

We shall apply the preceding concepts to the following case.

Let K be an algebraic number field, and let € be the full set of
the fractional ideals in K. The motivation of our discussion in this
section is the classical Steinitz-Chevalley-Kaplansky [10] theory of
modules over a Dedekind domain. The following is our main result
in this note.

THEOREM 4.1. Let hy denote the class number of K. Then the
Jollowing conditions on hy and 7 (€), 57(€) are equivalent:

(1) hx=2.

(i) F(€&)=2£(€) (i.e. every linkable pair is always redundant).

Proof. Step 1. (i)=(ii).

First recall the classical theory. Let D,=NP---PA, and D,=
OFD- - - PO PY,---A,, where each 9, is a fractional ideal of K
(I=i=7) and O =-.-=0¢ V=0, denote the ring of all algebraic
integers in K. By the well-known Steinitz’s result of modules over
a Dedakind domain, we can assert that D,=D,, and that [D,, D,] is
linkable if r=8. In general, for n(M)=r=2, it is trivially verified
that the linkable pair about M is necessarily redundant.

Now we proceed the proof of Step 1. Let [D,, D,] be a linkable
pair, where D,=%@D---@BY,, D,=AP---PA,, for r=3. If he=1,
then the statement (ii) is obvious by the definitions in Section 3.
Therefore, let hx=2 and let B be a fixed non-principal ideal of K.
Without loss of generality, we may assume that

mlg%l ] 91815%, S‘)’Isl+1E@K’ Tt mfrEQK ’
5)1;5%, ] %;25%; S)’[:'32+1E£)K’ ) m;E’DK ’
8,=8, .

By the classical theory, ---%, and Aj---A;, are contained in the
same ideal class. Hence s,=s,(mod. 2). In case s,=s, we easily
deduce that [D,, D,] is redundant. If s,>s,>0, then AD- - -PA;,=
AD---PY,, and «A,..P-- DA =, . D - -PU(0<s,<7), therefore
[Dy D,] is redundant. (We note that s,—s, is even and that BPB=
OcDBB=0xPDOk.) If 5,>5,=0, then WPA,=A,PY, and AP- - P =
UsD- - -DA,, since s, is even and 8,=2, r>2. Thus [D, D,] is always
redundant. This complets the Step 1 of our proof.

Step 2. (ii)=().

We have only to prove that h,=3 implies .7 (€)257(€) (i.e. there
exists a linkable pair which is not redundant).
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Let Cx be the ideal class group of K, and C, be a cyclic group
of order me N. We classify the following three cases;

(a) Cx=C,.

(b) Cx=C,xC,.

(e) Cx=C, or |Cg|=5.
In case (a), let D,=APADPY, D, DK@QKGBSK, where A e €, (A} = Ck.
In case (b), let D, =APBPUB, D,=0xPO DOk, where U, Be €, ([AP x
[B])=Ck.
In case (c), let D,=APADPYA, D,=O0DOPA, where Ac €, {[AD=
Cr=C,.
If |Cx|=5, we decompose as Cx=[U,]> X (U] X « + + X [U, ) = Cper X Cpea X
CpgsX v e+ X Cyer (since Cy is a finite abehan group), and pfl+p§2+ -+
pir—r—1=2, where ICK pflp"z--- + (p, *+++, », are not necessarily
distinct primes) and 2, ---, A, € €. In this case, let

mm@ @m(rll 1)@9{(1)@, . -EBQI(”? 1)@, . ,@%(1)@, . ,@Q{(per 1
D §D<1>@;§:}(2)@ @D(pll+ c+p, or—r— 1)@2(1»11 19{1»22— .o ,mpef—l
where for each #(1<i<7), UL =UF =9, (1=j, lcgp,-z—l) and Of =
>D(z) — e s e — D(pll+ —Ho,.f—r 1) _DK.
In any case, [D,, D,] is linkable by the consequence of the Steinitz’s
theorem, however [D,, D,] is never redundant. Thus the Step 2 is
proved. This completes the proof of our theorem.
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