p-Pure enveloppes of pairs in torsion free abelian groups

by

K. BENABDALLAH* and A. BIRTZ

(Received October 30, 1979)

With the work of O. Mutzbauer [2] there seems to be a renewed interest in rank two torsion free abelian groups. In this article, we give the structure of the smallest p-pure subgroup containing a given pair of independant elements of a group. Such a p-pure subgroup is called the p-pure enveloppe of the given pair. We define the p-indicator of an ordered pair or elements. This turns out to be a p-adic number together with a pair of non negative integers or ∞ . Although p-adic numbers seem to crop up in various ways in the study of rank two groups (see [2] and [3]) our method of obtaining them involves only the rather natural concept of variations of p-heights of certain sets of elements. Aside from the structure of p-pure enveloppes we give also some results on their endomorphism rings. Finally we establish a formula for computing p-heights of linear combinations of a pair of elements in terms of their coefficients and the p-indicator of the pair. The notation and symbols used here without explanation follow closely [1]. $Z^+ = \{n \in Z \mid n > 0\}$ and $Q^{(p)} = \{a/b \mid b = p^n, n \in Z^+\}$.

1. The p-indicator of an ordered pair of elements

Throughout this section G is a fixed torsion free group.

Let $a, b \in G$ and let $h_p^G(a) = \alpha$ and $h_p^G(b) = \beta$, where p is a prime number. We will use the preceding notation all through this section. If α and β are finite then there exists an element $y \in G$ such that $p^\beta y = p^\alpha b$. Such a y is unique and is denoted by $p^{\alpha-\beta}b$. We want to study the behavior of the p-heights of elements in G of the form a+ny where $n \in \mathbb{Z}^+$. In order to avoid constant consideration of special cases, we agree that, if α or β is infinite, we set n=0. We chose to study the elements a+ny because they reflect faithfully the variations of the p-height of all other combinations of a and b in the sense of the following lemma.

LEMMA 1.1. Let $a, b \in G$ and let $a' \in \langle a \rangle_*$ and $b' \in \langle b \rangle_*$. If for some $r \in \mathbb{Z}^+$, $h_p^G(a'+b') \ge h_p^G(a') + r$ then there exists $n \in \mathbb{Z}^+$ such that $0 \le n < p^r$ and $h_p^G(a+ny) \ge \alpha + r$.

^{*} Work done under C.N.R.S.C. Grant no A5991.

Proof. If r=0, we take n=0. Let then r>0. If $\alpha=\infty$ there is nothing to prove, so we may suppose $\alpha<\infty$. In this case, $h_p^a(a')$ is also finite and since $h_p^a(a'+b')>h_p^a(a')$ we must have $h_p(a')=h_p(b')<\infty$. It follows then that $h_p(b)=\beta<\infty$. We have thus reduced the problem to the case where r>0 and $\alpha,\beta<\infty$. Let $a'=up^sa$ and $b'=vp^tb$ where $s,t\in \mathbb{Z}$ and $u,v\in \mathbb{Q}_p$ and $v_p(u)=0=v_p(v)$. Upon multiplying by the common denominator m of u and v, we may assume that $u,v\in \mathbb{Z}$. (Note that (m,p)=1 so $h_p(ma')=h_p(a')$.) Now, $h_p^a(a')=s+\alpha< h_p^a(a'+b')$ and $p^{-s}(a'+b')=ua+vp^{t-s}b$ is an element of G whose p-height in G is $\geq r+\alpha$. Let $\gamma,\delta\in \mathbb{Z}$ such that $\gamma u+\delta p^{r+\alpha}=1$ then $\gamma ua+\delta p^{r+a}a=a$ and $\gamma(ua+vp^{t-s}b)=a+\gamma vp^{t-s}b-\delta p^{r+\alpha}a$ is also of p-height in G greater or equal to $r+\alpha$. Therefore

$$(1) h_n(a+vp^{t-s}b) \ge r+\alpha$$

however $s+\alpha=t+\beta$ and thus $t-s=\alpha-\beta$.

Let $y=p^{\alpha-\beta}b$ and since $h_p^G(y)=\alpha$, we let $n\equiv \gamma v(p^r)$ such that $0\le n< p^r$ and obtain that $h_p(a+ny)\ge r+\alpha$.

For an ordered pair $(a, b) \in G \times G$ we consider in the notations used above the following set:

$$I_p(a, b) = \{(n, r) | h_p^G(a+ny) \ge r + \alpha \text{ and } 0 \le n < p^r, r \in \mathbb{Z}^+ \}$$
.

This set has some interesting properties which are listed in the following:

PROPOSITION 1.2. Let $I=I_n(a,b)$ then:

- $(i) (0,0) \in I$,
- (ii) (n, r) and $(m, r) \in I \Longrightarrow n = m$,
- (iii) $(n, r) \in I \text{ and } r > 1 \Longrightarrow \exists m \in \mathbb{Z}^+ \text{ such that } (m, r-1) \in I.$

Proof. (i) is obvious.

- (ii) If r=0 or $\alpha=\infty$ there is nothing to prove in as much as m and n must be zero. However if r>0 and $\alpha<\infty$ then $h_p(ny)=\alpha$ and ny-my=(n-m)y=(a+ny)-(a+my) is of p-height greater or equal to $r+\alpha$. Now since $h_p(y)=\alpha$ we must have $n\equiv m(p^r)$ and since $0\leq n, m< p^r$, we have n=m.
- (iii) Here again we need only consider the case where $h_p(a) = \alpha < \infty$. Let $h_p(a+ny) \ge r + \alpha < \infty$ and r > 1. Dividing n by p^{r-1} we have $n = kp^{r-1} + m$ where $0 \le m < p^{r-1}$ and $k \in \mathbb{Z}^+$. Then, $a + ny = a + my + kp^{r-1}y$ and since $h_p(kp^{r-1}y) \ge r 1 + \alpha$ we must also have $h_p(a+my) \ge r 1 + \alpha$. Clearly $(m, r-1) \in I$.

In view of the preceding proposition, we see that if we write $n_i=n$ if $(n, i) \in I_p(a, b)$ we obtain a sequence of non-negative integers with the following properties:

LEMMA 1.3. Let $I=I_p(a, b)$ and let $l=l_p(a, b)=\sup\{r \mid (n, r) \in I\}$ and write $n_i=n$ if $(n, i) \in I$ then $n_0=0$ and

$$n_{i+1} = n_i + s_i p^i$$
 where $0 \le s_i < p$ for all $i < l$.

Proof. From proposition 1.2 (ii) the n_i 's are well defined and by (i) $n_0 = 0$. Again by (ii) there is an n_i for all 0 < i < l+1 (as usual if $l = \infty$ we let $\infty + 1 = \infty$). Clearly $n_{i+1} \equiv n_i(p^i)$ therefore $n_{i+1} = n_i + s_i p^i$ and we need only show that $0 \le s_i < p$. Let $s_i = kp + r$ where $0 \le r < p$, then $0 \le n_i + rp^i < p^{i+1}$ and $h_p(a + (n_i + rp^i)y) \ge i + 1 + \alpha$, $(a + n_{i+1}y = (a + (n_i + rp^i)y) + kp^{i+1}y)$ therefore $n_i + rp^i = n_{i+1}$ and k = 0 thus $0 \le s_i = r < p$.

DEFINITION 1.4. Let $a, b \in G$ be as in the preceding development. The sequence $\{n_i\}_{i=0}^l$ described in lemma 1.3 converges to a p-adic number $\sum_{i=0}^l s_i p^i$ in the p-adic completion J_p of Z.

We set:

$$egin{align} \eta_{p} &= \eta_{p}(a,\,b) = p^{lpha-eta} \sum_{i=0}^{l} s_{i}p^{i} = \lim \, p^{lpha-eta}n_{i} \in K_{p} \ M_{p} &= M_{p}(a,\,b) = lpha + l_{p}(a,\,b) \in Z^{+} \cup \{\infty\} \ eta_{p} &= h_{p}^{G}(b) \; . \end{split}$$

Note that if either α or β is infinite we take $\eta_p=0$. K_p is the field of quotients of J_p . The triple (η_p, M_p, β_p) is called the p-indicator in G of the pair (a, b). When p is fixed we will drop the indices in such expressions. The p-indicator contains a good amount of information about the way the elements a, b sit in the group G. We describe this more precisely in the next section.

2. The structure of the p-pure enveloppe of $\{a, b\}$

Let $a, b \in G$, we denote by $\langle a, b \rangle_p$ the *p*-pure subgroup of G generated by $\langle a, b \rangle$. Note that $\langle a, b \rangle_p / \langle a, b \rangle$ is simply the *p*-primary part of $G/\langle a, b \rangle$, thus if rank (G)=2, $G/\langle a, b \rangle=\bigoplus_{p\in P}\langle a, b \rangle_p / \langle a, b \rangle$. This last equation implies that the knowledge of $\langle a, b \rangle_p$ is useful in the study of rank two torsion free groups. We proceed to the description of the generators of $\langle a, b \rangle_p$ in the following:

LEMMA 2.1. Let $a, b \in G$, n_i, s_i, l be as in lemma 1.3. Let

$$x_i \!=\! p^{-i-lpha}(a\!+\!n_ip^{lpha-eta}b)$$
 , $0\!\leq\! i\!<\! l\!+\!1$ then :
 (1) $\langle a,b
angle_p \!=\! \langle \{\{x_i\}_{i=0}^{i=l},\,p^{-eta}b\}
angle$.

Moreover $x_i = px_{i+1} - s_i p^{-\beta}b$ for $0 \le i < l$.

Proof. We recall the following notation: $\langle p^{-\alpha}x\rangle = \langle \{p^{-i}x\}_{i=0}^{\infty}\rangle$. This way of writing allows us to use the same formula even when either α or β is infinite and a quick check shows that in that case 1 is true. We assume then α , β finite and let $p^{\alpha-\beta}b=y$ then:

$$egin{aligned} px_{i+1} - s_i p^{-eta} b &= p^{-i-lpha}(a + n_{i+1}y) - p^{-i-lpha}(s_i p^i y) \ &= p^{-i-lpha}(a + (n_{i+1} - s p^i)y) \ &= p^{-i-lpha}(a + n_i y) = x_i \end{aligned}$$

for all $0 \le i < l$.

Now let $H_i = \langle x_i, p^{-\beta}b \rangle$ then $H_i \subset H_{i+1}$ and the right hand side of (1) can be written as $H = \bigcup_{i=0}^l H_i$. Clearly $a, b \in H$, and in fact $H \subset \langle a, b \rangle_p$. We need only show that H is p-pure in G. Let $g \in G$ be such that $pg \in H$ then there exists i such that $pg \in H_i$. Say $pg = nx_i + mp^{-\beta}b$.

After multiplying this equality by $p^{\alpha+i}$ and replacing x_i by its expression in terms of a and b we obtain:

$$p^{\alpha+i+1}g = na + nn_iy + mp^iy = na + (nn_i + mp^i)y$$
.

Now, using lemma 1.1, there exists n_{i+1} such that

$$h_{p}(\alpha+n_{i+1}y) \geq \alpha+i+1$$

therefore i < l, that is to say x_{i+1} exists and we can write

$$pg = npx_{i+1} + (m-ns_i)p^{-\beta}b$$
.

But $h_p(p^{-\beta}b)=0$ therefore p divides $m-ns_i$ say $pk=m-ns_i$ then, $g=nx_{i+1}+kp^{-\beta}b\in H_{i+1}\subset H$ and thus H is p-pure.

We are now ready to study the structure of $\langle a,b\rangle_p$. We do this by looking at the *p*-indicator (η,M,β) of (a,b) in G. There are two main cases according to wether η is rational or not. We begin by the case $n \notin Q$.

THEOREM 2.2. Let (η, M, β) be the p-indicator of the paire (a, b) where $a, b \in G$ are independent elements. If $\eta \notin Q$ then all non-zero endomorphisms of $H = \langle a, b \rangle_{\eta}$ are monomorphisms and

- (1) If η is not quadratic over Q then H is rigid and $E(H) \simeq \mathbb{Z}$.
- (2) If η is quadratic over Q then r(E(H))=2 and E(H) is a commutative domain.

Proof. Since $\eta \notin Q$, α and β are necessarily both finite and $M = \infty$. Let $f \in E(H)$, $f \neq 0$, and D a divisible enveloppe of H. Then f extends naturally to D and since $\{a, b\}$ is a vector basis of D as a space over Q, f is completely determined by its values f(a) and f(b). Let

(1)
$$f(a) = A_1 a + A_2 b$$
 and $f(b) = B_1 a + B_2 b$, A_i , $B_i \in Q$, $i = 1, 2$.

Recall that ker $f \neq 0$ if and only if $A_1B_2 - A_2B_1 = 0$. Without loss of generality we may assume that A_i and B_i are in $p^{2(\alpha+\beta)}Z$. Recall also that

$$x_i = p^{-i-\alpha}(a + n_i p^{\alpha-\beta}b)$$
 , (see Lemma 2.1) .

Then we have:

$$f(x_i) - (A_1 + n_i p^{\alpha - \beta} B_1) x_i = p^{-i - \alpha} [A_2 + p^{\alpha - \beta} n_i (B_2 - A_1) - (p^{\alpha - \beta} n_i)^2 B_1] b$$
.

The number between square brackets in the right hand side of this equation is an integer m_i such that $h_p^{\sigma}(m_i b) \ge i + \alpha$ and since $h_p^{\sigma} = \beta$, m_i must be a multiple of $p^{i+\alpha-\beta}$ for all i. Thus, taking limits in K_p we find that

$$(2)$$
 $A_2 + \eta (B_2 - A_1) - \eta^2 B_1 = 0$.

Note that every endomorphisme of H gives rise to an equation such as (2) even when $\eta \in Q$ provided α , β are finite and $M = \infty$. Now if η is not quadratic over Q, we must necessarily have $B_1 = 0$ and since $\eta \notin Q$, $B_2 - A_1 = 0$ and $A_2 = 0$, this means that f is simply a multiplication by A_1 . Therefore H is rigid and every non-zero endomorphism is a monomorphism. Further more the only possible multiplications are by integers since H contains elements of p-height 0.

Therefore $E(H) \simeq \mathbb{Z}$.

Now, if $B_1 \neq 0$ since $\eta \notin Q$, ker f = 0 for otherwise we have $A_1B_2 - A_2B_1 = 0$ and (2) gives $\eta = ((B_2 - A_1) \pm (B_2 + A_1))/2B_1 \in Q$, which is a contradiction. Therefore f is a monomorphism in all cases.

It remains to show that if η satisfies an equation of degree two with integral coefficients and $\eta \notin Q$ that E(H) is of rank two. Suppose η satisfies

(3)
$$C_0 + C_1 \eta + C_2 \eta^2 = 0$$
 with $C_2 \neq 0$.

Without loss of generality we may assume that the coefficients are in $p^{2(\alpha+\beta)}Z$. Let $C_2=-B_1$, $C_1=B_2$, $C_0=A_2$ and $A_1=0$ then (3) assumes the same form as (2). We define an endomorphism f of D by the formula

$$f(a) = A_2 b$$
 and $f(b) = B_1 a + B_2 b$.

Then, a straight forward computation shows that $f(x_i) \in H$ and thus f applies H into itself. This f is not a multiplication since $B_1 \neq 0$ and we infer that rank $(E(H)) \geq 2$. Now if we set up the correspondence $\theta(f) = (A_1, A_2)$ where A_1, A_2 are as in equation (1), we obtain a homomorphism θ between E(H) and $Q \oplus Q$ and $\theta(f) = 0$ implies $\ker f \neq 0$ and f = 0. Therefore θ is a monomorphism and rank (E(H)) = 2. It follows then that E(H) is a commutative domain.

An immediate consequence of this theorem is that if $\eta \notin Q$, $\langle a, b \rangle_p$ is indecomposable. The converse is also true, however we need first to study the situation where $\eta \in Q$ before we can prove this.

LEMMA 2.3. If $\eta \notin Q$, then $\langle a, b \rangle_p$ does not contain any non-zero element of infinite p-height.

Proof. It suffices to consider elements of the form x=ua+vb where $u, v \in \mathbb{Z}$. Let $\eta = \eta_p(a, b) \notin Q$. We will compute explicitly the p-height

of x in G. Now, we have:

$$x = u(a + n_i p^{\alpha - \beta}b) + (v - n_i p^{\alpha - \beta}u)b$$
 for all $i < \infty$

and $h_p((v-n_ip^{\alpha-\beta}u)b)=\beta+v_p(v-n_ip^{\alpha-\beta}u)$. Also, there exists j such that $v_p(v-n_ip^{\alpha-\beta}u)=v_p(v-\eta u)$ for all $i\geq j$. Since $\eta\notin Q$, $v-\eta u\neq 0$ and thus $v_p(v-\eta u)$ is finite. However, $h_p(u(a+n_ip^{\alpha-\beta}b))$ is an unbounded function of i since $M=\infty$. Therefore, $h_p(x)=\beta+v_p(v-\eta u)$ and since $\eta\notin Q$, $h_p(b)=\beta$ is finite and $h_p(x)$ is finite.

PROPOSITION 2.4. $\langle a,b\rangle_{r}$ contains a non-zero element of infinite p-height if and only if $\eta\in Q$ and either M or β is infinite. Furthermore:

- (a) if $\beta = \infty$ then $\langle a, b \rangle_p = \langle p^{-\alpha} a \rangle \oplus \langle p^{-\beta} b \rangle$,
- (b) if $\beta < \infty$, and $\eta = \gamma/\delta$ where $\delta \in \mathbb{Z}$ and $\gamma \in \mathbb{Q}^p$ and $(\gamma, \delta) = 1 = (\delta, p)$ then $h_p(\delta a + \gamma b) = \infty$ and $\langle a, b \rangle_p = \langle p^{-\infty}(\delta a + \gamma b) \rangle \bigoplus \langle p^{-m}(\tau a \sigma b) \rangle$ where $\tau, \sigma \in \mathbb{Z}, \tau \gamma + \sigma \delta = 1$ and $m = h_p(\tau a \sigma b) < \infty$.

Proof. If $\beta = \infty$ then $\eta = 0$, M = 0 and $\langle a, b \rangle_p = \langle x_0 \rangle \bigoplus \langle p^{-\beta}b \rangle$ and $x_0 = p^{-\alpha}a$. Suppose then that $\beta < \infty$. In this case, using the notation of (b) above, if $\alpha = \infty$ let $\gamma = 0$, $\delta = 1$, $\sigma = 1$ then $\langle a, b \rangle_p = \langle p^{-\infty}a \rangle \bigoplus \langle p^{-\beta}b \rangle$ and conforms to the formula.

We may therefore consider $\alpha < \infty$ and $M = \infty$. Now $v_p(\gamma) = v_p(\eta) = \alpha - \beta \ge -\beta$ and therefore $\gamma b \in \langle a, b \rangle_p$. We show that $h_p(\delta a + \gamma b) = \infty$. Indeed:

$$\delta a + \gamma b - \delta (a + n_i p^{\alpha - \beta} b) = (\gamma - \delta n_i p^{\alpha - \beta}) b$$
.

But $\eta - n_i p^{\alpha - \beta}$ is divisible by $i + \alpha - \beta$ and then so is $\gamma - \delta n_i p^{\alpha - \beta}$. Therefore, $h_p(\gamma - \delta n_i p^{\alpha - \beta})b \ge i + \alpha$ in one hand. In the other hand $h_p(a + n_i p^{\alpha - \beta}b) \ge i + \alpha$ hence $h_p(\delta a + \gamma b) \ge i + \alpha$ for all i < M but M is infinite therefore $h_p(\delta a + \gamma b) = \infty$. Now $\langle p^{-\infty}(\delta a + \gamma b) \rangle$ is p-divisible and $\langle p^{-m}(\tau a - \sigma b) \rangle$ is p-pure therefore $\langle p^{-\infty}(\delta a + \gamma b) \rangle \oplus \langle p^{-m}(\tau a - \sigma b) \rangle$ is p-pure and since it contains a and b it is equal to $\langle a, b \rangle_p$.

Conversely if $\langle a,b\rangle_p$ contains a non-zero element of infinite p-height then by lemma 2.3 $\eta\in Q$ and if $\beta<\infty$, $M=\infty$, for, if not then $\langle a,b\rangle_p=\langle x_l\rangle\bigoplus\langle p^{-\beta}b\rangle$, is free and hence contains no non-zero element of infinite p-height.

We gather in the next proposition some remarks about the endomorphism ring of $\langle a, b \rangle_{x}$.

PROPOSITION 2.6. Let $r = \text{rank}(E(\langle a, b \rangle_p))$. Then if $\langle a, b \rangle_p$ is not p-divisible,

 $r{=}1$ if and only if $n{\,\in\,} Q$ and is not quadratic over Q ,

 $r{=}2$ if and only if $\eta \notin Q$ and is quadratic over Q,

r=3 if and only if $\eta \in Q$ and either M or β is infinite,

r=4 if and only if both M, β are finite.

The chart below summarizes the results that we have obtained. We conclude with an explicit formula for computing p-heights of linear combinations of a and b.

THEOREM 2.7. Let (η, M, β) be the p-indicator of (a, b) in G and let $x=ua+vb\in G$, $u, v\in Q$, then

$$h_{p}^{G}(ua+vb) = \min\{v_{p}(u)+M, \beta+v_{p}(v-\eta u)\}$$
.

Proof. If $n \notin Q$ then $M = \infty$ and the result follows from the proof of Lemma 2.3. If $\eta \in Q$, it can easily be seen that $\langle a, b \rangle_p = \langle p^{-M}(\delta a + \gamma b) \rangle \bigoplus \langle p^{-\beta}b \rangle$ in all cases and writing $\delta x = \delta u a + \delta v b = u(\delta a + \gamma b) + (\delta v - u \gamma)b$. These terms are respectively in the factors of the direct decomposition of $\langle a, b \rangle_p$ given above, thus $h_p(\delta x) = \min\{h_p(u(\delta a + \gamma b)), h_p((\delta v - u \gamma)b)\}$ and upon dividing by δ we obtain the desired formula.

The indicators of a pair have been shown here to be of some usefullness. They can be used to provide invariants for rank two torsion free groups in a similar way to the so called 2-characteristics introduced in [2]. We reseve for a subsequent article further applications of these concepts. In particular we have used them to obtain classes of indecomposable groups of all ranks $\leq \aleph_0$ with special properties to be published subsequently.

	η	М	β	α	$\langle a, b \rangle_p$	structure	$E(\langle a, b \rangle_p)$
η¢Q (quadratic	(∞)	(finite)	(finite)	$\left<\{x_i,\;p^{-eta}b\}_{i=1}^{\infty} ight>$	Strongly inde- composable	rank 2 (commutative)
	non quadratic						$\cong Z$
	(0)		∞	(∞)	$\langle p^{-\infty}a \rangle \oplus \langle p^{-\infty}b \rangle$	$\cong Q^{(p)} \oplus Q^{(p)}$	$\cong_{Q^{(p)} \bigoplus Q^{(p)} \bigoplus Q^{(p)}}^{Q^{(p)} \bigoplus Q^{(p)} \bigoplus Q^{(p)}}$
n∈Q		∞ ,	finite		$\langle p^{-\infty}(\delta a + 7b) angle + \langle p^{-m}(\tau a - \tau b) angle + \langle p^{-m}(\tau a - $	$\cong Q^{(p)} \oplus Z$	$egin{array}{c} { m rank} & 3 \\ { m additive} \\ { m structure} \\ \cong & Q^{(p)} \oplus Q^{(p)} \oplus Z \end{array}$
	(0)	(finite)	∞	(finite)	$\langle p^{-lpha}a angle \oplus \langle p^{-\infty}b angle$		
	$(\varepsilon p^{-M}Z)$		finite	(finite)	$\langle p^{\scriptscriptstyle -M}(a+\eta b) angle \oplus \langle p^{-eta}b angle$	free	$Z \oplus Z \oplus Z \oplus Z$

^{*} See 2.4(b).

References

- [1] Fuchs, L.; Infinite abelian groups, Vol. I and II, Academic Press (1970).
- [2] MUTZBAUER, O.; Klassifizeirung torsionfreier abelschen Gruppen des Ranges 2, Rend. Sem. Mat. Univ. Padova, 55 (1976), 195-208.
- [3] RICHMAN, F.; A class of rank 2 torsion free groups, Studies on abelian groups, 327-333, Dunod, Paris (1968).

Université de Montréal Montréal, Québec Canada.