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With the work of O. Mutzbauer [2] there seems to be a renewed
interest in rank two torsion free abelian groups. In this article, we
give the structure of the smallest p-pure subgroup containing a given
pair of independant elements of a group. Such a p-pure subgroup is
called the p-pure enveloppe of the given pair. We define the p-indicator
of an ordered pair or elements. This turns out to be a p-adic number
together with a pair of non negative integers or . Although p-adic
numbers seem to crop up in various ways in the study of rank two
groups (see [2] and [3]) our method of obtaining them involves only
the rather natural concept of variations of p-heights of certain sets
of elements. Aside from the structure of p-pure enveloppes we give
also some results on their endomorphism rings. Finally we establish
a formula for computing p-heights of linear combinations of a pair of
elements in terms of their coefficients and the p-indicator of the pair.
The notation and symbols used here without explanation follow closely
[1]. Z*={neZ|n>0} and Q®={a/b|b=p", nc Z+}.

1. The p-indicator of an ordered pair of elements

Throughout this section G is a fixed torsion free group.

Let a,becG and let hS(a)=a and h$(b)=4F, where p is a prime
number. We will use the preceeding notation all through this section.
If @ and B are finite then there exists an element y e G such that
p’y=p°b. Such a y is unique and is denoted by p* . We want to
study the behavior of the p-heights of elements in G of the form
a+mny where neZ*. In order to avoid constant consideration of special
cases, we agree that, if a or B is infinite, we set n=0. We chose to
study the elements a+ny because they reflect faithfully the variations
of the p-height of all other combinations of a and b in the sense of
the following lemma.

LEMMA 1.1. Let a,beG and let o' €{a), and b' € {by,. If for
some r € Z*, hi(a'+b)=hé(a’)+r then there exists m € Z+ such that 0<
n<p” and hi(a+ny)=a+r.

* Work done under C.N.R.S.C. Grant no A5991.
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Proof. If r=0, we take n=0. Let then »>0. If a=c there is
nothing to prove, so we may suppose a<co. In this case, hi(a’) is also
finite and since hS(a’+b")>hi(a’) we must have h,(a')=h,(b)<co. It
follows then that h,(b))=8<c. We have thus reduced the problem to
the case where >0 and a, 3<c. Let a'=up'a and b'=vp'd where
s,teZ and u,ve@, and v,(u)=0=v,(v). Upon multiplying by the
common denominator m of u and v, we may assume that u, v € Z. (Note
that (m, p)=1 so h,(ma’)=h,(a").) Now, hi(a)=s+a<hi(a’+bd’) and
p*(a'+b)=ua+vpb is an element of G whose p-height in G is
=r+a. Let v,0eZ such that yu+dp™*=1 then vua+oip™“a=a and

yua+vptb)=a+vvp*b—ép +*a is also of p-height in G greater or
equal to r+a. Therefore '

(1) ho(a+op=b)Zr+a

however s+a=t+3 and thus t—s=a—g.

Let y=»*"%b and since hé(y)=a, we let n=vv(p") such that 0=
n<p" and obtain that h,(a+ny)=r+a.

For an ordered pair (e, b) € G XxG we consider in the notations used
above the following set:

I(a, b)={(n, r)|ki(a+ny)=r+a and 0=n<p’, reZ*}.
This set has some interesting properties which are listed in the following:

ProrosITION 1.2. Let I=1I,(a, b) then:

(i) (0,0¢el,

(ii) (n,r) and (m, r) e I=n=m,

(iii) (n,r)el and r>1=3Im e Z* such that (m,r—1)cl.

Proof. (i) is obvious.

(ii) If =0 or a=oc there is nothing to prove in as much as m
and » must be zero. However if >0 and a<c then h,(ny)=a and
ny—my=nm—m)y=(a+ny)—(a+my) is of p-height greater or equal
to r+a. Now since h,(y)=a we must have n=m(p”) and since
0=n, m<p", we have n=m.

(iii) Here again we need only consider the case where h (a)=a<co.
Let h,(a+ny)=r+a<oc and r>1. Dividing » by p"* we have n=
kp™*+m where 0=<m<p"*' and ke Z*. Then, atny=a+my+kp™™'y
and since h,(kp"'y)=r—1+a we must also have h,(a+my)=r—1+a.
Clearly (m,r—1)el.

In view of the preceeding proposition, we see that if we write
n,=n if (n, 7)€ I,(a, b) We obtain a sequence of non-negative integers
with the following properties:

LEMMA 1.3. Let I =I,,(a‘, b) and let 1=1,(a, b)=sup{r|(n, r) € I} and
write n;=n if (n, 1) €I then n,=0 and
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Ny =N+ 8,0° where 0=Zs,<p for all i<l.

Proof. From proposition 1.2 (ii) the n,’s are well defined and by
(i) m,=0. Again by (ii) there is an n, for all 0<i<I+1 (as usual if
l=c we let co+1l=c0). Clearly n.,=n,p") therefore n, . =n,+sp*
and we need only show that 0<s,<p. Let s,=kp+r where 0=r<p,
then 0=n,+rp'<p™* and k,(a+ (n,+rp)y)=i+1+a, (a+n,y=
(@+(n;+7rp)y)+kpt'y) therefore n,+rp'=mn,, and k=0 thus 0<s,=
r<p.

DEFINITION 1.4. Let a,beG be as in the preceeding development.
The sequence {n};_, described in lemma 1.3 converges to a p-adic number
Sii—osp* in the p-adic completion J, of Z.

We set:

l
N,=7,(a, b)=p""* iz_‘, s;p'=lim p**n, e K,
M,=M,(a, b)=a+1,(a, b) € Z+ U {c}
Br=h3(d) .

Note that if either a or g is infinite we take 7,=0. K, is the
field of quotients of J,. The triple (y,, M,, 8,) is called the p-indicator
in G of the pair (a,b). When p is fixed we will drop the indices in
such expressions. The p-indicator contains a good amount of informntion

about the way the elements a, b sit in the group G. We describe this
more precisely in the next section.

2. The structure of the p-pure enveloppe of {a, b}

Let a,beG, we denote by {a, b), the p-pure subgroup of G gen-
erated by <a, b). Note that (a, b),/{a, b) is simply the p-primary part
of G/{a, b), thus if rank (G)=2, G/<a, b)=@,.r <a, b),/<a, by. This last
equation implies that the knowledge of {a, ), is useful in the study
of rank two torsion free groups. We proceed to the description of the
generators of <(a, b)Y, in the following:

LEMMA 2.1. Let a,b€G, n, s, 1 be as in lemma 1.8. Let
z,=p ""*a+n;p*"%) , 0=<i<l+1 then:
(L) Ca, by, ={{w.}iz;, p7%b}) .
Moreover x,=px,+,—sp % for 0<i<lI.

Proof. We recall the following notation: (p~x) = ({p~*a}z,>. This
way of writing allows us to use the same formula even when either
a or B is infinite and a quick check shows that in that case 1 is true.
We assume then «, 8 finite and let p*#=y then:
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DTy — 8D Pb=D"""(a+ N1, y) — D~ (8:0'Y)
=p " (a+ (B4 —8D)Y)
=p " (a+ny) =2
for all 0=i<I.
Now let H,={x;, »*b) then H,CH,., and the right hand side of
(1) ean be written as H=UJ!., H;. Clearly a,be H, and in fact HC
{a, by,. We need only show that H is p-pure in G. Let g € G be such
that pg € H then there exists ¢ such that pg € H,. Say pg=mnx,+mp*b.
After multiplying this equality by »*t* and replacing x, by its
expression in terms of ¢ and b we obtain:

p ity =mna+nny +mpy=na+ nn,+mp")y .
Now, using lemma 1.1, there exists n;., such that
h(a+ny)=a+i+1
therefore 1<, that is to say x,., exists and we can write
PY=NPT;1,+ (M—n8)p%b .

But %,(p*b)=0 therefore p divides m—mns, say pk=m—mns, then, g =
n®,,+kp fbe H,.,CH and thus H is p-pure.

We are now ready to study the structure of {a, b),. We do this
by looking at the p-indicator (1, M, B) of (a,bd) in G. There are two
main cases according to wether 7 is rational or not. We begin by the
case n ¢ Q.

THEOREM 2.2. Let (, M, B) be the p-indicator of the paire (a,b)
where a, beG are independant elements. If n¢Q then all non-zero
endomorphisms of H={a, by, are monomorphisms and

(1) If 9 is mot quadratic over Q them H s rigid and E(H)=Z.

(2) If 7 is quadratic over Q them r(E(H))=2 and E(H) is a
commutative domain.

Proof. Since ¢ Q, @ and B are necessarily both finite and M=co.
Let fe E(H), f+0, and D a divisible enveloppe of H. Then f extends
naturally to D and since {a, b} is a vector basis of D as a space over
Q, f is completely determined by its values f(a) and f(b). Let
(1)  fl@)=Aa+Ab and f(b)=Ba+Bb, 4, B, i=12.

Recall that ker =0 if and only if A,B,—A,B,=0. Without loss of
generality we may assume that A, and B, are in p***?Z. Recall also
that

z,=p " “(a+np*?b), (see Lemma 2.1).
Then we have:
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(@)~ (A+np " Ba,=p™ [ A+ 0" Pny(B,— A) — (p°"n,)*Bi]b .

The number between square brackets in the right hand side of this
equation is an integer m, such that h$(m.b)=7i+a and since rS=g, m,
must be a multiple of p***~# for all 4. Thus, taking limits in K, we
find that

(2) A,+7(B,— A)—7*B,=0 .

Note that every endomorphisme of H gives rise to an equation such
as (2) even when 7 €@ provided a, 8 are finite and M=co. Now if 7
is not quadratic over @, we must necessarily have B,=0 and since
7¢Q, B,—A,=0 and A,=0, this means that f is simply a multiplication
by A,. Therefore H is rigid and every non-zero endomorphism is a
monomorphism. Further more the only possible multiplications are by
integers since H contains elements of p-height 0.

Therefore E(H)~Z.

Now, if B,#0 since ¢ @, ker f=0 for otherwise we have A,B,—
A,B,=0 and (2) gives 9=((B,—A,)=+(B,+A,)/2B,€Q, which is a con-
tradiction. Therefore f is a monomorphism in all cases.

It remains to show that if 7 satisfies an equation of degree two
with integral coefficients and 7 ¢ @ that E(H) is of rank two. Suppose
7 satisfies

(3) Co+Co+Cop=0 with C,0.

Without loss of generality we may assume that the coefficients are in
p*+#Z. Let C,=—B, C;=B, C,=A, and A,=0 then (8) assumes the
same form as (2). We define an endomorphism f of D by the formula

f(@)=Ab and f(b)=Ba+Bb .

Then, a straight forward computation shows that f(x;) € H and thus f
applies H into itself. This f is not a multiplication since B,#0 and
we infer that rank (E(H))=2. Now if we set up the correspondence
0(f)=(4,, A,) where A,, A, are as in equation (1), we obtain a homo-
morphism 6 between E(H) and QPQ and 0(f)=0 implies ker f+#0 and
f=0. Therefore 6 is a monomorphism and rank (E(H))=2. It follows
then that E(H) is a commutative domain.

An immediate consequence of this theorem is that if 5 ¢ Q, <a, b,
is indecomposable. The converse is also true, however we need first
to study the situation where 7€ Q before we can prove this.

LEmmA 2.3. If n¢Q, then {a, by, does not contain any mon-zero
element of imfinite p-height. '

Proof. It suffices to consider elements of the form x=wua+vbd where
w, vEZ. Let n=1n,a,b)¢Q. We will compute explicitly the p-height
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of x in G. Now, we have:
r=ula+n;0°%b)+w—n0*"fu)d for all i<

and h,((v—np**u)b)=R+v,(v—n,p**u). Also, there exists j such that
v,(v—n, 0" *u)=v,(v—nu) for all 1=j. Since 7¢Q, v—7yu+0 and thus
v,(v—nu) is finite. However, h,(u(a+n,p*7?b)) is an unbounded function
of ¢ since M= . Therefore, h,(x)=R+v,(v—nu) and since 7 ¢ @, h,(b)=
B is finite and h,(x) is finite.

PROPOSITION 2.4. (a, by, contains a non-zero element of imfinite
p-height if and only if ne€Q and either M or 8 is infinite. Further-
more:

(@) if B=co then {a, b),={p *a)D<{p~?by,

(b) if B<oo, and N=7/0 where d€Z and YeQ® and (v, 0)=1=
(6, p) them h,(0a+7b)=c and <{a,b),=<{p " (0a+7b))P{p ™(ta—ob))
where T, 0 € Z, v+ 00=1 and m=h,(ta—0cb)< .

Proof. If B=oco then =0, M=0 and {a, b),=<x,)PD{p*b) and
x,=p “a. Suppose then that 8< . In this case, using the notation
of (b) above, if a=c let v=0, 0=1, 0=1 then {a, b),=<{p""a)P{p~*b)
and conforms to the formula.

We may therefore consider a<<co and M=-co. Now v,(7)=v,7) =
a—pB=—pR and therefore vbe<a, b),. We show that h,(da-+7b)=co.
Indeed:

da+vb—d(a+np*Pb)=(v—on,p* #)b .

But —n,p*# is divisible by i+ a— 3 and then so is v—on;p*™*. Therefore,
hy(v—0np* "b=i+a in one hand. In the other hand &,(a+np* %b)=
i+a hence h,(0a+7vb)=i+a for all i<M but M is infinite therefore
h,(da+7vb)=c. Now {(p~(da+7b)) is p-divisible and {p~™(ra—ob)) is
p-pure therefore {(p~~(da+7b))P<{p ™(ta—odb)) is p-pure and since it
contains @ and b it is equal to <a, b),.

Conversely if {a, by, contains a non-zero element of infinite p-height
‘then by lemma 2.3 €@ and if 3<oo, M=o, for, if not then <{a, b),=
(e >@D{p ), is free and hence contains no non-zero element of infinite
p-height.

We gather in the next proposition some remarks about the endo-
morphism ring of {a, b),.

PROPOSITION 2.6. Let r=rank (E({a, b),)). Then if {a, by, is not
p-divisible,
r=1 if and only if n¢ Q and is not quadratic over Q ,
r=2 if and only if n¢Q and is quadratic over Q ,
r=38 if and only if €@ and either M or 8 is infinite,
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r=4 if and only if both M, B are finite.

The chart below summarizes the results that we have obtained.
We conclude with an explicit formula for computing p-heights of
linear combinations of a and b.

THEOREM 2.7. Let (n, M, B) be the p-indicator of (@, b) in G and
let x=ua+vbeG, u, veQ, then

h§(ua+vb)=min{v,(u)+ M, B3+v,(v—nu)} .

Proof. If n¢ @ then M=co and the result follows from the proof
of Lemma 2.3. If y € Q, it can easily be seen that <a, b),=<{(p ™ (da+vb)>PH
{p~®b) in all cases and writing dx=0cua+dvb=u(da+vb)+ (6v—uv)b.
These terms are respectively in the factors of the direct decomposition
of {a, b), given above, thus i ,(0x)=min{h,(u(0a+7b)), h,((0v—wuv)b)} and
upon dividing by 6 we obtain the desired formula.

The indicators of a pair have been shown here to be of some
usefullness. They can be used to provide invariants for rank two
torsion free groups in a similar way to the so called 2-characteristics
introduced in [2]. We reseve for a subsequent article further applica-
tions of these concepts. In particular we have used them to obtain
classes of indecomposable groups of all ranks<¥, with special properties
to be published subsequently.

7 M B a <a, b>p structure E[a, b>p)
. rank 2
o quadratic ) ) Strongly | (commutative)
% (o0) |(finite)|(finite) as, pPbYLD inde-
& l non composable -
quadratic =Z
© o | (o) @RGPy |=Qreew| =g, 8ETO
[ele]
<{p~=(da+Tb)>+
@ finite <p~™za—1b)> rank 3
A Where m < oo* =QPPHZ additive
: siriete.
O |(gnitey| @ |@nitd]  <@ea@pb> =PERTE
(ep~™2) finite | (finite)| <p~"(a+7b)>E<p~Fb> free VASYASTYAS YA

* See 2.4(b).
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