Comment. Math. Univ. St. Pauli XXVIII—1, 1979

Some properties of Tor and δ -cyclic p-groups

by

K. BENABDALLAH, J. IRWIN and J. LAZARUK

(Received September 29, 1978)

In this article, we investigate various properties of pure resolutions of totally projective primary abelian groups. We construct for every natural number n a group P_n very similar to the generalized Prüfer group $H_{\omega+n}$ and use it to obtain some structural results on $\operatorname{Tor}(G,P_n)$, notably that $\operatorname{Tor}(G,P_n)$ is a direct sum of countable (d.s.c.) groups when G is totally projective. In the last part, we study groups all of whose subgroups of cardinality less than a given cardinal δ are direct sums of cyclic groups. We call such groups δ -cyclic. We show G is δ -cyclic if and only if $\operatorname{Tor}(G,P_n)$ is δ -cyclic. All concepts not explicitly defined here can be found in [2]. All groups are primary groups. The notation is essentially that of [2]. The symbol \bigoplus_c denotes direct sums of cyclic groups. A pure exact sequence $0 \to K \to F \to G \to 0$ is said to be a pure resolution of G if $F = \bigoplus_c$.

§1. The groups P_n and $Tor(G, P_n)$

LEMMA 1.1. Let $B = \bigoplus Z(p^n)$ and let S be a basic subgroup of B of corank 1. For each natural number n let $P_n = B/S[p^n]$ then the basic subgroups of P_n are isomorphic to B, $P_n^1 \simeq Z(p^n)$ and $P_n/P_n^1 \simeq B$.

Proof. $S/S[p^n]$ is a basic subgroups of P_n and is isomorphic to p^nS . But $p^nS \simeq p^nB \simeq B$.

Now $P_n^1 = B[p^n]/S[p^n] = B[p^n]/(S \cap (B[p^n])) \simeq (B[p^n] + S)/S$ and since S is pure in B, this is (B/S) $[p^n]$. But $B/S \simeq Z(p^\infty)$, therefore $P_n^1 \simeq Z(p^n)$ and $P_n/P_n^1 \simeq B/B[p^n] \simeq p^n B \simeq B$.

Note that P_n is quite similar to $H_{\omega+n}$ the generalized Prüfer group defined in [2]. However, they are not isomorphic, except for n=1. Note also that P_n is $p^{\omega+n}$ -projective.

Before we proceed with Tor (G, P_n) , we need to recall the following facts:

LEMMA 1.2. [1] Let H be a pure subgroup of G. Then, $H/H[p^n]$ is p^{w+n} pure in $G/H[p^n]$.

LEMMA 1.3. [6] If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a p^a-pure exact sequence with $\alpha \geq \omega$ and E is any group, then, $0 \rightarrow \text{Tor}(A, E) \rightarrow \text{Tor}(B, E) \rightarrow$

Tor $(C, E) \rightarrow 0$ is a p^{α} -pure exact sequence.

THEOREM 1.4. Let $0 \to K \to F \to G \to 0$ be a pure resolution of G, then there exist for each natural number n, groups $C_{n,i} = \bigoplus_c$, i = 1, 2 such that $(F/K[p^n] \oplus C_{n,1}) \simeq (\text{Tor } (G, P_n) \oplus C_{n,2})$.

Proof. Consider the $p^{\omega+n}$ -pure (by Lemma 1.2) exact sequence $0 \to K/A \to F/A \to G \to 0$ where $A = K[p^n]$, then by Lemma 1.3 $0 \to \text{Tor } (K/A, P_n) \to \text{Tor } (F/A, P_n) \to \text{Tor } (G, P_n) \to 0$ is $p^{\omega+n}$ -pure exact. Now, $\text{Tor } (G, P_n)$ is $p^{\omega+n}$ -projective and therefore:

- (i) Tor $(F/A, P_n) \simeq \text{Tor } (G, P_n) \oplus \text{Tor } (K/A, P_n)$. Let $S[p^n] = R$ and consider the $p^{\omega+n}$ -pure exact sequence $0 \to S/R \to B/R \to Z(p^{\infty}) \to 0$, where B and S are as in Lemma 1.1. Then $0 \to \text{Tor } (F/A, S/R) \to \text{Tor } (F/A, P_n) \to F/A \to 0$ is $p^{\omega+n}$ -pure exact and since F/A is $p^{\omega+n}$ -projective it is split exact. Therefore,
- (ii) Tor $(F/A, P_n) \simeq F/A \oplus \text{Tor } (F/A, S/R)$ Let $C_{n,1} = \text{Tor } (F/A, S/R)$ and $C_{n,2} = \text{Tor } (K/A, P_n)$. These can be easily seen to be \bigoplus_c and combining (i) and (ii) we have the desired result.

An immediate application of this result is the following:

COROLLARY 1.5. Let $0 \to K_i \to F_i \to G \to 0$ i=1, 2 be pure resolutions of G, then, for each natural number n there exists $C_{n,1}$ and $C_{n,2}$ both \bigoplus_c , such that $F_1/K_1[p^n] \bigoplus C_{n,1} \simeq F_2/K_2[p^n] \bigoplus C_{n,2}$.

§2. Some properties of totally projective groups

In this section we study the structure of $Tor(G, P_n)$ and $F/K[p^n]$ for totally projective groups G. We need the following fact:

LEMMA 2.1. If G is totally projective and H is $p^{\omega+n}G$ -high in G for some natural number n, then H is d.s.c..

Proof. G/G^1 is \bigoplus_c and thus $H/H^1 = \bigoplus_c$ since it is isomorphic to $(H+G^1)/G^1$. Now, $p^nH^1=0$ therefore $H^1=\bigoplus_c$ and the result follows from theorem 1 p. 445 in [4].

THEOREM 2.2. If G is totally projective then $Tor(G, P_n)$ is a d.s.c. for all natural numbers n.

Proof. We consider two cases.

- (i) If $\lambda(G) \ge \omega 2$, then Tor (G, P_n) is a d.s.c. by a result in [6] (which is quoted below for the reader's convenience as Lemma 2.3), and Lemma 2.1.
- (ii) If $\omega < \lambda(G) < \omega 2$, let $\lambda(G) = \omega + n$ where n is a natural number, then, G is $p^{\omega + n}$ -projective and a d.s.c.. If $m \ge n$, then $\text{Tor } (G, P_m) \simeq G \oplus C$ where $C = \bigoplus_c$ hence $\text{Tor } (G, P_m)$ is a d.s.c.. If m < n, all high subgroups of G are \bigoplus_c and another application of Lemma 2.3 yields the result.

LEMMA 2.3. [6] Let A and B be groups such that $\lambda(A) > \lambda(B) \ge \omega$. Then Tor (A, B) is a d.s.c. if and only if (i) B is a d.s.c. and (ii) every $p^{\beta}A$ -high subgroup of A is a d.s.c. for every infinite ordinal β whose corresponding Ulm invariant of B is non-zero.

THEOREM 2.4. If $0 \rightarrow K \rightarrow F \rightarrow G \rightarrow 0$ is a pure resolution of the totally projective group G, then $F/K[p^n]$ is a d.s.c. and hence is totally projective for every natural number n.

Proof. By Theorem 1.4, $F/K[p^n]$ is a summand of Tor $(G, P_n) \oplus C$, where $C = \bigoplus_c$. By Theorem 2.2 Tor (G, P_n) is a d.s.c. and by a well known theorem of I. Kaplansky summands of d.s.c. groups are d.s.c..

However, $F/K[p^n]$ may be totally projective for some n although F/K is not as the following counterexample shows:

EXAMPLE. Let $B = \bigoplus Z(p^n)$ and \overline{B} the torsion completion of B. Define $G_n = \overline{B}/B[p^{n+1}]$ for each natural number n. Since G_n is uncountable whereas its basic subgroups are countable, G_n cannot be totally projective.

Let $0 \to K \to F \to G_n \to 0$ be a pure resolution of G_n . $F/K[p^n]$ is a d.s.c. since $\text{Tor } (G_n, P_n)$ is a d.s.c. by an application of Lemma 2.3. Indeed, $\lambda(G_n) = \omega + n + 1 > \lambda(P_n) = \omega + n$, and the only infinite ordinal, whose corresponding Ulm invariant of P_n is non-zero, is $\omega + n - 1$. Now $p^{\omega + n - 1}G_n$ -high subgroups are in fact high in G_n and since one of them is $B/B[p^{n+1}] = \bigoplus_c \text{they are all } \bigoplus_c \text{ and hence d.s.c.}$ Therefore $F/K[p^n]$ is totally projective although G_n is not.

We have been, however, unable to decide wether the converse of Theorem 2.4 is true or false.

3. δ -cyclic groups

A group is said to be δ -cyclic for a cardinal number δ if every subgroups of cardinality less than δ is \bigoplus_c . In [7], the existence of groups \aleph_n -cyclic not \bigoplus_c has been established for every natural number n. In [3], it was shown that \aleph_n -cyclic groups of cadinality \aleph_n are \bigoplus_c . Not much else is known about such groups. We show here that $\operatorname{Tor}(G, P_n)$ is δ -cyclic if and only if G is δ -cyclic. We show also that for every cardinal for which there exists δ -cyclic groups not \bigoplus_c , there exists a proper p^{n+1} -projective δ -cyclic group.

THEOREM 3.1. Let δ be a cardinal and $G = \bigoplus G_{\lambda}$ then G is δ -cyclic if and only if each G_{λ} is δ -cyclic.

Proof. Suppose G_{λ} is δ -cyclic for every λ and let H be a subgroup of G such that $|H| < \delta$. Let H_{λ} be the projection of H on G_{λ} then $|H_{\lambda}| < \delta$ and thus $H_{\lambda} = \bigoplus_{c}$. Now $H \subset \bigoplus H_{\lambda} = \bigoplus_{c}$ and $H = \bigoplus_{c}$. The converse is obvious.

Before we proceed to the main result of this section we need:

LEMMA 3.2. Let K be a pure subgroup of $F=\bigoplus_c$ such that F/K is not $p^{\omega+(n-1)}$ -projective for some natural number n. Then, $F/K[p^n]$ is proper $p^{\omega+n}$ -projective.

Proof. $F/K[p^n]$ is $p^{\omega+n}$ -projective and if it is also $p^{\omega+(n-1)}$ -projective then, by Theorem 1.4 in [1], F/K is $p^{\omega+n-1}$ -projective.

LEMMA 3.3. Let H be a pure subgroup of G. Then, the natural map $\pi: G/H[p^n] \to G/H$ is height preserving on $G[p^n]/H[p^n]$. (The heights in $G/H[p^n]$).

Proof. One needs only to verify that if p^m divides $\pi(x)$ where $x \in G[p^n]$, then p^m divides $x + H[p^n]$.

THEOREM 3.4. Let $0 \to K \to F \to G \to 0$ be a pure resolution of G. Then G is δ -cyclic if and only if $F/K[p^n]$ is δ -cyclic for some natural number n.

Proof. Suppose $F/K[p^n]$ is not δ -cyclic for some natural number n. Let $A=K[p^n]$, then there exists a subgroup H of F such that $|H/A|<\delta$ and $H/A\ne\bigoplus_c$. Now then, $(H+K)/A\ne\bigoplus_c$ and therefore $(H+K)/K\ne\bigoplus_c$. Since $A\subset H\cap K$, there exists an epimorphism from H/A onto $H/(H\cap K)\simeq (H+K)/K$ and $|(H+K)/K|<\delta$. Hence F/K is not δ -cyclic.

Suppose that for some natural number n, $F/K[p^n]$ is δ -cyclic and let H/K be a subgroup of F/K of cardinality less than δ . However $(H/K)[p^n] \simeq H[p^n]/K[p^n]$ and therefore $|H[p^n]/K[p^n]| < \delta$ and we can embed it in a pure subgroup, $M/K[p^n]$ of $H/K[p^n]$ of same cardinality. Now $M/K[p^n] = \bigoplus_c$ and every subgroup of it can be written as the union of an ascending chain of subgroups of bounded height in $H/K[p^n]$. Since the natural map $\pi: H/K[p^n] \to H/K$ is height preserving on $H[p^n]/K[p^n]$ by Lemma 3.3, $(H[p^n]+K)/K=(H/K)[p^n]$ is the union of an ascending chain of subgroups of bounded height in. Therefore $H/K=\bigoplus_c$ and F/K is δ -cyclic.

COROLLARY 3.5. If there exists a δ -cyclic group $G \neq \bigoplus_c$ then there exists a proper $p^{\omega+1}$ -projective δ -cyclic group.

COROLLARY 3.6. A group G is δ -cyclic if and only if $\text{Tor}(G, P_n)$ is δ -cyclic for some natural number n.

Proof. It is a straightforward application of Theorems 1.4, 3.1 and 3.4.

References

[1] Benabdallah, K., Irwin, J. and Lazaruk, J.; On $p^{\omega+n}$ -projective abelian primary groups, Comment. Math. Univ. St. Pauli, 25 (1976) face. 2, 101-105.

- [2] Fuchs, L.; Infinite abelian groups, Vol. I and II, Academic Press, 1970.
- [3] HILL, P.; Primary groups whose subgroups of smaller cardinality are direct sums of cyclic groups, *Pac. J. Math.*, **42** (1972), 63-67.
- [4] IRWIN, J. and RICHMAN, F.; Direct sums of countable groups and related concepts, J. Algebra, 2 (1965), 443-450.
- [5] NUNKE, R.; Purity and subfonctors of the identy, Topics in Abelian Groups, Proc. Sympos., New Mexico State University (1962), pp. 121-171, Scott, Foresman and Co., Chicago, Illinois, 1963.
- [6] NUNKE, R.; On the structure of Tor, II, Pac. J. Math., 22 (1967), 453-464.
- [7] NUNKE, R. Homology and direct sums of countable abelian groups, Math. Zeitschr., 101 (1967), 182-212.

U. De Montreal, Montreal, Que. Canada. and Wayne State University, Detoroit, Mich. U.S.A.