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Abstract

The trace class 7(A) of an arbitrary Hilbert algebra A is defined
to be the span in A of products ab, where a,bc A, and is equipped
with the trace class norm ||-||. it inherits from the dual %* of the C*-
algebra % of A. The completion of (z(4),||-||.) is identified with a
subspace @, of U*; if G is a unimodular locally compact group and
A=} NIXNG), then &,=A(G), the Fourier algebra of G. Several
of the known results for 7(4) when A is a full Hibert algebra are
extended to the general case, while others are extended to replete
Hilbert algebras. For example, it is shown for replete A that z(4)=
{ab: a, be A}, and that a positive element of A is in 7(A) if and only
if it has a positive square root in A.

Intoduction

If G is a unimodular locally compact group with Hilbert algebra
A=LYG)NL¥G) whose C*-algebra completion is %, then the Fourier
algebra A(G) of G is isometrically isomorphic as a Banach space to a
subspace of A*, and is the pre-dual of the von Neumann algebra 9
generated by % [4]. In fact, A(G) is isometrically isomorphic to the
completion of the trace class 7(A4) of the Hilbert algebra A. In this
paper, the trace class 7(A4) of an arbitrary Hilbert algebra A is defined
and studied. It is shown that its completion can be identified with a
closed subspace @, of the dual 2%* of the C*-algebra U of A; &, plays
the role of A(G) for an arbitrary Hilbert algebra A (here H is the
Hilbert space completion of A). For example, it is proved that the
Banach space @, is isometrically isomorphic to a quotient space of the
Banach space of trace class operators H®H * on H. Moreover, many
of Schatten’s basic results [14] concerning the Banach algebra of trace
class operators on a Hilbert space are shown to extend to arbitrary
Hilbert algebras without assuming that A is either an H *-algebra [11,
12] or a full Hilbert algebra [6]. For instance, when A is a replete
Hilbert algebra, a positive element a € A is integrable if and only if
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act(4) if and only if a=08" for some positive b in A; that is, the
positive square root of positive element of the repletion A4, of A lies
in A,, which is generally smaller than the fulfillment A4, of A. Our
methods of analysis are necessarily different from those used in [11,
12, 6], where an abundance of projections permits a concept of sum-
mability (arbitrary Hilbert algebras may have no nonzero projections).
Instead, our analysis depends on properties of @, and 9.

The organization of the paper is as follows. Section 1 contains,
in addition to some notation and preliminary results, the key (see
Theorem 1) to the development of the trace class without summability
and projection bases. In Section 2, the fundamental properties of the
trace class (z(4), ||+||.) of an arbitrary Hilbert algebra A are determined.
The trace class is identified with a linear subspace @, of the dual A*
of the C*-algebra 9 of A, and the completion @, of @, in U* is the
main subject of Section 8. Finally, in Section 4, replete Hilbert
algebras are considered, and the trace class of such an algebra is
related to its integrable elements.

1. Notation and preliminaries

All vector spaces and algebras are over the complex field C. Let
A=(4, |-]) be a Hilbert algebra with inner product (-|-) and involu-
tion at—a*. Let H=(H, ||-||) be the Hilbert space completion of A,
and let J: H—H be the involution on H extending that on A; then,
J*=1I and (Jk|Jh)=(h|k), for all h, k in H. For each a in A, let L,,
R, be the operators in B(H), the algebra of all bounded linear opera-
tors on H with operator norm |-|, defined on A by L,b=ab, R,b=ba,
respectively. Let A=(Y, |-|) denote the closure in B(H) of the set
L,={L,:ac A}; % is called the C*-algebra of A. Finally, let %" be
the double commutant of ¥ in B(H) (i.e., A" is the von Neumann sub-
algebra of B(H) generated by ¥ and by L,). For definitions and basic
facts about Hilbert algebras, see [2, 8, 16]. ‘

For h, k in H, define @,,: A" —C by 9,,(S)=(Sh|Jk), where Se".
Then [p..(S)I<IS|IIR|l|kll; hence @€ (A")* with ||@,l|<I|ll|k|l. Let
Dy={Pu: h, ke H}S(A")* be equipped with the norm it inherits from
(A")*. Because 9" is a standard [2, Def. 7, p. 79] von Neumann algebra,
@, is the Banach space pre-dual (%”), of %A” [2,Rem. 1, p. 266, Thm. 1,
p. 38].

Next, let %** be the bidual of 9, realized as its enveloping von
Neumann algebra (i.e., as the double commutant of #() in B(H,),
where 7: A — B(H,) is the universal representation of %) [3, Sec. 12.1].
Since ASA” and A is ultraweakly dense in A", it follows from the
Kaplansky Density Theorem [10, Thm. 1.9.1, p. 22] that @, imbeds iso-
metrically in %*. Further, using [3, Prop. 12.1.5, p. 237] (with p the
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identity representation of % in B(H) and 0 the corresponding normal
representation of A** onto A" in B(H)), it follows that 2(**/@,5;—(1)2‘,;91":52
A**/ker (0). Thus, O is a closed *-ideal of A**. These facts are col-
lected in the following:

THEOREM 1. The Banach space @p={®,.: h, ke H}, equipped with
the morm it inherits from A*, is the Banach space pre-dual (A”), of
A”.  Moreover, @% is a closed *-ideal of W**, and the von Neumann
algebras W** /04 and A" are isometrically *-isomorphic.

The Banach space @, is the analogue, for arbitrary Hilbert
algebras, of Eymard’s Fourier algebra A(G) of a locally compact group
G [4]. Since A(G) is defined even when G is nonunimodular, many of
the results in this paper may also obtain for left Hilbert algebras.

2. The trace class

Let 7(A) be the linear span in the Hilbert algebra A of elements
of the form ab, where a,bc A. It is immediate that 7(A4) is a dense
*-ideal of A and is itself a Hilbert algebra; however, we wish to study
7(A) under another norm. Let @:7(A)—%A* denote the linear map
defined by &(37-; a;b;)=X\}-, P, ;, and let @,=0(z(A)); clearly, &,Z0,.
Note that, for A in C and a, b in 4, NPu\,=P 1) =Peun. Also, from
the fact that ¢,,(L,)=(L.a|b*)=(c|(ab)*), for all a, b, ¢ in A, it follows
routinely that X\, @,,,=0 if and only if 3.}, a;5;=0. Thus, @ is an
injection, and so @, is an isomorphic copy of 7z(4). The norm |-||.,
defined on 7(4) by the formula |37, a;b,|l.=|I20; Pup;ll (in UA*), is
called the trace class norm and, equipped with this norm, z(A4) is
called the trace class of A.

It is not difficult to show (using [6, Thm. 2.2 and 3.2]) that this
construction and norming of 7(A) is consistent with that given in [6]
when A is full. However, it is worth noting that, when A is full,
every element of 7(A) is of the form ab, for some a, b in 4. In
Section 4, we show that this also occurs when A4 is a replete Hilbert
algebra.

Returning now to the case in which A is an arbitrary Hilbert
algebra, it is an easy consequence of Theorem 1 and the fact that 4
is dense in H that the closure of @, in 2A* is @®,. Consequently, the
trace class norm of an element 3\7,a;b; in 7(4) is the norm of
D1 Papp; in A*, in (A”)*, or in (A,)* (since A/=A"), where U, is the
C*-algebra of the fulfillment A, of A. In general, A=-2,; nonetheless,
by the above, facts about the trace class norm established in [6] may
be freely used.

In the following discussion of how the results for the trace class
of a full Hilbert algebra translate to the setting of an arbitrary



4 : D. L. JorNsoN and C. D. LAHR

Hilbert algebra A, we will continue to let A, denote the fulfillment
of A, %, the C*-algebra of A,, and 7(4,) its trace class. It is shown
in [5, Prop. 3.1] that the algebra M, (A) (resp., Mz(A)) of continuous
left (resp., right) multipliers of A may be regarded as a linear sub-
space of A" (resp., A’', the commutant of A in B(H)). (If A is full,
then M (A)=%" and Mp(A)=A'.) Define a continuous linear functional
tr on 7(A) by the formula: tr (a)=¢,(I), where I is tho identity opera-
tor on H, and ac7(A4). Since, for a=3",b;c; in 7(4),

tr @ =@uD)= 3 o1,e, (D=3 (b165) ,

this definition is consistent with that in the full case (see [6, Thm.

2.2]). The following theorem is a routine extension of Lemma 2.8 and
Theorem 2.4 in [6].

THEOREM 2. If (¢(A),||-||l.) s the trace class of an arbitrary
Hilbert algebra A, then

(1) [tr(Ta)|Z|Tl|all., for all in z(A), T in My (A)U Mz(A).

(2) |Tl.=|Tl, for all T in M, (A)U Mz(A), where |-|. is the opera-
tor norm on B(t(A)).

(3) multiplication in z(A) is separately continuous; indeed,
llab||.=min {|L,|[[8]l., |B|llall}, for all a, b in z(A).

(4) lla*[l.=llall., for all a in T(A).

(5) llabll.=<llall[lpll, and [laa*|l.=la|f=[la*all., for all a, b in A.

In the language of [5], parts (3) and (4) of Theorem 2 establish
that 7(4) is an involutive quasi-normed algebra. Theorem 3 below
shows that ||:||. is an algebra norm on z(A4) if and only if ||-|| is an
algebra norm on A (compare with [6, Thm. 2.5]).

THEOREM 3. For A an arbitrary Hilbert algebra, the following
statements are equivalent:

(1) multiplication in T(A) is jointly continuous.

(2) there is a constant M >0 such that ||adb||.=< Ml|all.|bl]., for all
a, b in 7(4).
~ (8) there is a constant N>0 such that ||a||<Nllall., for each a
i T(A).
: (4) the trace class T(A,) of A, is complete.

(5) the Hilbert algebra A, is complete (i.e., A,=H).

(6) multiplication in A is jointly continuous.

(7) the Hilbert algebra A, is trivially renormable to be an H*-
algebra.

(8) there is a constant P>0 such that |L,|<Pllal|, for all a in
A.

(9) there is a comstant Q>0 such that |L,|=Qllall., for all a in
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7(A).

Proof. That statements (1) through (7) are equivalent can be
shown by modifying, in a straightforward manner, the proof of
Theorem 2.5 [6] (note: it seems to be necessary to use Theorem 2.5
to establish the equivalence (4)=(1)). As to statements (8) and (9),
it is clear that (8) is equivalent to (6); thus, (3)<(8) together imply
(9), while, in view of (8) of Theorem 2, (9) implies (2). N

The import of Theorem 3 is that there is, in general, no constant
N>0 such that ||a||<N||a|l., for all a in 7(4). The next theorem con-
cerns the existence of a reverse inequality (see [6, Thm. 4.1] for the
situation when A is full).

THEOREM 4. For A an arbitrary Hilbert algebra, the following
statements are equivalent:

(1) there is a constant N>0 such that ||a||.<Nla||, for all a in
7(4).

(2) there is a constant N>0 such that ||la||<N|L,|, for all a in
A.

(8) there is a constant M>0 such that ||a||.<M|L,|, for all a in
7(A).

(4) the Hibert algebra A, is projection bounded from above.

(5) the Hilbert algebra A, has an identity.

Proof. The implications (1)=(2), (3)=(2) are computational (see
[6]). The equivalence (2)«(4) is [16, Thm. 4.2]. Finally, the equi-
valence (4)=(5), and the implications (4)=(8), (4)= (1) follow directly
from [6, Thm. 4.1]. O

3. The Banach space 9y

In this section, the Banach space completion @, of the trace class
7(A) of an arbitrary Hilbert algebra A is studied. It is shown that
the C*-algebra % of A being a dual C*-algebra is closely related to
@4 being all of A*. In addition, the Banach space @, is realized as a
quotient of the Banach algebra of all trace class operators on H.

By [1, Prop. 4.2], the algebra M, (%) of (automatically continuous)
left multipliers of % is imbeddable in %”. The fact that M, (%) also
imbeds isometrically as a closed subalgebra of A** [7, Thm. 1.1], thus

yields a characterization of U as dual C*-algebra (see [15] for the
definition).

ProrosITION 5. If A is an arbitrary Hilbert algebra with C*-

algebra A, then A is dual if and only if M, (N)=A" and O, is dense
n A* (.e., A¥=0,).

Proof. From [15, Thm. 5.1], % is a dual C*-algebra if and only
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if M (A)=u**. However, as noted above, M,(A)ZA” and by Theorem
1, m”ém**/@;; whence, the result follows. []

When A is a full Hilbert algebra, A (hence, %) is a twosided ideal
in A" [8, Cor. 1.8]; thus, in this case, A is dual if and only if @, is
dense in A*. This fact sheds new light on Example 3.3 in [6].

Now, let %A be the C*-algebra conjugate to A [3, 1.9.1]. View H
as a left A-module by setting W-h=JWJh, where We ¥, he H. Then
the dual H* of H becomes a right A-module via the adjoint action;
more precisely, k- W=JW*Jk, for all W in A, k in H*. Following
[9, p. 72], let HR; H *=(H®H *)/K, where H®H * is the projective
tensor product of H, H* (and, as such,is identifiable withe Banach
spaces of trace class operators on H [13, Thm. 5.12, p. 119]), and K
is the closed linear span in HRH* of elements of the form W-h@
k—h@k-W, where h, ke H, We.

THEOREM 6. Let 0: HQQz H* —>®y be defined, for t in H Rz H*,
by 0(8) =227 Pi;oo 5 Where 37 h;Qk; is a representative of t such that
2 bl |kl < 4-co. Then 6 is an tometric isomorphism from H Rz H*
onto D.

Proof. Define ¥: HXH*—®, by ¥(h, k)=, ;,. Then ¥ is a joint-
ly continuous bilinear map onto @, with [[¥]|=1 and, as a result,
determines a unique continuous linear map + from H@H * onto @y
with [j4]|=1 such that (h, k)=9, .. Let # be the unique map from
B=(H®H*)/ker«/r onto @4 satisfying y=@-n, where %: H®H*—»B is
the usual quotient map. It is elementary to show that ||6]|=1; hence,
by the open mapping theorem, B and &, have equivalent norms. Thus,
set-theoretically, B and @, have the same dual space %”. However,
B*=(ker ¢)' ={F e (HRH*)*: F(t)=0, t cker 4}, and (HQH*)*=B(H)
[13, Thm. 5.14, p. 119]; hence, B*=%" and it follows that B=0, (i.e.,
that 6@ is an isometric isomorphism).

To complete the proof, it remains to show that K=ker+. The
inclusion KCker follows readily by a routine calculation. Next,
since (H*)*=H, the dual (HQz H*)* of HRyz H* is isometrically iso-
morphic to Homg (H, H)CB(H) [9, p. 72]. If TeHom;z(H, H), then
T(W-h)=W-(Th), for all W in ¥, h in H. Thus, T(JWJ)=(JWJ)T,
for all Win 9; hence, by [2, Thm. 1, p. 71], TeA”. Meanwhile,
every T in %" satisfies T(JWJ)=(JWJ)T, for all W in ¥, and so
is in Homg (H, H). Therefore, K'=(HXy H*)*=Hom; (H, H)=U"=
B*=(ker 4)*; from which, since KCker+, the equality K =ker 4
follows. [l

Theorem 6 shows that, if G is a unimodular locally compact group,
then the Fourier algebra A(G) of G is isometrically isomorphic as
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a Banach space to a quotient of the space Lz(G)®L2(G)* of trace class
operators on L*G) (cf., [9, p. 81]).

4. The replete case

Throughout this section, A will be a replete Hilbert algebra; that
is, a Hilbert algebra which is a Banach subalgebra of A, in the so-
called Rieffel norm ||a||,=|la||+|L,| (see [16]). It is known [5, Cor. 4.2]
that Hilbert algebra A is replete if and only if A=%N A4, (set-theoreti-
cally). Although replete Hilbert algebras need not contain projections
as full Hilbert algebras do, there is still a notion of summability as-
sociated with the trace class of such an algebra. In fact, a positive
element of a replete Hilbert algebra A is in z(A) if and only if it is
integrable. For the definitions and properties of positive elements and
integrable elements of H, the Hilbert space completion of A, consult

[8].

THEOREM 7. If a is a positive element of A, then the following
statements are equivalent: ’

(1) a is integrable.

(2) a s im 7(A).

(3) a=0b% for some positive b in A.

(4) a=c*c, for some ¢ in A.

Proof. The implications (8)=(4)=(2)=(1) are immediate. To see
that (1)=(8), first note that, by [6, Lemma 1.2], a=5?% for some posi-
tive b in A,. Thus, L, is a positive operator in U” whose square is
the positive operator L, in %A. It follows that L, e9; hence, be AN
A,=A. O

In order to apply Theorem 7 to arbitrary elements of A, we show
that each element of A admits a polar decomposition.

PROPOSITION 8. If ac A, then there exists a unique positive ele-
ment [a] in A such that ||[a]l|=]|la|| and L =[L,), the positive square
root of LiL, in . Further, there is a partial isometry W, in A"
such that a=W,[a] and [a]= W ia.

Proof. As to the first statement, since AC A4,, the element a*a
has a unique positive square root [a] in A, with the properties describ-
ed [6, p. 261]. Moreover, because Li,;=[L,] is in U, [a]e AN A,=A.
The uniqueness of [a] also follows from the equality L,;=[L,] and the
fact that the representation L of A is faithful. The second statement
is contained in [6, Thm. 1.3]. O

Combining Theorem 7 and Proposition 8 yields the following
results.
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PROPOSITION 9. An element a of A is in T(A) if and only if [a]
18 in T(4).

Proof. If aet(A), then ac7(4,;); hence, by [6, Lemma 2.1], [a]
is integrable, and so is in z(A4) by Theorem 7. Conversely, suppose
that [a] €7(A). Then [a]=0b% for some positive b in A (Theorem T),
and a=W,[a]=W,b*=(W,b)b, for some partial isometry W, in A"
(Proposition 8). Because A’'=M,(4,), W,be A,. In addition, how-
ever, L,=lim, [L,]p.([L,]) in %, where {p,} is a sequence of real poly-
nomials (indeed, if q,t)=t, @...(t)=q,()+({E—q.()?)/2, all n=1, then
4.(t),/V/t for all t in [0, 1]; thus setting p,{&)=V"r t7'¢,(t/r), for each
n, where r=|[L,]|, defines such a sequence {p,}). Consequently, W,L,=
lim, W,[L,]».(L.,])=lim, L,p,([L,]) is contained in %, and so W,be AN
A,=A. Consequently, a=(W,b)bet(A). O

COROLLARY 10. The trace class T(A) of A is the set {ab: a, be A},
and 7(A)=7(4,)NA.

Proof. That z(A)={ab:a,bec A} is shown in the proof of the
previous proposition. The inclusion 7(A)S7(4,)N A is immediate, and,
for the reverse inclusion, if aez(4,)NA, then [a] is integrable [6,
Lemma 2.1]. Thus, [a]ez(4A) by Theorem 7, and so ac€7(4) by
Proposition 9. ]
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