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This paper is a continuation of the studies by Fleck, Trauth and the others. One
of the methods used in the study of algebraic structures of automata is the
consideration of automorphism groups of automata. Fleck [4], Weeg [15] investigated
the class of perfect automata and Trauth [14] generalized Fleck’s results, introducing
the class of quasi-perfect automata. Masunaga et al. [10] introduced the class of
quasi-state-independent automata and generalized Trauth’s results. In this paper, we
introduce a new class of cyclic automata which are called quasi-regular. The class of
quasi-regular automata contains the class of quasi-perfect automata as a proper
subclass.

In Section 1 of this paper, for the purpose of studying automorphism groups of
automata, we consider basic properties of centralizer semigroups of permutation
groups. Quasi-perfect automata are essentially “the automaton representations” of
finite groups and are, in a certain sense, the regular representations of finite groups.
Quasi-regular automata are also closely related to quasi-regular permutation groups
(Proposition 2.1). The properties of centralizers of permutation groups are shown in
terms of mapping matrix (Theorems 1.1 and 1.2). In this case, the notion of reducer
matrix of a permutation group plays a fundamental role. Thus Section 1 contains
reducers of permutation groups, quasi-regular permutation groups, GC-matrices and
AG-matrices. All definitions for permutation groups, used but not explained here, can
be found in Wielandt [16].

In Section 2, the relationships between the structure of a cyclic automaton 4 and
the structure of its automorphism group G(4) are mainly investigated. By the notion
of reducers of permutation groups we can obtain an interpretation of a relationship
between inputs of an automaton 4 and constituents of the automorphism group G(A)
(Theorem 2.2). We pay our attention to Bavel’s result [2] that any automorphism of a
cyclic automaton is completely determined by its action on the set of generators of the
automaton, and for a cyclic automaton 4 we define the automaton A* on the set of
generators of 4. A cyclic automaton 4 is called quasi-regular if G(4) is transitive on
the set of all generators of 4. It is shown that if 4 is a quasi-regular automaton such
that G(4)+# {1}, then the input-set of 4 has a certain partition and A4* is a quasi-
perfect automaton such that G(4*) is isomorphic to G(4) (Theorem 2.3). We give an
example of a construction of a quasi-regular automaton by using AG-matrices
(Example 2.2). In the latter half of this section, the relationships between A* and the
factor automaton of a cyclic automaton A are studied and, by our Theorem 2.5, Ito’s
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66 G. TANAKA
result [8] is extended easily to cyclic automata (Proposition 2.7).
1. Centralizers of permutation groups

Let f: S;—S, and g: S,—S; be mappings of S; and S,, respectively. We read a
product fg from left to right;

OUP=()Ng, seS;.

And ((s)f)g is denoted simply by (s) fg.

Let X=(x;;) be an m x n matrix. If for each i (i=1, -- -, m), there is a unique
number k such that x;, is 1 and other (i, j)-th entries are 0, then X is called a mapping
matrix. An m x m mapping matrix X is called a permutation matrix if all column
vectors of X are not the zero vector. Let B; and B, be two finite sets and a be a
mapping from B, into B,. To a we assign the mapping matrix P(a) which is a
| B;| x| B,| matrix whose entry in position (i, j) is 1 if (a)a=b; and zero otherwise,
where a;€ B; and b;e B,. If « is one-to-one and onto, then P(x) is a permutation
matrix. Note that if X is an m X n mapping matrix such that each column of X is not
the zero vector and if P is an n x n permutation matrix such that XP= X, then P is the
identity matrix.

Definition 1.1. Let G;(i=1, 2) be two groups and 4 be a subset of G; X G,. 4 is
called a §-pair of G; x G,, if

G1={XGG1‘(X,J’)€A} and G2={yGG2|(x> Y)EA}

Example 1.1.

(1) G{xG, is a é-pair of G, X G,.

(2) If a: G,—~G, is an onto mapping, then {(x, (x)a)| xeG,} is a é-pair of
G, X G,

Notice that if 4 is a 6-apir of G, x G,, then the following two subsets are -pairs,
respectively, of G; x G, and G, x Gy;

A7 ={(x"", ¥y II(x,y)ed} and A={(y, x)(x, y)e4}.

When G is a permutation group (or a transformation semigroup) on a finite set
B, we shall write G more concretely as (G, B).

LEMMA 1.1. Let(Gy, B,) and (G,, B,) be two transitive permutation groups and
A be a S-pair of Gy xG,. In addition, let X be a |B,|x|B,| matrix such that

P(g,)X=XP(g,) for all (g, g,) € A. Then we have
(1) If some row of X is a zero vector, then X=0.
(2) If some column of X is a zero vector, then X=0.
(3) If X is an m x n mapping matrix, then m= n.
@ If (x, ), (u, v)€ 4, then P(xu)X=XP(yv).

Proof. Suppose that the k-th row of X'is a zero vector. Since G, is transitive, for
each entry x;; of X it is possible to find some g € G, such that (k, i)-th entry of P(g) is 1.
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If (g, h) € 4, then P(g)X = XP(h). The k-th row of XP(h) is a zero vector and the (k, N-
th entry of P(g)X is x;;. Hence we have x;;=0 and (1) holds. For (2), consider the
transpose of matrix. By the hypothesis, some row of ‘X is a zero vector. Since
'P(g,)'X="X"'P(g,) for all (9,, g,) €'4 and 'P(g)= P(g ) for an arbitrary permutation
g, we have "X=0 from (1). This proves (2). Itis clear that (2) implies (3). Finally, if
(x, ¥), (u, v)€ 4, then

P(xu) X = P(x)(P(u)X) = P(x)XP(v)= XP(y) P(v)= X P( yv).
Q.E.D.

PROPOSITION 1.1.  Let (G, B;) (i=1, 2) be two transitive permutation groups and
4 be a o-pair of G, xG,. In addition, let X be a mapping matrix such that
P(g,)X=XP(g,) for all (g,, g,) € A. Then we have

(1) a: Gy—G,, which is defined by (g,) o.=g, if (9;, g,) € 4, is well-defined and o
is a homomorphism from G, onto G,.

(2) If1 By |=|B,|, then X is a permutation matrix and o is an isomorphism from
G, onto G,.

Proof. (1) Let(x,y),(x,z)e4, then XP(y)=XP(z). Hence XP(yz~!)=X and
this implies that P(yz ') is the identity matrix. Thus y=z and « is well-defined. From
the definition of J-pair it follows that « is an onto mapping. 4 can be written in the
form

4={(x, (x)2)| xe G,} .

For any (x, (x)2), (y, (y)2)€ 4, by Lemma 1.1, we have P(xy)X=XP((x)a( y)x). On
the other hand, P(xy)X=XP((xy)x) since (xy, (xy)a)ed. Thus we conclude that
(xy)oa=(x)o( y)a for all x, yeG,.

(2) Since | B;|=|B,|, X is a square mapping matrix such that all column
vectors of X are not the zero vector. This means that X is a permutation matrix. If
(x, 2), (¥, )€ 4, then P(x)X=P(y)X. It implies P(x)= P(y) because there exists the
inverse of X. Thus « is one-to-one. Q.E.D.

Definition 1.2. Let (G;, B;) (i=1, 2) be two permutation groups. If there exist
two mappings o« and ¢ which satisfy the following conditions, then (G,, B,) is called a
reduction of (Gy, B;) and (a, ¢) is called a reducer of (G,, B,) onto (G,, B,):

(1) o is a homomorphism from G, onto G, and ¢ is a mapping from B, onto B,.

(2) For all be B, and geG,, (b)gé =(b)é(g)a.

If, in addition, « is an isomorphism and ¢ is one-to-one, then (G, B;) and
(G,, B,) are said to be equivalent to each other, and denoted as (G,, B,) =~ G2, By).

If (a, &) is a reducer of (G,, B;) onto (G,, B,), then we have that P(g)P(¢)=
P(E)P((g)a) for all ge G, and also we have the commutative diagram

¢
B, B,

gJ' j(g)a
4

B, B, , where ge G,.
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Example 12. Let (G, B) be a permutation group and H be a subgroup of G.
For each xeG, ¢,.: H-x"'Hx is defined by (y)é,=x"'yx for all ye H. Then
(b) yx=(b)x(y)¢, for all be B and ye H. Hence (£,, x) is a reducer of (H, B) onto
(x"'Hx, B).

Definition 1.3. Let (G, B) be a permutation group. A mapping matrix X is
called a reducer matrix of (G, B) if there exists some reducer (a, &) of (G, B) such that
P(O)=X.

PROPOSITION 1.2. Let (o, &) be a reducer of (G, B) onto itself. Then, o is the
identity mapping if and only if £ is a permutation in the centralizer of G in Sy, where Sp
is the symmetric group on B.

Proof. If a=1, then g¢ =¢&g for all ge G. Since ¢ is an onto mapping and Bis a
finite set, the mapping ¢ is a permutation in the centralizer of G in Spg.

Conversely, if ¢ is an element in the centralizer of G in S, then {g=g{=<{(g)x
for all geG. Thus (g)a=g for all geG. ' Q.E.D.

PROPOSITION 1.3. Let (G,, B;) and (G,, B,) be two transitive permutation
groups, and let A be a 5-pair of Gy X G,. If there exists a mapping matrix X such that
P(g,)X=XP(g,) for all (9,, g,) € 4, then (G,, By) is a reduction of (G, B,) and X is a
reducer matrix of (G, By)-

Proof. By Proposition 1.1, a: G,—G,, which is defined by (g,)a=g, if
(91> g2) €4, is a homomorphism from G, onto G,. Define the mapping &: B, —B,
by (s)¢é=t¢; if the (i, j) entry of X is 1, where s5;€ B, and t;€ B,. Then X=P({)
and (s)g,E=(s)é(gy)o for all se B, and g, €G;. Q.E.D.

Let G be a group with a subgroup H and let G\H={Hx,, - - -, Hx,} be the set of
all right cosets of H in G. Then we have a homomorphism 7y from G into the
symmetric group on G\H given by

T Hx;
H Y Hxg .
A homomorphism « from G into the symmetric group on a set B is called a

permutation representation of G on B. We say o is transitive if (G)a is transitive on B.

PROPOSITION 1.4. Let o.: G—(K, B) be a transitive permutation representation.
Then there exists a subgroup H of G such that

(G)my, G\H)= (K, B).

For the proof, see Huppert [7], p. 29.

A permutation group (G, B) is called semiregular if for each be B, G,={1},
where G,={geG|(b)g=>b} (the stabilizer of b). A permutation group G is called
regular if it is semiregular and transitive.

PROPOSITION 1.5. Let (G, B) be a regular permutation group and let Ty be the
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full transformation semigroup on B. Then
G'={feylfg=gf forall geG}
is a regular permutation group on B.
For the proof, see Dorfler [3] (Folgerung 3).

PROPOSITION 1.6. If a transitive permutation group (G, B) is abelian, then G is
its own centralizer in Sg.

For the proof, see Wielandt [16], p. 9 or Huppert [7], p. 29.

Let G be a group. To each ge G we assign the permutations

g*=<ig> and *g=< _lz”-),xEG.
)

Then G*={g*|ge G} and *G={*g| g€ G} are regular on G. G* and *G are called the
right regular and left regular representations of G, respectively. (*G, G) is the
centralizer of (G*, G) in I.

Remark 1.1. Let S be a semigroup with a left identity. To each re S we assign
the transformations

t*:s5—>st and *t:s—ts, seS.
Then (*S, S) is the centralizer of (S*, S) in Tg.
Let G be a group and consider the two mappings
a:*G-G*(*x—>x*) and ¢:G-G(g l-yg).

Then (, &) is a reducer of (*G, G) onto (G*, G), and (*G, G) is equivalent to (G *, G).

If (G, B) is a regular permutation group and b, € B, then for each b,e B there
exists a unique element g; € G such that (b,)g;=b;. Therefore the operation * on B
defined by

bi*bj=(b1)gigj

is well-defined. It is easy to see that B forms a group under the operation = and the
group B=(B, ) is isomorphic to G. Thus we may regard the regular permutation
(G, B) as the right regular representation of G. From Proposition 1.2, we have the
following immediately.

PROPOSITION 1.7.  Let G be a group and (a., £) be a reducer of (G *, G) onto itself.
Then o is the identity mapping if and only if £ e *G.

PROPOSITION 1.8. Let G be a group and H be a subgroup of G. Define the two
mappings & and ny as follows:
g G*—>(G)ny (x*—>()my)
and
¢:G->G\H (9g—Hg) .
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Then (ny, &) is a reducer of (G*, G) onto (G)ny, G\H).
Proof. For all geG and x*eG*,

(9)x*¢=(gx)¢=Hgx=(Hg)(x)nyg=(9)é(x*)ny .
Q.E.D.

Definition 1.4. Let (G, B) be a permutation group and {B,i=1, - - -, r} be the
set of all G-orbits, where | B;| =| B; ., | forallj=1, - - -,r—1.If |G| =] B, |, then (G, B)
is called quasi-regular. ‘

Let (G, B) be a quasi-regular permutation group and (G;, B;) (1<i<r) be the
constituent of G on B;. Then (G, B,) is regular and each g€ G can be written in the
form g=g,-:-g;- - -g,, where g, is an element of G;. The mapping o;: G— G, defined
by (g)a;=g; is a homomorphism from G onto G;. Thus we have |Gi|||G| and
| B;||| B, | foralli=1, - -+, r. If | B;|=| B | forall i=1, - - -, r, then G is semiregular. If
r=1, then G is regular. We notice that in general | B;|>|B;| does not imply
|G| >]Gjl.

PROPOSITION 1.9. Let (G, B) be a quasi-regular permutation group and (G;, B;)
(1 <i<r) be constituents of G on G-orbits. If G is abelian, then (G,, B;) is regular for all i.
Proof. 1t follows easily from Proposition 1.6. Q.E.D.

In the case that a quasi-regular permutation group G is not abelian, its
constituent on some G-orbit B is not necessarily regular on B. For instance, see the
constituent G, in Example 2.2.

Definition 1.5. Let (G, B) be a permutation group and (G;, B;), where i=
1, ---, r, be all constituents of G on G-orbits. The J-pair 4;; of G;x G; is defined
by (g:, g;) € 4;; if there exists ge G such that g=g,---g;---g;- -9, (9,€ Gp)-

J
In the above notations, the set M;; of matrices is defined by

M,;={X|X is a mapping matrix such that
P(gi)X=XP(gj) for all (g, gj)EAij} .
Definition 1.6. Let (G, B) be a permutation group and let
C={(G;, B)|1Zi<r,| B;|2| B,y |, 1Sj<r—1}

be the set of all constituents of G on G-orbits. If the set of matrices {X,, | 1<p,q<r}
satisfies the following conditions, then the matrix X=(X,) is called a GC-matrix:
(1) X, isa|B,|x|B,| matrix for all p and g (1=p, g=r).
(2) Foreachp (1=<p<r), there exists a unique number & such that X, # 0 and if
X, #0, then X, e M. )

THEOREM 1.1. Let (G, B) be a permutation group and let
C={(G;, B)I 1<i<r, | B;|2| Bjy,|, 1Sj<Sr—1}

be the set of all constituents of G on G-orbits. Then X is a mapping matrix such that
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P(g)X=XP(g) for all g G if and only if X is a GC-matrix.
Proof. Let

P(g,) X X2 s Xy,
P(g,) : X Xy o0 X,

P(g)= o X= . :
P(gr) Xrl Xr2 e er

where g=g,9,- - -9,€G(g9;€G)) and X; is a | B;| x| B;| matrix. Since X is a mapping
matrix, every entry of X;; is equal to 0 or 1. Comparing the (i, j) block of P(g)X with
the (i, j) block of XP(g), we have P(g,)X;;= X,;P(g;) for all (g;, g;) € 4;;. If X;;#0, then
all rows of X;; are not the zero vector by Lemma 1.1. Thus X;;is a mapping matrix and
X;eM;;.

Conversely, if X is a GC-matrix, then X;;=0 or X;;e€ M;;. Therefore P(g,)X;;=
X,;P(g)) for all (g;, g;) € 4;;. Thus we have P(g)X=XP(g) for all geG. Q.E.D.
From the form of GC-matrix we have

COROLLARY 1.1. Let (G, B) be a permutation group and let G* be the
centralizer of G in Xp. If f € G and B’ is a G-orbit, then {(b)f| be B’} is also a G-orbit,
and thus f maps any orbit of G onto an orbit of G.

Definition 1.7. Let (G;, B,) be a transitive permutation group and let
A={(G;, B)|1Si<r,|B;|Z|Bjs,|, 1Sjsr—1}

be a set of reductions of (G,, By). If the matrix X=(X,,), where 1 <p, g=<r, satisfies
the following conditions, then X is called a AG,-matrix:

(1) X, isa|B,|x|B,| matrix for all p and g (1=p, g=r).

(2) For each p (1=<p<r), there exists a unique number k such that X, #0 and
if X, #0, then X, is a reducer matrix of (G,, B,) onto (G, By).

Example 1.3. Let G={x) x{y) be an elementary abelian group of order 4
and let e be the identity of G. Put

<e X y xy) (e Xy xy)
Xy = P nh=
X e Xxy y y Xy e x
e1=xf, G, ={x;, y1> and Bl={e’ X5 Vs xy}.
Then (G,, B,) is the right regular representation of G. Let H={x). Then G\H=

{H, Hy} and
_(H Hy _(H Hy
@ ={ Hy)’ V)my= Hy H )

Set e, =(e)ny, y,=(y)ny, B,=G\H and G,=<y,». For two permutation groups G,
and G,, we consider the following reducer (Proposition 1.8):



72 G. TANAKA

oc=<el X1 W x1Y1> f=<e x y xy)
€ € V2 V2 ’ H H Hy Hy

And also consider the reducer of G, onto itself as follows (Proposition 1.2):

ﬁ=<ez )’2)’ #=<H H,V>‘
€ Y2 Hy H

Put 4={G,, G,}, then the following matrix X is a AG,-matrix.

e x y xy H Hy

el0O 0 0O O]1 O

X 1 0

X=[0 P(é)]= y 0 1
0 P() xy 0 1

H 0 1
Hy | 1 0 |

In the following diagram, let (a;, &) (i=1, 2) be reducers of (G, B) (i=1,2),
respectively. Then («;a,, ¢,£&,) is a reducer of (G,, B;) onto (G;, Bs):

Gy, By) &) (G, B) —2%2 ., (G, B).

Thus, if X and Y are AG,-matrices, then XY is also a AG,-matrix.

THEOREM 1.2. Let (G, B) be a quasi-regular permutation group and let
A={(G;, B) 1<i<r, | B;|2| By, |, 1Sj<r—1}

be the set of all constituents of G on G-orbits. If X is a mapping matrix such that
P(g)X=XP(g) for all geG, then X is a AG,-matrix.

Proof. Owing to the quasi-regularity of G, the mapping o;: G, —G;, which is
defined by (g,);=¢;ifg=g, - -g; - -9, € G(g;€ G;), is a homomorphism from G, onto
G;. Since o; is a permutation representation of the group G,, by Proposition 1.4 there
is a subgroup H,; of G, such that

((Gny,, G\H)=,(G;, B) .
By Proposition 1.8, there exists some reducer of (G, G,) onto ((G;)ng,, G,\H,). Since
(G, B) is quasi-regular, (G,, B;) is a regular permutation group. Therefore (G,, B;) is

equivalent to (G¥, G,). It follows that (G;, B;) is a reduction of (G,, B,), so that all
(G, B) (1<iZr) are reductions of (G,, B;). Using the proof of Theorem 1.1, we

have Theorem 1.2. Q.E.D.
Let S={1, - - -, r} and G be a group. To each g e G, we assign a permutation (g)0
on G xS;

(g)0=<--- Ez,gl)i) --~>,where heG and ieS.
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Denote the set of all such permutations by (G)0. Then ((G)0, G x S) is a semiregular
permutation group which has r orbits. Conversely, if (G, B) is a semiregular
permutation group with r orbits, then (G, B) is equivalent to ((G)0, G x S).

If (9)0 € ((G)0, G x S), then P((g)f) is a matrix whose (i, i)-th blocks, where i=
1, ---, r, are equal to P(g*), g*eG*. If X is a mapping matrix such that
P(g*)X=XP(g¥) for all g* e G*, then, by Proposition 1.7, there exists some *41e*G
such that X'= P(*h). Therefore we have the following result from Theorem 1.1.

PROPOSITION 1.10. Let G be a group and S={1, - - -, r}, and let X be a mapping
matrix. Then P((g)0)X = XP((g)0) for all ge G if and only if X satisfies the following
conditions

(1) X=(X;)) (1=i, j<r), where all X;; are | G| x| G| matrices.

(2) Foreach i (1<i<r), there exists a unique number k such that X, #0.

(3) If Xy #0, then X, ;= P(*h) for some *he*G.

Let C((G)B, G x S) be the set of all mapping matrices which commute with all
P((9)0), geG. From Proposition 1.10 and the fact | *G|=| G|, we have | C((G)6,
GxS)| =|G|"-r. C(G)I, GxS) froms a semigroup under the multiplication of
matrices. The preimage W of C((G)0, G x S) under P is a transformation semigroup
on G x S. The centralizer of Win & s is ((G), G x S) (see (2) of Lemma of [12]). For
a subsemigroup J of W, we put

C)={9€Csxslgf=fg forall feJ}.

Then it is obvious that ((G)f, G x S) < C(J). However we do not have a necessary and
sufficient condition about J in order that C(J) is equal to ((G)6, G x S), where | §|>1.
This is clearly a difficult problem.

Definition 1.8. Let H be a group and (K, S) be a transformation semigroup on
S. The wreath product H¢K of H and K is the set

{(f, 7)1 €K, fis a mapping from S into H}
which has the multiplication
(1, A (fo, =S5, 71)
where (i) /3= f,(()A) [, for all ieS.

HK forms a semigroup and if K is a permutation group, then HK forms a group
(see [7], p- 99).

PROPOSITION 1.11. Let G be a group and I be the full transformation
semigroup on S. Then C((G)8, G x S) is isomorphic to GiZs.

Proof. F={f|f is a mapping from S into G} forms a group under the
operation o, where (i) (fof")=(i)f(i)f for all ieS. To each ieS, we set D,=
{(fix» ©)| xe G}, where e is the identity permutation on S and

. X if j=i,
(])fi"_{l(; (the identity of G) if j#i.
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Then D, is isomorphic to G as group and f € F is written in the form

f=f1x1°f2x2°' : ‘Of;xr’ ﬁxiEDi >

where r=| S| and i=1, ---, r. If v, we G3Tg and

U=(f1x1°' ' 'oﬁxra 2')s w=(f1y1°' ' 'Of;yr, /’l) P

then vw=(f", An) where (i)f'=x;yq, for all ieS. We define the mapping P:
T~ C(G)Y, G x S) as follows;

Ifo=(fi50  ofixo "o frx,» 4) € GITs, then P(v) is a matrix whose (i, (i)4) block
is P(*x;).

Then we can easily prove that P is an isomorphism from GTg onto F((G)0,
GxS). Q.ED.

2. Automorphism groups of automata

In this section we deal with the groups of automorphisms of automata.

Definition 2.1. An automaton A4 is a triple, A=(S, I, M), where S is a
nonempty finite set of states, I is a nonempty finite set of inputs and M: Sx I—Sis a
next state function, called state transition function, such that M(s, xy) = M(M(s, x), y)
and M(s, &)=s for all s€ S and all x, yeI. Here I is the free semigroup generated by
the elements of 7 and ¢ is the identity of I.

Definition 2.2. Let A=(S, I, M) be an automaton. A permutation g on S is
called an automorphism of the automaton A if M((s) g, x)=(M(s, x))g for all s S and
all xel.

Fleck [4] has shown that the set of all automorphisms of an automaton 4 forms a
group, denoted by G(A4). Let A=(S, I, M) be an automaton. The reachability set of
se S is defined by r(s)={M(s, x)| xeI}.

Definition 2.3. An automaton 4=(S, I, M) is called a cyclic automaton if there
is an se S such that r(s)=S. Such an element s is called a generator of 4. If an
automaton A is cyclic and if every element of S'is a generator, then A4 is called strongly
connected ([4], [11], [15]).

In this paper, by S, we denote the set of all generators of an automaton 4=

(S, I, M).

Definition 2.4. An automaton A=(S, I, M) is called quasi-perfect if 4 is
strongly connected and if G(4) is transitive on S. If M(s, xy)= M(s, yx) for all se S
and x, yel, then A4 is called abelian. An automaton A is called perfect if A4 is abelian
and quasi-perfect ([4], [14]).

THEOREM 2.1 (Bavel [2]). If A=(S, I, M) is a cyclic automaton, then the
restriction of G(A) on S, is a semiregular permutation group and | G(A)| divides | S, |.

For the proof, see Corollary 1 and Theorem 6 of Bavel [2].
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COROLLARY 2.1 (Fleck [4]). If A=(S, I, M) is a strongly connected automaton,
then G(A) is a semiregular permutation group on S and | G(A)| divides | S|.

Remark 2.1. Inthe case that 4=(S, I, M) is strongly connected and G(A4) has r
orbits, the permutation group (G(4), S) is equivalent to ((G)0, G x B), where G=G(4)
and B={1, - -+, r}. If xeI, then x%: S—M(s, x), s€ S, is a mapping from S into itself.
If we regard G(4) as the permutation group ((G)8, G x B), then X is regarded as a
transformation on G x B and (P(X)| xe I is a subsemigroup of C((G)6, G x B). For
the computation of those matrices it is a convenience to remove P’ from matrices in
C((G)8, G x B). For instance

0 P(g,) 0 g,
X= — X = .
I:P(gz) 0 ] |:gz 0 :|

The right-hand matrix is called a group-matrix (of order 2). Ito [8],[9] has shown that
the semigroup which consists of group-matrices is a useful tool for the study of
automorphism groups of automata.

Definition 2.5. An automaton 4= (S, I, M) is called a permutation automaton
if for every x eI the mapping

X s—>M(s, x), sesS,
is a permutation on S([13]).

Let A=(S, I, M) be a quasi-perfect automaton, then G(4) is transitive on S and
| G(4)|=| S| by Corollary 2.1. This means that (G(4), S) is a regular permutation
group. If xel, then the transformation % on S is a semiregular permutation by
Proposition 1.5. Therefore, a quasi-perfect automaton is a permutation automaton.

Now we present relationships between an input of an automaton 4 and
constituents of G(A).

THEOREM 2.2. Let A=(S, I, M) be an automaton, and let G; and G; be
constituents of G(A) on orbits B; and B, respectively. If x € I and M(s,, x) € B; for some
So € By, then £.: s— M(s, x), s€ B,, is a mapping from B; onto B; and for &, there exists
some reducer (a, &,) of (G;, B;) onto (G}, B)).

Proof.  Since M((s,)g, x)=(M(s,, x))g € (B;)g for all ge G(A) and both B; and B;
are G(A)-orbits, £, is a mapping from B; onto B;. Let Gy, k=1, - - -, r, be constituents
of G(A) on G(A)-orbits and let g=g, - - -g;- - -g;- - - g, (9, € G}) be an arbitrary element
in G(A), then for se B; we have

M((5)g;» x)=M((5)g, x)
=(M(s, x))g=(M(s, x))g;
It implies that (s)g,&,=(s)¢,g; for all seB; and (g;, g;)€4;;, s0 that P(g)P(¢,)=
P(¢)P(g;) for all (g;, g;) € 4;;. By Proposition 1.1, the mapping «: G;—>Gj, given by
(9)o=g; if (g;» 9;) € 4;;, is a homomorphism from G; onto G;. Therefore («, £,) is a
reducer of G; onto G;. Q.E.D.
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COROLLARY 2.2. Let A=(S, I, M) be an automaton, and let G; and G; be
constituents of G(A) on orbits B; and Bj, respectively. If one of the following conditions
holds, then M(s, x)¢ B; for all se B; and xel.

(1) [B;l¥IB;l.

@ 1G;1¥IG;l.

(3) The correspondence o: G;—G;, given by (g)a=g; if (9> g;) € 4;, is not well-
defined as a mapping.

Proof. (1) If there exist some s, € B; and x el such that M(s,, x)€ Bj, then ¢,
s—>M(s, x) (seB;) is a mapping from B; onto B, Let B;={t;, ---, t,} and
D,={seB;IM(s, x)=1,}, where k=1, - - -, n. Since B; is a G(4)-orbit, for given #, € B;
there exists g, € G(4) such that (¢,)g,=1t,. If s€ Dy, then (M(s, x))g, = M((5)gr, X)=1;.
Therefore (s)g, € D, for all se D,. This means that | D; | <| D, |. Similarly we obtain
| D,| <| D, | by considering g, . Hence | D, |=| D, | for all k=1, - - -, n. Thus we have
that | B;|=n| D, |=| B;|-| Dy |.

(2) and (3) follow from the proof of Theorem 2.2. Q.E.D.

Let A=(S, I, M) be an automaton and U be a G(A)-orbit. If | U|=1, then U is
called a one-state orbit. For instance, the set {14} in Example 2.2 is a one-state orbit.

COROLLARY 2.3. Let A=(S, I, M) be an automaton, and let G; and G; be
constituents of G(A) on orbits B; and Bj, respectively. If

G/N£G//N;
Jor any pair of N2 G; and N;2G;, then

el ol

is an empty set or the set which is a union of one-state orbits.

Proof. If R;; is not an empty set, then there exists some orbit B, such that
BynR;;# . By Theorem 2.2, B, S R;; and (G, B,) is a reduction of both (G;, B;) and
(G}, B)). Since G on By is a transitive permutation representation of G; and G;, there
exist normal subgroups N;=G; and N;=1G; such that

Gi/N;=G,=Gj/N; .

By the hypothesis, N;=G; and N;=G;. Therefore (G,, B,) is an identity group and
| B,|=1. Q.E.D.

Now we introduce the notion of quasi-regular automata and, in Proposition 2.1
and Theorem 2.3, we establish some of their properties.

Definition 2.6. Let A=(S, I, M) be an automaton. If 4 is cyclic and G(4) is
transitive on S ,, then the automaton 4 is called quasi-regular.

PROPOSITION 2.1. If A=(S, I, M) is a quasi-regular automaton, then G(A) is a
quasi-regular permutation group.
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Proof. From the definition and Theorem 2.1, we have | G(4)|=| S4|. Let B; be
an arbitrary G(A4)-orbit and se B;, then there exist some #,€S, and xe[ such that
M(ty, x)=s. From Theorem 2.2, ,: t— M(1, x), te S, is a mapping from S, onto B,.
It implies that | S| =] B;|. Q.E.D.

Let A=(S, I, M) be a cyclic automaton. We define the subset 1, of I by
Ii={xel|M(s, x)eS, for all seS,},

and by I, we denote the free semigroup generated by / 4
In general there are cyclic automata such that 7,= ¢f and G(4) # {1}. However
we have

LEMMA 2.1. Let A=(S, I, M) be a quasi-regular automaton. Then

(1) IfIS,1#1, then 1, is not empty.

(2) If x is an element in I such that x #¢ and M(s, x)€ S 1 for at least one s€ S,
then 1, is not empty and xel,.

Proof. (2) Let seS, and x=x,---x,, where x;el for i=1, ---, n. Suppose
that M(s, x)e S, then

st M1, x), teS,,

is a mapping from S, onto S, by Theorem 2.2. If n=1, then x=x, €I, and I, is not
empty. If n=2, then

M(M(S, Xy ’"xn—l)’ xn)ESA
and so
M(s, xy--x,_1)€S,.

This shows that x,el, and I, is not empty. Similarly, since all M(s, x;- - -x,_,),
M(s, x{++X,_5), * > M(s, x,) are in S,, we have that x,, - - -, x,el, and xe1,.
(1) If|S,l1#1, then there exist elements s, 1€ S, such that s#¢. Since s is a
generator of 4, there exists x € I'such that M(s, x)=1re S ,. In this case, the element x is
not &. Therefore, from (2) we have (1) of our lemma. Q.E.D.

Definition 2.7. Let A=(S, I, M) be a cyclic automaton such that 7, # &J. Then
the automaton 4* is defined by A*=(S, I,, M ,), where M , is the restriction of M to
S,x1I,.

Note that if 4 is a strongly connected automaton, then 4= A*.

LEMMA 2.2. Let A=(S, I, M) be a cyclic automaton such that 1,+ (5, then the
restriction of G(A) to S, is a subgroup of G(A¥*).

Proof is straightforward and, therefore, omitted.

THEOREM 2.3 Let A=(S, I, M) be a quasi-regular automaton such that

| S,1#1. Then we have
(1) A*=(S,, 1,, M) is a quasi-perfect automaton.
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@ G(A)=G(4%).
3 I=1,01, and I, " 1,= &, where

xel, < M(s, x)eS,  forall seS,,
xely, & M(s,x)¢S, forall seS.

Proof. 1f a quasi-regular automaton 4 is strongly connected, then A is quasi-
perfect and this theorem is obvious.

(3) Assume that /—1,# & and xel—1,. If M(s, x)e S, for some se.S, then
s€ S and from Lemma 2.1 we have x € I,. This is a contradiction. Hence if xe I— 1,
then M(s, x)¢ S, for all seS.

(1) (2) For given s, te S, there exists x € I such that M(s, x)=t. In this case, the
element x must be in 7, by Lemma 2.1. Consequently, A* is strongly connected and so
| G(4*)| <] 84| by Corollary 2.1. On the other hand, by the quasi-regularity and by
Lemma 2.2, we have that |S,|=|G(4)|<|G(4*)|. Therefore |S,|=|G(4)|=
| G(A*)|. This means that A* is quasi-perfect and G(4) is isomorphic to G(A4*).

Q.E.D.

PROPOSITION 2.2. Let A =(S, I, M) be a quasi-regular automaton such that
|S4l#1. If A is abelian and B; is a G(A)-orbit, then A;=(B;, 1,, M,) is a perfect
automaton, where M is the restriction of M to B;x 1.

Proof. We prove first that 4,=(B;, I,, M;) is well-defined as an automaton. Let
xel, and se B,, then there exist ue S, and y e[ such that M(u, y)=s. From the fact
that S, itself is a G(A)-orbit and from Theorem 2.2, we have that M(v, y) € B; for all
ve S,. Since M(u, x)e S, and

M(s, x)=M(M(u, y), x)=M(u, yx)
=M(u, xy)=MM(u, x), y),
we have M(s, x) e B;. Therefore, if xel,, then M(s, x) € B; for all se B, and we can
define the automaton A4;=(S;, 1,, M)).

Let s, 1€ B;, then there exist ueS, and yel such that M(u, y)=s. Since &,
w—M(w, y), we S 4, is an onto mapping by Theorem 2.2, we can find some ve S, such
that M(v, y)=1. Using Lemma 2.1, we have M(u, x)=v for some xeI,, and

M(s, x)=M(M(u, y), x)=MM(u, x), y)=M(, y)=t.

Thus 4;=(B;, I, M;) is strongly connected. Since 4, is abelian and the restriction of
G(A) to B; is transitive, i.e., G(4,) is transitive on B, the automaton 4, is perfect.
Q.E.D.

In the case that a quasi-regular automaton A is not abelian, 4,=(B;, 1,, M)) is
not necessarily well-defined as an automaton.

Let A=(S, I, M) be an automaton. If for any given (s, f) € S x S there exists some
xeTsuch that M(s, x)=t or M(t, x)=s, then A is called unilaterally connected. Note
that a unilaterally connected automaton is a cyclic automaton (Theorem 16.1 of [6]).

Let A=(S, I, M) be a quasi-regular automaton and B; be a G(A4)-orbit such that
| B;|22. If 4 is unilaterally connected and s, € B; (s#¢), then there exists some x e/
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such that M(s, x)=t or M(t, x)=s. Suppose that M(s, x)=t. Since seB; and
M(s, x)eB;, & u—»M(u, x), ueB;, is a mapping from B; onto B; by Theorem
2.2. Therefore, the set

I={xel| M(s, x)€B; for all seB;}

contains an element x e I such that x #¢, and hence I, is an infinite set. We can define
the automaton

gi=(Bi5 Ii’ Ml) 5
where M, is the restriction of M to B; x I,. We note again that if M(s, x) € B, for some
s€ B, thenM(t, x)€ B, for all te B, In Barnes [1], 4; is called a full subautomaton.
Define the equivalence relation on I; by xpy if and only if M (s, x)=Ms, y) for all

s€ B;, and denote by [x] the set of all y e I; such that xpy and by [[] the set of all such
classes. We define the automaton

A(i)=(Bi’ (7], M)
by
M(s, [x])= M, x) (= M(s, x)).
Then we have the following result.

PROPOSITION 2.3.  Under the hypothesis and with the notation mentioned above,
Ay, is a quasi-perfect automaton.

Proof. If ge G(A4) and se€ B;, then (s)g € B; and for any x eI, we have

(M(s, [x]))g =(M(s, x))g
=M((s5)g, x)=M{((s)g, [x] .

Hence the restriction of g to B; is an element in G(4,;). Since B; is an orbit of G(4),
G(A;) is transitive on B;. By the unilateral connectedness of 4, for any given s, t€ B;
(s#1) there exists some xe€I; such that M(s, x)=t¢ or M(z, x)=s. Without loss of
generality we may assume that M(s, x)=t. Since B, is a G(4)-orbit, there exists some
he G(A) such that (s)h=tr. Note that M(s, x)=t=(s)k. By induction on n, we have

M(s, x")=(s)h" .
If m is the order of A, then

M(t, X"~ 1) = M(M(s, x), x™ ")
=M(s, x™)=(s)h"=s.
Therefore, for given s, ¢ € B; there exist some elements x, y € I; such that M(s, x)=t and

M(z, y)=s. This means that A4, is strongly connected. Thus A, is a quasi-perfect
automaton. Q.E.D.

Remark 2.2. Let A=(S, I, M) be an automaton and se S. The relation p, on T
is defined by xpy if and only if M(s, x)=M(s, y). It is obvious that p, is a right
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congruence relation on the free semigroup 7. In Masunaga et al. [10], the quasi-state-
independent automaton is defined as follows:

An automaton 4=(S, I, M) is called quasi-state-independent with respect to a
state s if it satisfies the condition

PSP, forall teS.

If Bis a G(A)-orbit and s, t€ B, then p,=p,. Thus, if an automaton is quasi-perfect,
then it is quasi-state-independent with respect to any state of it. A quasi-perfect
automaton is also quasi-regular. In general there are quasi-regular automata which
are not quasi-state-independent.

Example 2.1. Let A=(S, I, M) be a cyclic automaton such that
S={192’ 394, 59 6}3 I={x’y}
and

MI123456

x | 21 3 4 43

y | 345656

where M(i, x) and M(i, y) are obtained from the above table. For example,
M(1, x)=2. Then A4 is quasi-regular, but 4 is not quasi-state-independent.

PROPOSITION 2.4. Let G be a finite group. Then there exists a quasi-regular
automaton A= (S, I, M) such that I—1,+# & and G(A) is isomorphic to G.

Proof. Let oo and ¢ be symbols. Define the automaton
A=(Gu{wo}, GU{l}, M)
by

sog if seGand ge@G,
M(s, g)=< o if s=00,
0 ifg=¢,
where o is the group operation. Then G(A4) is isomorphic to the left regular

representation of G and so G(A) is transitive on S,(=G). Therefore 4 is quasi-
regular. Q.E.D.

Note that the quasi-regular automaton which is mentioned in the above proof is
quasi-state-independent.

Now we give an example of a construction of a quasi-regular automaton by using
AG,-matrices.

Example 2.2. Let S, be the symmetric group of degree 14 and let
x=(123)456)(789)(10) (11) (12) (13) (149)eS,,
y=0 42 6)(3 5 (M@ 910 11) (12 13) (14)eS,, .
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Put G={x, y), then G is a quasi-regular permutation group. Let

x=(123456) - =089
»n=>14@26@)5) y2=(7) (8 9)
y3=(10 11) ye=(12 13) and ys=(14)=e;,
where es and ¢; (i=1, - - -, 4) in what follows are identity permutations. Let
G ={x;, y1» B, ={1,2,3,4,5, 6}
G, =%, ¥5> B,={7,8, 9} Gy={y3> B,={10, 11}
Ga=pa - B,={12, 13} Gs={ys>  Bs={14},
then

Z={(G1’ Bl)s (627 Bz)s (G3a B3)s (G4a B4), (G5> Bs)}

is the set of all constituents of G. We consider reducers of these permutation groups.
Let

*=(123)(4 65 and *y;=(1 42 5 @3 6),
then *G, =(*x,, *y;) is the centralizer of G,. Let
O(1=<e1 Xy xz Y1 V1% Jﬁ’i)
€ Xy X3 Va2 YaXp YaX3

and

£ = 1 2 3 4 5 6
\7 89 78 9)
then, since P(x;)P(¢;)=P(¢,)P(x,)and P(y)P(&)=P()P(p,), (a4, &) is a reducer
of G, onto G,. Let

2 2
a_<el X1 X1 Y1 YiXp yiXy
=

€3 €3 €3 Y3 V3 V3

and

- 1 2 3 4 5 6
27\10 10 10 11 11 11)°
then, (a,, &,) is a reducer of G, onto G;. Let

7 8 9 e, X, X2
é3_<14 14 14> and “3_<e5 e’ e )’

then (a3, &,) is a reducer of G, onto Gs. Let

10 11 es ¥s
= d =
e <12 13> e <e4 y4>
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and let

Then (ay, &,) and (as, &s) are reducers of G; and G,, respec;tiyply. Next, we construct
the following AG,-matrices;

[ P(*x,)
« P(e,)
U= P(e;)
P(e,)
L P (es)_
P(*y1)
P(e;)
V= P(y,)
P(y,)
L P (es)_
0 P(¢,) 1
P(ey)
W= P(e3)
P(ey)
L Pes) |
0 0 PE) O 0 ]
0 0 0 P(&)
Z= | 0 P¢) O
P&) O 0
L p (85)_

Then, it is easy to see that U, V, W and Z commute with P(x) and P(y). Consider the
preimages u, v, w and z of U, ¥V, W and Z, respectively, and defihe the automaton
A=(S, I, M) such that

§={1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14},
I={u, v, w, z},
and

10 11 12 13 14
10 11 12 13 14
11 10 13 12 14
10 11 12 13 14
12 13 10 11 14

N%cxg
[N R P S
S 00 L WM
S O N —|W
—_ = A
— 00 N K|
— O W |
B RN
£ 00 00 00|00
H O O OO

—_—
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Then, since G=G(4) and | G|=| S,|, we have G(4)=G.

Definition 2.8. Let A=(S, I, M) be an automaton and G(4) be its automor-
phism group. Then for a subgroup H of G(4), the factor automaton, A/H is A/H=
S, I, M)H, where S is the set of all H-orbits on S and for 5 S and xel, M@, x)=
M(s, x). (The symbol § denotes the H-orbit which contains an element s of S.)

If A=(S, I, M) is cyclic automaton and H is a subgroup of G(A). Then A/H is a
cyclic automaton, and an H-orbit B is a generator of 4/H if and only if B< S,.

PROPOSITION 2.5.  Let A=(S, I, M) be a quasi-regular automaton and H be a
subgroup of G(A), then I,=1,y.

Proof. If |S,|=1, then |G(4)|=|S,|=1. Therefore G(4)=H= {15} (the
identity group) and 4/H is isomorphic to 4. Thus we have that I, =1 A/H-

Suppose that | S 4| #1, then I, # S by Lemma 2.1. By § '« we denote the set of all
generators of A/H. Let xe I, and B, € §,. If M(B,, x)= B,, then there exists s e B, and
1€ B, such that M(s, x)=t. Note that se B; =S, and x e, then in views of Theorem
2.3 we have that te S, and B, = S,. Therefore B, S, and so s,y

Let yel,y and BeS,, then BSS, and M(B, y)eS, This means that
M(s, y)e S, for se B(SS,). By Theorem 2.3 we have that yel,, so that Iyn<1,.

Q.E.D.

PROPOSITION 2.6. Let A=(S, I, M) be a cyclic automaton and H be a normal
subgroup of G(A). Then G(A)/H is isomorphic to a subgroup of G(4)/H .

Proof. Let Hge G(4)/H. Then Hy acts on S by (5)Hg = (s)g for all §& §. By this
action Hyg is an automorphism of A/H. The action of G(4)/H on S is faithful because
G(A) is semiregular on S, by Theorem 2.1. Q.E.D.

THEOREM 2.4. Let A=(S, I, M) be'a quasi-regular automaton and H be a
normal subgroup of G(A). Then A/H is a quasi-regular automaton and G(A)/H is
isomorphic to G(A/H).

Proof. Since A is quasi-regular, H is semiregular on S,. All orbits of a
semiregular permutation group have the same length. Thus the restriction of H on S P
has | S,|/| H| orbits. Hence 4/H has | S,|/| H| generators. Since A4 is quasi-regular,
| G(4)|=[S,|and so the factor automaton A/H has | G(A) |/| H| generators. Therefore
the order of G(A)/H is equal to the number of generators of 4/H. By Proposition 2.6
and Theorem 2.1 we conclude that G(4)/H is isomorphic to G(4/H). Q.E.D.

In Theorem 2.4, we see that the result of Fleck [5] is extended naturally to quasi-
regular automata. Ito [8] presented the following result:

Let A=(S, I, M) be a strongly connected automaton such that | S|= plG(A)|,
where p is a prime number, and H be a normal subgroup of G(4). Then if 4 is not a
permutation automaton, G(4)/H is isomorphic to G(A/H).

In the rest of this section, we extend this result to cyclic automata.

THEOREM 2.5. Let A=(S, I, M) be a cyclic automaton such that I W F D and H
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be a normal subgroup of G(A), and let S, be the set of all generators of A/H. If G(4/H)
is transitive on S,, then A* is a permutation automaton.

Proof. Let {Bj|i=1, ---, n} be the set of all H-orbits. Suppose that
M(s, x)= M(t, x) for some xel, and some s, t€ B;, where B;= S,. Then there exists
he H such that (s)h=t. Since

(M(s, x))h=M((s)h, x)=M(t, x)=M(s, x),

M(s, x) is fixed by 4. By Theorem 2.1, H is semiregular on S, and so we have h=1;
(the identity of G(A)) and s=t. Thus, if B,=S, and s, te B; (s#1), then M(s, x)#
M(t, x) for all xel,. To each xel, we assign a transformation £ on S, where

x:B-—>M( > X) 5 B~ES.

Let ge G(4/H), B;e S, and xel,. Then S, is fixed by g and % as a set and we have
that M( , X)g= M((B )g, x), so that (B;))%g=(B;)gx. This means that the restriction
of X to S ', commutes with all g€ G(4/H) on S ,. Since G(4/H) is transitive on S,, the
restrxctlon of £ to S, is a permutation on S, by Proposition 1.5. Therefore, if
B, BJeSA and B;# B;, then (B;)% #(B))x. Thus we have that &.: s— M(s, x), SES,
is a permutation on S 4 Q.E.D.

COROLLARY 2.4 Let A=(S, I, M) be a strongly connected automaton and H be
a normal subgroup of G(A). If A is not a permutation automaton, then G(A/H) is not a
transitive permutation group.

Proof. Since A is strongly connected, 4 satisfies the hypothesis of Theorem 2.5.
We take a contraposition of Theorem 2.5. Q.E.D.

PROPOSITION 2.7. Let A=(S, I, M) be a cyclic automaton such that
| S, |=p|G(A)| and I,# &, where p is a prime number. If A* is not a permutation
automaton, then for any normal subgroup H of G(A), G(A)/H is isomorphic to G(A/H).

Proof. Let S, be the set of all generators of A4/H. By Theorem 2.1,
| 841=1S4I/| HI=pl G(A) | Hl=p| G(4)/H] .

On the other hand, | G(4/H)| divides | S,| and | G(4/H)| 2| G(4)/H| by Proposition
2.6. Hence | G(A/H) | =| G(4)/H | or p| G(4)/H |. In the latter case, G(4/H) is transitive
on S,. This means that 4* is a permutation automaton by Theorem 2.5. QED.

The final proposition is a generalization of the above-mentioned result of Ito to
cyclic automata.
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